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  3.5* Behavior of Members Subject to Axial Loads.  
  3.6* Bending of Homogeneous Beams.  
 

Part II: Design of Reinforced Concrete Beams 
 4. Flexural Analysis and Design of Beams (1st of November 31st of December) 
  4.1 Introduction.  

  4.2 Behavior of Concrete Beams  
  4.3 Procedure and Examples for Flexure Analysis of Rectangular Beams with Tension 

Reinforcement. 
 

  4.4 Home Work of Article 4.3, Flexure Strength Analysis of Beams with Rectangular 
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  4.5 Practical Flexure Design of a Rectangular Beam with Tension Reinforcement Only 
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  4.6 Home Work of Article 4.5, Practical Flexure Design of a Rectangular Beam with 
Tension Reinforcement Only and Pre-specified Dimensions (b and h). 

 

  4.7 Practical Flexure Design of a Rectangular Beam with Tension Reinforcement Only 
and Non-specified Dimensions. 

 

  4.8 Home Work of article 4.7, Practical Flexure Design of a Rectangular Beam with 
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1 Asterisk, *, indicates more specialized articles that may be terminated without destroying the continuity of the course. 
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CHAPTER 1 
INTRODUCTION 

1.1 STRUCTURAL DESIGN, STRUCTURAL ELEMENTS, AND STRUCTURAL FORMS 

1.1.1 Structural Design 
• The main objectives of the structural design are to prepare a structural system 

that transfers the applied loads from the points of application to the supporting 

soil safely and with an acceptable cost.  
• The first step in the structural design is to select a structural system to be used in 

transferring the applied loads from the points of application to the supporting soil.   

1.1.2 Structural Elements 
To deal with an uncountable variety of the structures, they are usually broken into the 
following structural elements in their analysis and design. 

1.1.2.1 Bar Element 
• As indicated in Figure 1.1-1 below, the bar element is the structural element that 

has two dimensions small when compared with the third one.  

 Figure 1.1-1: Bar element. 

• A Bar element can be defined as a beam when the load is applied transversely to 

the element axis. 

 Figure 1.1-2: Beam element. 

• A Column can be defined as the bar element that subjected to an axial load with 

or without bending moment. 

 Figure 1.1-3: Column element. 
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1.1.2.2 Plate Element 
• The plate element is the structural element that has a one small dimension 

comparing with other its dimensions. 

 Figure 1.1-4: Plate element. 

• The bearing wall is a plate element that subjected to an axial load. 

 Figure 1.1-5: Bearing wall. 

• The slab is a plate element that subjected to transverse loads. 

 Figure 1.1-6: Structural slab. 

1.1.2.3 Shell Element 
• The shell element is a curved structural element; one of its dimensions is small 

when compared with the other two dimensions.  

• It may take a form of the dome, or a form cylindrical shell.  
• Shell element is out the scope of our course. 
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 Figure 1.1-7: Dome Shell. 
 

 Figure 1.1-8: Cylindrical Shell. 
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1.2 FLOORING AND ROOFING SYSTEM 

Reinforced–concrete floors can be classified into the following systems. 

1.2.1 One-way Floor System 
• In this system, the applied load acting on the slab is transferred in one direction 

to the supporting beams, then to the supporting columns. 

1

2
1

3

4

 
Figure 1.2-1: One-way floor system. 

• For a large column spacing, the load may be transferred from the slab to the floor 

beams, then to larger beams (usually called the girders), and in turn to the 
supporting columns. 

1

2 1
3

4

5

 
Figure 1.2-2: Slab-beam-girder one-way system. 
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1.2.2 Two-way Floor System with Beams 
In this system, the applied load acting on the slab is transferred in two directions to 
supporting beams on the slab periphery, and in turn to the supporting columns. 

1 1

2

3

4

Figure 1.2-3: Two-way floor system with beams. 

1.2.3 Two-way Floor System without Beams 
• In this system, usually called flat plate system, the slab is supported directly on 

the columns. Load transferred directly from the slab to the supporting columns.  

1

1

1

1

2

3

Figure 1.2-4: Flat plate floor system. 
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• To avoid slab punching due to column concentered forces, aforementioned system 
may be strengthened with drop panels and/or column capital.  

• The resulting system is flat slab system.  

• Flat plate and flat slab systems are out the scope of our junior course. 

 

Figure 1.2-5: Flat 

slab system. 
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1.3 LOADS 

Loads that act on the structures can be classified into three categories: dead loads, live 
loads, and environmental loads.   

1.3.1 Dead Load 
1. The major part of it is the weight of the structure itself. 

2. It is constant in magnitude and fixed in location throughout the life of the 
structure.  

3. It can be calculated with good accuracy from the dimensions of the structures and 
density of the materials.  

4. Dead loads may be further classified into: 

o Selfweight, which represents own weight of the structural system. 
o Superimposed loads, which represents own weight of surfacing, 

mechanical, plumbing, and electrical fixtures. 

1.3.2 Live Load 
1.3.2.1 Floor Live Loads 

• It consists of occupancy loads in buildings. According to section 5.3.4 of the code, 

the live load, 𝐿, shall include, see Figure 1.3-1 through Figure 1.3-5. 

o Concentrated live loads,  
o Vehicular loads 
o Crane loads,  

o Loads on hand rails, guardrails, and vehicular barrier systems, 
o Impact effects, 

o Vibration effects. 

  
Figure 1.3-1: Concentrated live loads. Figure 1.3-2: Crane loads on a building 

frame. 

   
Figure 1.3-3: Handrail and vehicular 

guardrail or barrier. 

Figure 1.3-4: Impact effects. 

 

 Figure 1.3-5: Vibration effects. 
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• It may be either fully or partially in place or may not percent at all.  
• It may be changed in location. 
• Its magnitude and distributions at any given time are uncertain and even their 

maximum intensities throughout the lifetime of the structures are not known with 
precision.  

• The minimum live loads for which the floors and roof of a building to be designed 
are usually specified by the building code that governs at the site of constructions.  

• Representative values of minimum live loads to be used in many locations 

including Iraq are presented in Table 1.3-1 below. These values are adopted from 
(ASCE/SEI 7–10), Minimum Design Loads for Buildings and Other 

Structures.  
• As can be seen from the table, in addition to the uniformly distributed loads, it is 

recommended that, as an alternative to the uniform loads, floors be designed to 

support certain concentrated loads if these produce a greater stress. 

1.3.2.2 Reduction in Floor Live Load 
• As it is improbable that a large floor area be fully loaded with live load at a same 

time, most of building codes offer relations to relate the value of live load 
supported by a structural member to the area which supported by this member. 

• According to article 4.7.2 of (ASCE/SEI 7–10), reduced live load can be estimated 
based on following relation: 

𝐿 = 𝐿𝑜(0.25 +
4.57

√𝐾𝐿𝐿𝐴𝑇

) 
Eq. 1.3-1 

where 

𝐿𝑜 is unreduced design live load per 𝑚2 of area supported by the member (see 

Table 1.3-1 below), 

𝐿 is reduced design live load per 𝑚2 of area supported by the member, 

𝐾𝐿𝐿 is live load element factor (see Table 1.3-2 below). 

𝐴𝑇 is tributary area in 𝑚2. 

To be a large area where reduction in live load is permitted, the influence area, 

𝐾𝐿𝐿𝐴𝑇, should be: 
𝐾𝐿𝐿𝐴𝑇 ≥ 37.16 𝑚2 

• 𝐿 shall not be less than 0.50𝐿𝑜 for members supporting one floor and L shall not be 

less than 0.4𝐿𝑜 for members supporting two or more floors. 

• Live loads that exceed 4.79 𝑘𝑁/𝑚2 shall not be reduced. 
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Table 1.3-1: Minimum Uniformly Distributed Live Loads, and Minimum Concentrated 

Live Loads. 
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Table 1.3-1: Minimum Uniformly Distributed Live Loads, and Minimum Concentrated 

Live Loads, Continued. 
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Table 1.3-1: Minimum Uniformly Distributed Live Loads, and Minimum Concentrated 

Live Loads, Continued. 
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Table 1.3-2: Live Load Element Factor, 𝑲𝑳𝑳 
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Example 1.3-1 

Flat plate system indicated in Figure 1.3-6 below is proposed for a school building. Almost 
all floors area are classes. For this building,  

• According to requirements of ASCE 7-10, select an appropriate value for floor live 
load. 

• Compute live load resultant acting on a typical interior column. Reduce floor live 
load if possible. 

              

 
Figure 1.3-6 Flat plate building for Example 1.3-1. 

Solution 

• Floor Live Load 

According to ASCE 7-10, live load for classrooms is: 

𝐿𝐿 = 1.92
𝑘𝑁

𝑚2
= 1.92 𝑘𝑃𝑎 ∎ 

• Resultant of an Interior Column 

As live load is less than 4.79 𝑘𝑃𝑎, therefore it is reducible according to ASCE 7-10. 

Regarding to live load acting on a typical interior column, its useful to note that in regular 
system with equal spans, interior column is assumed to support a tributary area bounded 

by centerlines of adjacent panels, see Figure 1.3-7 below. 
𝐴𝑇 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝑎𝑛 𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 = (5 × 6) × 4 = 120 𝑚2 
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According to Table 1.3-2 above: 

𝐾𝐿𝐿 = 4, 

The influence area is: 
𝐾𝐿𝐿𝐴𝑇 = 4 × 120 = 480 𝑚2 > 37.16 𝑚2  
Therefore, the reduction in live load is permitted.  

𝐿 = 𝐿𝑜 (0.25 +
4.57

√4 × 120
) = 0.458 𝐿𝑜 > 0.4𝐿𝑂 ∴ 𝑂𝑘. 

The resultant of live load acting on a typical interior column is: 
𝑃𝐿 = 0.458 × 1.92 × 120 = 106 𝑘𝑁 ∎ 

                
Figure 1.3-7: Tributary area supported by a typical interior column. 
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Example 1.3-2 

Floor system presented in Figure 1.3-8 below is proposed for patient rooms in a hospital 
building. According to ASCE 7-10: 

• Proposed a suitable floor live to be adopted for this floor system, 
• Reduce floor live load for a typical interior floor beam, 

 

 
Figure 1.3-8: Floor system for Example 1.3-2. 

Solution 

According to Table 1.3-1 above, live load for patient rooms in hospital buildings is: 
𝐿𝑜 for patient rooms = 1.92 𝑘𝑃𝑎 ∎  

In a one-way floor system, the tributary area supported by a typical interior beam is 
indicated in Figure 1.3-9 below. 
∴ 𝐴𝑇 𝑓𝑜𝑟 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑓𝑙𝑜𝑜𝑟 𝑏𝑒𝑎𝑚 = 2.5 × 8 × 2 = 40 𝑚2 
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With 𝐾𝐿𝐿 factor of 2 according to Table 1.3-2 above, influence area for a typical interior 

floor beam would be: 
𝐾𝐿𝐿𝐴𝑇 = 2 × 40 = 80 𝑚2 > 37.16 𝑚2 
∵ 𝐿𝑜 = 1.92 𝑘𝑃𝑎 < 4.79 𝑘𝑃𝑎  
Therefore, live load of a typical floor beam is reducible and can be estimated from relation 
below: 

𝐿 = 𝐿𝑜 (0.25 +
4.57

√80
) = 0.76 𝐿𝑂 

As floor beams contribute in supporting their own story only, therefore reduced live load 

should be limited by 0.5𝐿𝑜. 
𝐿 = 0.76𝐿𝑜 = 0.76 × 1.92 = 1.46 𝑘𝑃𝑎 ∎ 

 

 
Figure 1.3-9: Tributary area supported by a typical interior floor beam. 
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1.3.2.3 Roof Live Load 

1.3.2.3.1 Basic Value of Roof Live Load 

The minimum uniformly distributed roof live loads, 𝐿𝑜, can be estimated from values 

presnted in Table 1.3-1 above. 

1.3.2.3.2 Reduction of Roof Live Load 

According to (ASCE/SEI 7–10), roof live load, 𝐿𝑜, can be reduced according to following 

relation: 
𝐿𝑟 = 𝐿𝑜𝑅1𝑅2            0.58 𝑘𝑃𝑎 ≤ 𝐿𝑟 ≤ 0.96 𝑘𝑃𝑎 Eq. 1.3-2 

where 

𝐿𝑟 is reduced roof live load per 𝑚2 of horizontal projection supported by the member, 

𝐿𝑜 is unreduced design roof live load per 𝑚2 of horizontal projection supported by the 

member, (see Table 1.3-1 above). 

The reduction factor 𝑅1 simulates reduction of roof live load as a function of loaded area 

and it can be estimated from following relation: 

𝑅1 =

1 𝑓𝑜𝑟 𝐴𝑇 ≤ 18.58 𝑚2

1.2 − 0.011𝐴𝑇 𝑓𝑜𝑟 18.58 𝑚2 < 𝐴𝑇 < 55.74 𝑚2

0.6 𝑓𝑜𝑟 𝐴𝑇 ≥ 55.74 𝑚2

 

where 𝐴𝑇 is tributary area in 𝑚2 supported by the member. 

While the reduction factor, 𝑅2, simulates reduction in roof live load with increasing in roof 

slope and it can be estimated from relation below: 

𝑅2 =

1 𝑓𝑜𝑟 𝐹 ≤ 4
1.2 − 0.05𝐹 𝑓𝑜𝑟 4 < 𝐹 < 12

0.6 𝑓𝑜𝑟 𝐹 ≥ 12
 

where, for a pitched roof, F = 0.12 × slope, with slope expressed in percentage points. 

 
Example 1.3-3 

For Example 1.3-1 above, select an appropriate value for the roof live load and compute 
the force resultant that supported by an interior column. In your computation, reduce 

roof live loads if possible.  
Solution 

As nothing is mentioned in the example statement 
about the nature of the roof, therefore an ordinary 

roof has been assumed. The roof live load is: 
𝐿𝑜 = 0.96 𝑘𝑃𝑎 ∎ 

Assuming that an interior column supports a 

tributary area bounded by centerlines of adjacent 
panels, see Figure 1.3-10,  
𝐴𝑇 = 5 × 6 = 30 𝑚2 

The reduction factor, 𝑅1, is: 
∵ 18.58 𝑚2 < 𝐴𝑇 < 55.74 𝑚2 
∴ 𝑅1 = 1.2 − 0.011𝐴𝑇 = 1.2 − 0.011 × 30 = 0.87  
For flat roof, 
𝑅2 = 1.0 

𝑃𝐷𝑢𝑒 𝑡𝑜 𝑅𝑜
= (0.96

𝑘𝑁

𝑚2
× 30 𝑚2) × 0.87 × 1.0 = 25.1 𝑘𝑁 ∎ 

 
  

 
Figure 1.3-10: Roof area 

supported by a typical interior 

column for Example 1.3-3. 
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Example 1.3-4 

For gable frame presented in Figure 1.3-11 below, select a suitable roof live load then 
determine the reduced live load that supported by the interior frame. 

 3D view. 

 Plan view. 

 Sectional view. 
Figure 1.3-11: Gable frame for Example 1.3-4. 
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Solution 
Assuming an ordinary pitched roof, roof live load according to Table 1.3-1 above would 
be: 
𝐿𝑟 = 0.96 𝑘𝑃𝑎∎ 

According to Eq. 1.3-2 above, the reduced roof live load is: 
𝐿𝑟 = 𝐿𝑜𝑅1𝑅2            0.58 𝑘𝑃𝑎 ≤ 𝐿𝑟 ≤ 0.96 𝑘𝑃𝑎 

As this live load is acting on the inclined surface, therefore the tributary area would be: 

𝐴𝑇 = (
7

𝑐𝑜𝑠8
× 2) × (

6

2
× 2) = 84.8 𝑚2 

∵ 𝐴𝑇 ≥ 55.74 𝑚2  ⇒  𝑅1 = 0.6 

In computing 𝑅2, the 𝐹 factor is determined as follows: 
𝐹 = 0.12 × 𝑆𝑙𝑜𝑝𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑢𝑛𝑖𝑡𝑠 = 0.12 × (𝑡𝑎𝑛8) × 100 = 1.69 

∵ 𝐹 ≤ 4 ⇒ ∴ 𝑅2 = 1.0 

Hence, the reduced roof live load that supported by the interior frame would be: 
𝐿𝑟 = 𝐿𝑜𝑅1𝑅2 = 0.96 × 0.6 × 1.0 ≈ 0.58 𝑘𝑃𝑎 = 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ∴ 𝑂𝑘. ∎ 

 
Example 1.3-5 

For industrial building indicated in Figure 1.3-12 below: 

• Select an appropriate value for roof live load. The roof has a slope of 10𝑜.  

• Reduce the selected roof live load, if possible, to determine its resultant on the 

indicated typical edge column.  
• If the building floor is proposed for a light manufacturing process, determined the live 

load that should be adopted according to ASCE/SEI 7-10.  
• Is the selected live load reducible or not? Explain your answer. 
• Determine live load resultant on the indicated typical edge column. 

  
Plan view @ floor level. 3D View. 

 Sectional View. 

Figure 1.3-12: Structural system for the industrial building Example 1.3-5. 

 



Design of Concrete Structures Chapter 1: Introduction  
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Chapter 1: Page 20 
 

Solutions 

• Appropriate value for roof live load: 
According to ASCE 7-10, live load for ordinary flat roof is: 
𝐿𝑟 = 0.96 𝑘𝑃𝑎 

• Reduce of roof live load: 

𝐴𝑇 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑒𝑑𝑔𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 =
7

𝑐𝑜𝑠10
× 6 = 42.6 𝑚2 ⇒ ∵  18.58 𝑚2 < 𝐴𝑇 < 55.74 𝑚2 

∴ 𝑅1 = 1.2 − 0.011𝐴𝑇 = 1.2 − 0.011 × 42.6 = 0.731 
𝐹 = 0.12 × 𝑆𝑙𝑜𝑝𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑢𝑛𝑖𝑡𝑠 = 0.12 × (𝑡𝑎𝑛10) × 100 = 2.12 ⇒∵ 𝐹 ≤ 4 ⇒ ∴ 𝑅2 = 1.0 

𝐿𝑟 = 𝐿𝑜𝑅1𝑅2 = 0.96 × 0.731 × 1.0 ≈ 0.702 𝑘𝑃𝑎 > 0.58 𝑘𝑃𝑎 ∴ 𝑂𝑘. ∎ 

• Floor live load: 

Assuming a light manufacturing process, the floor live load according to ASCE/SEI 7-
10 is: 
𝐿 = 6.0 𝑘𝑃𝑎 

• Reduction of floor live load: 

Floor live of 6.00 𝑘𝑃𝑎 is irreducible according to ASCE/SEI 7-10 as it is greater than 

4.79 𝑘𝑃𝑎. 

• Live load resultant on the indicated edge column: 
𝑃𝐿 ≈ 6 𝑘𝑃𝑎 × 7𝑚 × 6𝑚 = 252 𝑘𝑁∎ 

 

1.3.3 Environmental Loads  
Environmental loads can be sub-classified into the following types: 

1. Wind Loads. 
2. Earthquake Loads. 

3. Soil Pressure Loads. 
4. Snow Loads. 

5. Rain Loads. 
6. Force caused by a differential temperature. 

Like live loads, environmental loads at any given time are uncertain both in magnitude 

and in distribution. Therefore, their values and the distribution must be determined 
based on the codes and specifications like the International Building Code or Minimum 

Design Loads for Buildings and Other Structures.  

1.3.3.1 Wind Loads 
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1.4 DESIGN CODES AND SPECIFICATIONS  
After selection of a suitable structural system based on the functional and/or architectural 

requirements, the structural design process can be summarized by following three steps: 

Prediction of the 

applied loads

Make a structural analysis 

to compute the member 

internal forces and the 

structural deformations that 

related to the applied loads.

Compute the member 

strength and then 

assessment the member 

adequacy based on the 

comparison between the 

applied loads and the 

member strength.

 
As was shown in the previous article on the loads and as will be shown in the next 
articles, each one of the above steps contains some kind of uncertainty. To deal with 

these uncertainties in the design process, the engineers must base their design decision 
not only on the theoretical aspects but also on the previous experience that usually 
written in the form of codes or specifications which edited by professional groups and 

technical institutes.  
Following list states most important professional groups and technical institutes: 

1.4.1 American Society of Civil Engineers (ASCE) 
Produce a document titled “Minimum Design Loads for Buildings and Other Structures, 
ASCE 7-10” that is usually used in the definition of loads magnitude, distribution, and 

load combinations that should be considered in the structural design.  

1.4.2 American Concrete Institute (ACI) 
Produce documents that including provisions for the concrete design and construction. 
The “Buildings Code Requirements for the Structural Concrete (ACI 318M-14)” that 
related to the design and construction concrete buildings is an example of these 

documents.  

1.4.3 American Association of State Highway and Transportation Officials 
(AASHTO) 

Produce documents that related to the design and construction of the highway projects 
and highway bridges. 

1.4.4 American Railway Engineering Association (Area) 
Produce the documents that related to the design and construction of the 
railway projects. 
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1.5 DESIGN CRITERIA  

Following criteria are usually adopted in design and assessment of different structural 
elements: 

1.5.1 Criteria for Beams Design 
Design and assessment of a reinforced concrete beam are based on the following criteria: 

1.5.1.1 Strength criterion  

Including checking or design for flexure strength, shear strength, torsion strength, and 

bond strength of the reinforced concrete beam. 

1.5.1.2 Serviceability criterion  

Including checking for adequacy of reinforced concrete beams for deflection, crack width, 
and vibration (vibration is out the scope of this course). 

1.5.1.3 Stability criterion  

As stated in theory of structure, a plane structure is stable when supported by three 
reactions or more that neither all parallel nor all concurrent at a single point.  
Due to rough nature of surfaces in concrete and masonry structure, most of reinforced 
concrete beams are stable in nature. Consider for example the reinforced beam indicated 

in Figure 1.5-1(a) below due to surface roughness, a beam to wall connection can be 
simulated as a hinge. With two hinge supports indicated in Figure 1.5-1(b), a membrane 

force develops in the beam in addition to shear force and bending moment. In traditional 
reinforced concrete design, this membrane force is usually neglected and the beam is 
simulated as presented Figure 1.5-1(c). 

 
Figure 1.5-1: A simply supported reinforced concrete beam. 
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1.5.2 Criteria for Slabs Design 
Design and assessment of the one-way slabs or two-way slabs are generally based on 
the following criteria: 

1.5.2.1 Strength criterion  

Including checking or design for flexure strength, shear strength, and bond strength of 
the reinforced concrete slab. 

1.5.2.2 Serviceability criterion  

Including checking for adequacy of reinforced concrete slabs for deflection, crack width, 
and vibration (vibration out the scope of our course). 

1.5.2.3 Stability criterion  

As discussed in stability criterion for beams, reinforced concrete slabs are stable in nature 
due to surface roughness.  

1.5.3 Criteria for Columns Design 
Design and assessment of the reinforced concrete columns are based on the following 
criteria. 

1.5.3.1 Strength criterion  

Including checking for flexure and axial strength of reinforced concrete columns.  

1.5.3.2 Stability criterion  

In additional to general stability criteria that related to number and arrangement of 
reactions, stability of some columns, called slender columns, is a function of axial load. 

For a specific level of axial forces, called column critical load or Euler load, the column is 
unstable in a sense that it cannot return to its equilibrium position after a small lateral 
disturbance, see Figure 1.5-2 below.  

     
Figure 1.5-2: Physical interpretation of critical load. 

In addition to stability aspect, equilibrium equations for a slender column should be 

formulated in terms of deformed shape instead of undeformed shape to take into account 
the effects of secondary moments, see Figure 1.5-3 below. 
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Figure 1.5-3: Secondary moment effects in column analysis. 

1.5.3.3 Serviceability  

As indicated in Figure 1.5-4 below, generally, axial deformation of columns produce rigid 
body motion in beams and floor systems and can be disregarded in serviceability 
checking.  

 
Figure 1.5-4: Rigid body motion and deformation of beams. 
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1.6 DESIGN PHILOSOPHY  

Uncertainties in the analysis, design, and construction of reinforced concrete structures 
can be summarized in the diagram below:  

 
1.6.1.1 Load Uncertainty 

• Based on statistical data obtained from large-scale survey, load uncertainty can be 
described in terms of the probability model show below: 

 

Figure 1.6-1: Frequency curve for 

load. 

• Based on structural type and design code, a designer can select a design load (𝑄̅) 

from related load Table (e.g. Table 1.3-1). 

• If the designer use (𝑄̅) value as a design load, then the designer implicitly accepts a 

probability of over load in the range of 50% (shaded area in the Figure 1.6-2 below).  

 

Figure 1.6-2: Adopting of 𝑸̅ implicitly 

equivalent to acceptance a probability 

of 50% of over load. 

• As this probability for over load is so large to be accepted in a design process, the 

designer should increase the mean value (𝑄̅) to a design value (Qd) (See Figure 

below): 
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Figure 1.6-3: Factored load with low 

probability of overload. 

• Above increasing or magnification is done based on following relation: 
𝑄𝑑 = 𝛾𝑄̅ Eq. 1.6-1 

where 

𝑄𝑑 is the factored load that will be used in structural design or assessment. 

𝑄̅ is the mean value that usually given in Load Tables or computed theoretically. 

𝛾 Load Factor. It is computed according to ACI 5.3.1 (See Table below): 
Table 1.6-1: Load combinations 

Load Combination 

Equation 

Number 

according to 

this course 

Equation 

Number 

according to 

the ACI code 

Primary 

load 

𝑼 = 𝟏. 𝟒𝑫 Eq. 1.6-2 5.3.1a D 

𝑼 = 𝟏. 𝟐𝑫 + 𝟏. 𝟔𝑳 + 𝟎. 𝟓(𝑳𝒓𝒐𝒓𝑺𝒐𝒓𝑹) Eq. 1.6-3 5.3.1b L 

𝑼 = 𝟏. 𝟐𝑫 + 𝟏. 𝟔(𝑳𝒓𝒐𝒓𝑺𝒐𝒓𝑹)
+ (𝟏. 𝟎𝑳 𝒐𝒓 𝟎. 𝟓𝑾) 

Eq. 1.6-4 5.3.1c Lr or S or R 

𝑼 = 𝟏. 𝟐𝑫 + 𝟏. 𝟎𝑾 + 𝟏. 𝟎𝑳
+ 𝟎. 𝟓(𝑳𝒓𝒐𝒓𝑺𝒐𝒓𝑹) 

Eq. 1.6-5 5.3.1d W 

𝑼 = 𝟏. 𝟐𝑫 + 𝟏. 𝟎𝑬 + 𝟏. 𝟎𝑳 + 𝟎. 𝟐𝑺 Eq. 1.6-6 5.3.1e E 

𝑼 = 𝟎. 𝟗𝑫 + 𝟏. 𝟎𝑾 Eq. 1.6-7 5.3.1f W 

𝑼 = 𝟎. 𝟗𝑫 + 𝟏. 𝟎𝑬 Eq. 1.6-8 5.3.1g E 

• Notes on Wind Load Combinations: 

o In the version of 2010, the ASCE-7 has converted wind loads to strength level 
and reduced the wind load factor to 1.0.  

o The Code requires use of the previous load factor for wind loads, 1.6, when 

service-level wind loads are used as in the case of Iraq wind maps. 
o For serviceability checks, the commentary to Appendix C of ASCE/SEI 7 provides 

service-level wind loads, 𝑊𝑎. 

1.6.1.2 Strength Uncertainty  
1. As all of section dimensions and material strength are changed randomly, then if we 

compute a theoretical or nominal strength of a section (Sn) based on ideal values for 
design parameters (section dimensions and material strengths), then if a large 
samples of this sections are test, probability density function of section strength will 

be as shown in Figure 1.6-4 below: 

 

Figure 1.6-4: Frequency curve for 

strength. 

2. If the designer use theoretical or nominal strength of section as a basis for design, 
he implicitly accept a probability of approximately 50% for overestimation of section 
strength (see Figure below): 
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