4.2.2.2.8 Home Work of Article 4.2.2.2.7: Behavior of Singly Reinforced Rectangular Concrete Beams

Problem 4.2-7

A rectangular beam made using concrete with $f_{c}^{\prime}=35 \mathrm{MPa}$ and steel with $f_{y}=420 \mathrm{MPa}$ has a width $\mathrm{b}=450 \mathrm{~mm}$, an effective depth $\mathrm{d}=540 \mathrm{~mm}$, and a total depth $\mathrm{h}=600 \mathrm{~mm}$. The beam is reinforced with four No. 29 bars. Compute the nominal moment capacity, assuming, see Figure below
a. an equivalent rectangular stress block,
b. a triangular stress block with a peak value of $f_{c}{ }^{\prime}$,
c. a parabolic stress block with a peak value of $f_{c}{ }^{\prime}$. (see Fig. P3.13).

Compare and comment on your results, knowing that the rectangular stress block correlates within 4 percent with test results.

Aim of Problem

This problem aims to highlight code regulations of 22.2.2.3 which states "The relationship between concrete compressive stress and strain shall be represented by a rectangular, trapezoidal, parabolic, or other shape that results in prediction of strength in substantial agreement with results of comprehensive tests".

Answers

a. $a_{\text {Rectangular }}=67.5 \mathrm{~mm} M_{n \text { Rectangular }}=549 \mathrm{kN} . \mathrm{m}$
b. $a_{\text {Triangular }}=115 \mathrm{~mm} \quad M_{n \text { Triangular }}=544 \mathrm{kN} . \mathrm{m}$
C. $a_{\text {Parabolic }}=103 \mathrm{~mm} M_{n \text { Parabolic }}=543 \mathrm{kN}$. m

$$
\begin{aligned}
& \frac{M_{n \text { Triangular }}}{M_{n \text { Rectangular }}}=\frac{544}{549}=0.991 \\
& \frac{M_{n \text { Parabolic }}}{M_{n \text { Rectangular }}}=\frac{543}{549}=0.989
\end{aligned}
$$

Comment:
In both cases the results are within a 4% margin or error and the rectangular stress block gives the higher value for the nominal moment.

Problem 4.2-8

A rectangular beam made using concrete with $f_{c}^{\prime}=42 \mathrm{MPa}$ and steel with
$f_{y}=420 \mathrm{MPa}$ has a width 500 mm ., an effective depth of $\mathrm{d}=440 \mathrm{~mm}$., and a total depth of
$\mathrm{h}=500 \mathrm{~mm}$. The concrete modulus of rupture $f_{r}=3.6 \mathrm{MPa}$. The elastic moduli of the concrete and steel are, respectively, $E_{c}=28000 \mathrm{MPa}$ and $E_{s}=200000 \mathrm{MPa}$. The tensile steel consists of four No. 36. bars.
a. Find the maximum service load moment that can be resisted without stressing the concrete above $0.45 f_{c}{ }^{\prime}$ or the steel above $0.4 f_{y}$.
b. Determine whether the beam will crack before reaching the service load.
c. Compute the nominal flexural strength of the beam.
d. Compute the ratio of the nominal flexural strength of the beam to the maximum service load moment, and compare your findings to the ACI load factors and strength reduction factor.

Answers

a. $M_{s c}=219 \mathrm{kN} . \mathrm{m} M_{s s}=179 \mathrm{kN} . \mathrm{m} M_{s s}=179 \mathrm{kN} . \mathrm{m}$
b. $M_{c r}=\frac{b h^{2}}{6} f_{r}=75 \mathrm{kN} . \mathrm{m}$, therefore section cracks.
C. $\quad a=94.7 \mathrm{~mm} M_{n}=664 \mathrm{kN} . \mathrm{m}$
d. Ratio $=\frac{M_{n}}{M_{s}}=\frac{664}{179}=3.7>\frac{\gamma}{\phi}=\frac{\frac{1.2+1.6}{2}}{0.9}=1.56$

Comments:
The value of this ratio is greater than the ACI factors for strength, γ, divided by the ϕ factor, thus suggesting that the working stress design approach is more conservative than the strength design, or Load Resisting Factored Design LRFD, approach.

4.2.2.2.9 Balanced Strain Condition (ACI 10.3.2)

- The secondary compression failure can be assured by keeping the reinforcement ratio ρ below a certain limiting value that called Balanced Steel Ratio ρ_{b}.
- It represents a limit amount of reinforcement necessary to make the beam fail by crushing of concrete at the same load that causes the steel yield.
- Computing the "Balanced Steel Ratio" is also can be written in terms of application of basic principles (Compatibility, Stress-Strain Relation, and Equilibrium):
- Compatibility Conditions:

Based on strain conditions shown below:

Figure 4.2-12: Strain distribution for balanced condition.
$\frac{c_{b}}{\epsilon_{u}}=\frac{d}{\epsilon_{u}+\epsilon_{\mathrm{y}}}$
$c_{b}=\frac{\epsilon_{u}}{\epsilon_{u}+\epsilon_{\mathrm{y}}} d$
$\left[c_{b}=\frac{0.003}{0.003+f_{y} / E_{s}} d\right] \times \frac{E_{s}}{E_{s}}$
$c_{b}=\frac{600}{600+f_{y}} d$
Above relation is a general relation and correct not only for rectangular section.

- Stress-Strain Relation:

Stress distribution for balanced condition can be derived from strain condition and as shown in Figure below:

Figure 4.2-13: Stress distribution and forces for balanced condition.

- Equilibrium Conditions:
$\because \sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow 0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ba}_{\mathrm{b}}=\mathrm{A}_{\mathrm{sb}} \mathrm{f}_{\mathrm{y}}$
$A_{s b} f_{y}=0.85 f_{c}^{\prime} b \beta_{1}\left(\frac{600}{600+f_{y}} d\right) \div f_{y} b d$

$$
\rho_{\mathrm{b}}=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\frac{\mathrm{f}}{\mathrm{y}}}\left(\frac{600}{600+\mathrm{f}_{\mathrm{y}}}\right)
$$

- It useful to notes that the Balanced Steel Ratio is a function of material strengths (f_{c}^{\prime}, and f_{y}) only and it is independent on beam dimensions.

Example 4.2-6

Compute the Balanced Steel Ratio for concretes that have compressive strength of $\mathrm{f}_{\mathrm{c}}^{\prime}=$ $21 \mathrm{MPa}, 28 \mathrm{MPa}$, and 35 MPa when reinforced with reinforcing steel have grades of Grade 40, 50 , and 60.

Solution

Microsoft Excel is so effective in prepare calculations table has cells that related to each other by algebraic or logical relations.
For our problem, calculation table will take the following form:

$\boldsymbol{f}_{\boldsymbol{c}}^{\prime}$ MPa $(\boldsymbol{p s i})$	$\boldsymbol{\beta}_{\mathbf{1}}$	Steel Grade		
		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
		$\mathbf{2 8 0}$	$\mathbf{3 5 0}$	$\mathbf{4 2 0}$
$\mathbf{2 1} \mathbf{(3 0 0 0})$	0.850	36.9×10^{-3}	27.4×10^{-3}	21.3×10^{-3}
$\mathbf{2 8 (4 0 0 0})$	0.850	49.3×10^{-3}	36.5×10^{-3}	28.3×10^{-3}
$\mathbf{3 5} \mathbf{(5 0 0 0})$	0.800	51.9×10^{-3}	42.9×10^{-3}	33.3×10^{-3}

4.2.2.2.10 ACI Maximum Steel Ratio $\rho_{\text {max }}$, (ACI318M, 2014), article 9.3.3.1

- In actual practice, the upper limit on ρ should be below ρ_{b}, for the following reasons:
- For a beam with ρ exactly equal to ρ_{b}, the compressive strain limit of the concrete would be reached, theoretically, at precisely the same moment that the steel reaches its yield stress, without significant yielding before failure.
- Material properties are never known precisely.
- The actual steel area provided will always be equal to or larger than required, based on selected reinforcement ratio ρ, tending toward overreinforcement.
- Then to ensure under-reinforced behavior (ACI318M, 2014) (9.3.3.1) establishes a minimum net tensile strain ϵ_{t}, at the nominal member strength of $\mathbf{0 . 0 0 4}$.
- By way of comparison, ϵ_{y}, the steel strain at the balanced condition, is 0.002 for Grade 420 (See Figure below).

Figure 4.2-14: Strain limits for nonprestressed beams.
where d_{t} is the distance from extreme compression fiber to centroid of extreme layer of longitudinal tension steel.

- Based on strain distribution (compatibility conditions) $c_{\max }$ will be:
$c_{\text {max }}=\frac{\epsilon_{u}}{\epsilon_{u}+0.004} \mathrm{~d}_{\mathrm{t}}$
$c_{\text {max }}=\frac{0.003}{0.003+0.004} \mathrm{~d}_{\mathrm{t}}$
$c_{\text {max }}=0.429 \mathrm{~d}_{\mathrm{t}}$
Above relation is a general relation (i.e., it is applicable for rectangular and nonrectangular section).
- Above relation can be read as follows:

According to ACI, the lowest permitted location of N.A. is located at 42.9% of d_{t} measured from compressive face.

- Thickness of equivalent rectangular stress distribution will be:
$\mathrm{a}_{\text {max }}=\beta_{1} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004} \mathrm{~d}_{\mathrm{t}}$
- Based on stress-strain relation and equilibrium conditions, Maximum Steel Area $A_{s \text { max }} \mathrm{rmitted}$ by the ACI will be:
$\because \sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow 0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{ba}_{\text {max }}=\mathrm{A}_{\mathrm{s} \text { max }} \mathrm{f}_{\mathrm{y}}$
$A_{s \max } f_{y}=0.85 f_{c}^{\prime} b\left(\beta_{1} \frac{\epsilon_{u}}{\epsilon_{u}+0.004} d_{t}\right)$
If d_{t} is conservatively taken equal to d, then:
$A_{s \max } \mathrm{f}_{\mathrm{y}}=0.85 f_{\mathrm{c}}^{\prime} \mathrm{b}\left(\beta_{1} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{u}+0.004} \mathrm{~d}\right) \div \mathrm{f}_{\mathrm{y}} \mathrm{bd}$
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$

Example 4.2-7

Compute the ACI Maximum Steel Ratio $\rho_{\max }$ for concretes that have compressive strength of $f_{c}^{\prime}=21 M P a, 28 M P a$, and $35 M P a$ when reinforced with reinforcing steel have grades of Grade 40, 50, and 60.

Solution

For our problem, calculations table will take the following form:

$\boldsymbol{f}_{\boldsymbol{c}}^{\prime}$ MPa (psi)	Steel Grade			
		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
		$\boldsymbol{f}_{\boldsymbol{y}} \boldsymbol{M P a}$		
	$\mathbf{2 8 0}$	$\mathbf{3 5 0}$	$\mathbf{4 2 0}$	
$\mathbf{2 1 (3 0 0 0)}$	0.850	23.2×10^{-3}	18.6×10^{-3}	15.5×10^{-3}
$\mathbf{2 8 (4 0 0 0)}$	0.850	31.0×10^{-3}	24.8×10^{-3}	20.6×10^{-3}
$\mathbf{3 5 (5 0 0 0)}$	0.800	36.4×10^{-3}	29.1×10^{-3}	24.3×10^{-3}

4.2.2.2.11 ACI Flexure Strength Reduction Factor \varnothing ((ACI318M, 2014) 21.2.2)

- The ACI Code encourages the use of lower reinforcement ratios by allowing higher strength reduction factors (\varnothing) in such beams.
- To do that, ACI Code classified the concrete sections into:
- Tension Controlled Section:
- Is the member with a net tensile strain greater than or equal to 0.005 . The corresponding strength reduction factor is 0.9 .
- Term member in above definition including beams and columns.
- The selection of a net tensile strain of (0.005) is included to encompass the yield strain of all reinforcing steel including highstrength rebars.
- Compression-Controlled Section:
- Is the member that having a net tensile strain of less than 0.002.
- Based on comparison with required strain of 0.004 for maximum steel ratio in beam, one can conclude that the term "member" in above definition including columns only, i.e. it must be clear that, it is not permitted by ACI Code to design concrete beams as compression-controlled members.
- The strength reduction factor for compression-controlled members (columns) is 0.65 . A value of 0.75 may be used if the members are spirally reinforced (see Figure below).

Longitudinal bars and spiral reinforcement

Longitudinal bars and lateral ties

Figure 4.2-15: Spiral and tied columns.

- Difference between Spiral Columns and Tied Columns will be discussed in more detail later.
- A value of 0.002 corresponds approximately to the yield strain for steel with Grade 60.
- Transition Zone Section:
- Between net tensile strains of 0.002 and 0.005 , the strength reduction factor varies lineally, and The ACI Code allows a linear interpolation of \varnothing based on ϵ_{t} as shown in Figure below.

Figure 4.2-16: Strength reduction, ϕ, for transition factor.

- For beams, transition zone reduce to a range of 0.004 to 0.005 instead of range of 0.002 to 0.005 and as shown in Figure below.

Figure 4.2-17: Transition zone for beams.

- Calculation of the nominal moment capacity frequently involves determination of the depth of the equivalent rectangular stress block "a" that related to "c" by the relation of $a=c / \beta_{1}$. Then it is some times more convenient to compute c/d ratios in terms the net tensile strain and as shown in Figure below.

(a)

Tension-controlled member

$\frac{c}{d_{t}}=\frac{0.003}{0.003+0.004}=0.429 \quad \frac{c}{d_{t}}=\frac{0.003}{0.003+0.002}=0.600$
(b)

Minimum net tensile strain for flexural member
(c)

Compression-controlled member

Figure 4.2-18: Section definition in terms of c / d_{1} ratio.

Example 4.2-8

According to current design philosophy and for a beam with state of strains shown in Figure 4.2-19 below:

- Is the beam classified as failed or not?
- Is beam ratio, ρ, less than or greater than the maximum steel ratio, $\rho_{\text {maximum }}$?
- What is the flexural strength reduction factor, ϕ, for the beam?

Figure 4.2-19: State of strains for Example 4.2-8.

Solution

- As concrete strain reaches 0.003 , then the beam is at failure stage according to current ACI design philosophy.
- As steel strain of 0.0045 is greater than strain of 0.004 for $\rho_{\text {Maximum }}$, and as steel strain is inversely proportional to steel ratio, then provided steel ratio is lower than maximum ratio.
- The section is within the transition zone, $0.004<\epsilon_{t}<0.005$, then strength factored should be calculated based on following relation $\phi=0.483+83.3 \epsilon_{t}=0.483+83.3 \times 0.0045=0.858$

4.2.2.2.12 ACI Minimum Reinforcement ((ACI318M, 2014), Article 9.6.1)

- Another mode of failure may occur in very lightly reinforced beams. If the flexural strength of the cracked section is less than the moment that produced cracking of the previously uncracked section the beam will fail immediately and without warning of distress upon formation of the first flexural crack.
- To ensure against this type of failure, a lower limit has been established for the reinforcement ratio by equating the cracking moment computed from the concrete modulus of rupture to the strength of the cracked section.
$\because M_{n}=M_{\text {Cracking }} \rightrightarrows A_{\text {sminimum }}$
- Based on above concept, (ACI318M, 2014) (article 9.6.1) gives the following provisions for minimum steel Area:
- At every section of a flexural member where tensile reinforcement is required by analysis. As provided shall not be less than that given by:
$A_{\text {s minimum }}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{1.4}{f_{y}} b_{w} d$
The relation $\frac{1.4}{f_{y}} b_{w} d$ had been derived based on substituting $f_{c}^{\prime}=$ 31.4 MPa into more accurate relation $\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$.

For many years the relation $\frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$ was used as $\mathrm{A}_{\mathrm{s} \text { min. }}$. For concrete with high strength, it is not sufficient and $\mathrm{A}_{\mathrm{s} \text { min }}$ must be computed based on the more accurate relation $\frac{0.25 \sqrt{f_{\mathrm{c}}^{\prime}}}{f_{\mathrm{y}}} b_{\mathrm{w}} \mathrm{d}$.

- For members that have following properties:
- Statically determinate.
- With a flange in tension.

Asmin shall be computed based on the following equation:
$A_{s \text { min }}=$ minimum $\left(\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{f} d, \frac{0.50 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d\right)$
It's useful to note that above two conditions usually satisfy in the cantilever spans.
When the flange of a section is in tension, the amount of tensile reinforcement needed to make the strength of the reinforced section equal that of the unreinforced section is about twice that for a rectangular section or that of a flanged section with the flange in compression. A higher amount of minimum tensile reinforcement is particularly necessary in cantilevers and other statically determinate members where there is no possibility for redistribution of moments.

- The requirements of $A_{\text {smin }}$ need not be applied if, at every section, $A_{\text {sprovided }}$ is at least one-third greater than that required by analysis, i.e.:
$A_{\text {Srovided }}=1 \frac{1}{3} A_{S_{\text {Required }}}$
This exception is intended to solve the problem of $\mathrm{A}_{\mathrm{s} \text { min }}$ for members that have large cross sectional areas.

Example 4.2-9

State the relation that must be used for computing $A_{s \text { min }}$ for beams shown in Figure 4.2-20 below.

- Beam 1:

- Beam 2:

Figure 4.2-20: Beam for Example 4.2-9.

Solution

- For Beam 1:

Section 1-1:
As the section flange is under compression stress, then $A_{s \min }$ is computed based on the following relation:
$A_{s \text { minimum }}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{1.4}{f_{y}} b_{w} d$

- For Beam 2:

Section 1-1
As the section flange is under compression stress, then $A_{s \min }$ is computed based on the following relation:
$A_{\text {sminimum }}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{1.4}{f_{y}} b_{w} d$
Section 2-2
In spite of the section flange is under tensile stress, but as the span is a statically indeterminate span then $A_{s \min }$ is computed based on the following relation:
$A_{s_{\text {minimum }}}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{1.4}{f_{y}} b_{w} d$

Section 3-3
As the section flange is under tensile stress, and the span is a statically determinate span then $A_{\text {min }}$ is computed based on the following relation:
$A_{s \text { min }}=$ minimum $\left(\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{f} d, \frac{0.50 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d\right)$

Example 4.2-10

For a simply supported pedestrian bridge shown in Figure 4.2-21 below, compute the minimum reinforcement area according to ACI requirements.

3D View

Cross Section

Figure 4.2-21: Pedestrian bridge for Example 4.2-10.

Solution

For this statically determinate pedestrian bridge with a flange in tension, minimum flexure reinforcement should computed based on:
$A_{s_{\text {min }}}=\operatorname{minimum}\left(\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{f} d, \frac{0.50 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d\right)$
Assuming two layers of $\phi 20 \mathrm{~mm}$ longitudinal rebars and $\phi 12 \mathrm{~mm}$ stirrups:
$d=1200-40-12-20-\frac{25}{2}=1115 \mathrm{~mm}$
$A_{s \min \text { for two legs }}=$ minimum $\left(\frac{0.25 \times \sqrt{21}}{420} \times 3200 \times 1115, \frac{0.50 \times \sqrt{21}}{420} \times(2 \times 200 \times 1115)\right)$
$A_{s \min f o r ~ t w o ~ l e g s ~}=$ minimum $(9733,2809)$
$A_{s} \min f o r t w o l e g s$

Example 4.2-11

For monument that shown in Figure 4.2-22 below, required steel reinforcement ($A_{S \text { Required }}$) has been found equal to $2100 \mathrm{~mm}^{2}$. Compare this area with ACI minimum reinforcement $\left(A_{\text {s Minimum }}\right)$. In your solution adopt f_{c}^{\prime} of 28 MPa and f_{y} of 420 MPa .

3D View
Figure 4.2-22: Monument for Example 4.2-11.

Solution

According to ACI 9.6.1.3, the requirements of ACI 9.6.1.2 (traditional $A_{s \text { Minimum }}$ requirements), and ($A_{\text {s Minimum }}$ requirements for a statically determinate section with flange in tension) need not be applied if, at every section, A_{s} provided is at least one-third greater than that required by analysis.
$A_{\text {s Minimum }}=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{420} \times 400 \times 3500=4667 \mathrm{~mm}^{2}$
$A_{\text {SMinimum }}=4667 \mathrm{~mm}^{2}>1 \frac{1}{3} \times 2100=2799 \mathrm{~mm}^{2}$
Then, use:
$A_{\text {Provided }}=2799 \mathrm{~mm}^{2}$

4.3 Procedure and Examples for Flexure Analysis of Rectangular Beams with Tension Reinforcement

4.3.1 Procedures

- Generally, in an analysis problem the following information are knowns:
- Beam dimensions and reinforcement (b,h, d, and A_{s}).
- Materials strength (f_{y} and f_{c}^{\prime}). and the following information are required:
- To check if the section is adequate to general requirements of ACI code to see if the provided steel reinforcement agrees with ACI limits on $A_{\text {s max }}$ and $A_{\text {smin }}$.
- To compute the design flexural strength of section $\left(\varnothing M_{n}\right)$.
- To compute the maximum live or dead or other loads that can be supported by the considered beam.
- Based on above knowns and requirements, the procedure for analysis of a rectangular beam with tension reinforcement can be summarized as follows:
- Check if the provided steel reinforcement agrees with ACI limits on $A_{s \max }$ and $A_{\text {smin }}$:
$\rho \leq \rho_{\text {max }}=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004} \quad \mathrm{~A}_{\mathrm{s}} \geq \mathrm{A}_{\mathrm{s} \text { minimum }}=\frac{0.25 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d} \geq \frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$
- Compute the nominal strength M_{n} of the section:
$M_{n}=\rho_{\mathrm{y}} \mathrm{bd}^{2}\left(1-0.59 \frac{\rho \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}\right)$
- Compute the strength reduction factor \varnothing :
- Compute steel stain based on the following relations:

$$
\begin{aligned}
& a=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{c}^{\prime} \mathrm{b}} \\
& \mathrm{c}=\frac{\mathrm{a}}{\beta_{1}} \\
& \epsilon_{\mathrm{t}}=\frac{\mathrm{d}-\mathrm{c}}{\mathrm{c}} \epsilon_{\mathrm{u}}
\end{aligned}
$$

- If $\epsilon_{t} \geq 0.005$, then $\emptyset=0.9$
- If $\epsilon_{t}<0.005$, then $\emptyset=0.483+83.3 \epsilon_{\mathrm{t}}$
- Compute the design strength $\emptyset M_{n}$ of the section:
$\phi M_{n}=\varnothing \times M_{n}$
- If maximum live, or dead, or other loads are required, then factored moment must be computed based on the following relation $\mathrm{M}_{\mathrm{u}}=\emptyset \mathrm{M}_{\mathrm{n}}$
and the required loads can be computed based on the bending moment diagram of the problem under consideration.

4.3.2 Examples

Example 4.3-1

Check the adequacy of the beam of Example 4.2-1 according to ACI Code (318M-14) and determine the maximum factored load P_{u} that can be supported by this beam. In your checking and computation assume that $f_{c}^{\prime}=25 \mathrm{MPa}, f_{y}=400 \mathrm{MPa}$ and that beam selfweight can be neglected.

Figure 4.3-1: Simply supported beam for Example 4.3-1.

Solution

- Check if the provided steel reinforcement agrees with ACI limits on $A_{\text {smax }}$ and $A_{\text {s min }}$:
$A_{b a r}=\frac{\pi \times 20^{2}}{4}=314 \mathrm{~mm}^{2}$
$A_{s}=3 \times 314=942 \mathrm{~mm}^{2}$
$\rho=\frac{942}{300 \times 550}=5.71 \times 10^{-3}$
$\rho_{\text {max }}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{u}}{\epsilon_{u}+0.004}$
$\because f_{c}^{\prime}<28 \mathrm{MPa} \quad \therefore \beta_{1}=0.85$
$\rho_{\max }=0.85 \times 0.85 \times \frac{25}{400} \frac{0.003}{0.003+0.004}=19.4 \times 10^{-3}$
$\therefore \rho<\rho_{\max }$ Ok.
$A_{s \text { minimum }}=\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{1.4}{f_{y}} b_{w} d$
$\because f_{c}^{\prime}<31 \mathrm{MPa}$
$\therefore A_{\text {s minimum }}=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{400} \times 300 \times 550=525 \mathrm{~mm}^{2}<A_{S} O k$.
- Compute the nominal strength M_{n} of the section:
$M_{n}=\rho f_{y} b d^{2}\left(1-0.59 \frac{\rho f_{y}}{f_{c}^{\prime}}\right)$
$M_{n}=5.71 \times 10^{-3} \times 400 \times 300 \times 550^{2}\left(1-0.59 \frac{5.71 \times 10^{-3} \times 400}{25}\right)=196 \mathrm{kN} . \mathrm{m}$
- Compute strength reduction factor \emptyset :

Compute steel stain based on the following relations:
$a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \Rightarrow a=\frac{942 \mathrm{~mm}^{2} \times 400 \mathrm{MPa}}{0.85 \times 25 \mathrm{MPa} \times 300 \mathrm{~mm}}=59.1 \mathrm{~mm}$
$c=\frac{a}{\beta_{1}} \Rightarrow c=\frac{59.1 \mathrm{~mm}}{0.85}=69.5 \mathrm{~mm}$
$\epsilon_{t}=\frac{d-c}{c} \epsilon_{u} \Rightarrow \epsilon_{t}=\frac{550-69.5}{69.5} \times 0.003=20.7 \times 10^{-3}$
As $\epsilon_{t}>0.005$, then $\emptyset=0.9$.

- Compute section design strength $\emptyset M_{n}$:
$\emptyset M_{n}=\varnothing \times M_{n} \Rightarrow \emptyset M_{n}=0.9 \times 196 \mathrm{kN} . \mathrm{m}=176 \mathrm{kN} . \mathrm{m}$
- Compute Maximum Factored Load P_{u} :

As the selfweight can be neglected as stated in the example statement, then P_{u}
can be computed based on the following relation:
$\because M_{u}=\frac{P_{u} L}{4}=\emptyset M_{n}=176 \mathrm{kN} . \mathrm{m} \Rightarrow P_{u}=\frac{4 \times 176 \mathrm{kN} . \mathrm{m}}{6.0 \mathrm{~m}}=117 \mathrm{kN}$

Example 4.3-2

Check flexure adequacy of a simply supported beam shown in Figure 4.3-2 below when subjected to a factored load of $W_{u}=70 \frac{\mathrm{kN}}{\mathrm{m}}$ (Including beam selfweight). In your solution assume that $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.

Elevation view.

Figure 4.3-2: Simply supported beam for Example 4.2-2.

Solution

- Check the proposed beam for general limits of the ACI code:
$d=600-40-10-25-\frac{25}{2}=512 \mathrm{~mm}$
$A_{s}=\frac{\pi \times 25^{2}}{4} \times 5=2454 \mathrm{~mm}^{2}$
$\rho_{\text {Provided }}=\frac{2454}{512 \times 300}=16.0 \times 10^{-3}$
$\rho_{\text {Maximum }}=0.85^{2} \times \frac{28}{420} \times \frac{0.003}{0.007}=20.6 \times 10^{-3}>\rho_{\text {Provided }} \therefore$ Ok.
$A_{\text {s Minimum }}=\frac{1.4}{420} \times 300 \times 512=512 \mathrm{~mm}^{2}<A_{\text {Srovided }} \therefore$ Ok.
- Compute its nominal strength, M_{n} :

Instead of using the relation of
$M_{n}=\rho f_{y} b d^{2}\left(1-0.59 \frac{\rho f_{y}}{f_{c}^{\prime}}\right)$
the nominal flexural strength, M_{n}, can be determined based on simple statics with referring to forces diagram in Figure 4.3-3:
$\Sigma F_{x}=0$
$C=T$
$0.85 f_{c}^{\prime} b a=A_{s} f_{y}$
Solve for a
$a=\frac{\left(A_{s} f_{y}\right)}{0.85 f_{c}^{\prime} b}=\frac{420 \times 2454}{0.85 \times 28 \times 300}=144 \mathrm{~mm}$
$M_{n}=\Sigma M_{\text {about } C}=T \times \operatorname{Arm}=\left(A_{s} f_{y}\right) \times\left(d-\frac{a}{2}\right)$
$=(2454 \times 420) \times\left(512-\frac{144}{2}\right)$
$=453 \mathrm{kN} . \mathrm{m}$
This second approach is important as:

- It can be applied to sections other than rectangular sections.
- It focuses on basic principles of the applied mechanics and can be used without the need to remember of a ready relation.
- The strength reduction factor, ϕ, can be determined as follows:
$c=\frac{144}{0.85}=169 \mathrm{~mm}$
$\epsilon_{t}=\frac{d-c}{c} \epsilon_{u} \Rightarrow \epsilon_{t}=\frac{512-169}{169} \times 0.003=0.00609>0.005$
Then:
$\phi=0.9$
$\phi M_{n}=0.9 \times 453=408 \mathrm{kN} . \mathrm{m}$
$M_{u}=\frac{W_{u} l^{2}}{8}=\frac{70 \times 6.5^{2}}{8}=370 \mathrm{kN} . \mathrm{m}<\phi M_{n} \therefore O k$.

Example 4.3-3

Check the adequacy of the proposed section when used at mid span of the beam shown in Figure 4.3-4. Assume that

- $f_{c}^{\prime}=21 M P a$ and $\mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$.
- Selfweight should be included.
- $A_{\text {Bar }}=510 \mathrm{~mm}^{2}$.
$\mathrm{W}_{\mathrm{D}}=50 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{L}}=15 \mathrm{kN} / \mathrm{m}$

Elevation view.

Cross section

Figure 4.3-4: Overhang beam for Example 4.2-3.

Solution

- Check if the provided reinforcement is accepted according to ACI requirements:

$$
\begin{aligned}
& A_{\text {bar }}=510 \mathrm{~mm}^{2} \\
& A_{s}=3 \times 510=1530 \mathrm{~mm}^{2} \\
& d=500-40-12-\frac{25}{2}=435 \mathrm{~mm} \\
& \rho_{\text {Provided }}=\frac{1530 \mathrm{~mm}^{2}}{435 \times 300 \mathrm{~mm}^{2}}=11.7 \times 10^{-3} \\
& \rho_{\text {Maximum }}=0.85^{2} \times \frac{21}{420} \times \frac{0.003}{0.007}=15.5 \times 10^{-3} \\
& \rho_{\text {Provided }}<\rho_{\text {Maximum }} \therefore O k . \\
& \because f_{c}^{\prime}<31 \mathrm{MPa} \\
& A_{\text {s minimum }}=\frac{1.4}{420} \times 300 \times 435=435 \mathrm{~mm}^{2} \\
& A_{s}>A_{\text {s minimum }} O \mathrm{ok} .
\end{aligned}
$$

- Compute Nominal Flexure Strength:
$M_{n}=11.7 \times 10^{-3} \times 420 \times 300 \times 435^{2} \times\left(1-0.59 \times \frac{11.7 \times 10^{-3} \times 420}{21}\right)$
$M_{n}=240 \mathrm{kN} . m$
$M_{n}=240 \mathrm{kN} . \mathrm{m}$
- Compute flexure strength reduction factor:
$a=120 \mathrm{~mm}$
$c=141 \mathrm{~mm}$
$\epsilon_{t}=\frac{435-141}{141} \times 0.003=6.26 \times 10^{-3}>0.005$
$\therefore \phi=0.9$
- Design Moment:
$\phi M_{n}=0.9 \times 240=216 \mathrm{kN} . \mathrm{m}$
- Check section adequacy when used at mid-span:
$W_{\text {self }}=0.3 \times 0.5 \times 24=3.6 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{D}=53.6 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{u}=$ maximum $(1.4 \times 53.6$ or $1.2 \times 53.6+1.6 \times 15)$
$W_{u}=\operatorname{maximum}(75.0$ or 88.3$)=88.3 \frac{\mathrm{kN}}{\mathrm{m}}$
$M_{u_{\text {support }}}=\frac{88.3 \times 1.5^{2}}{2}=99.8 \mathrm{kN} . \mathrm{m}$
$M_{u @ m i d-s p a n}=\frac{88.3 \times 5^{2}}{8}-99.3=177 \mathrm{kN} . m<\phi M_{n} O k$

4.3.3 Homework Problems

In addition to practice on concepts, Problem 4.3-1, Problem 4.3-2, and Problem 4.3-3 aim to show how M_{n} can be affected by changing in material properties (f_{y} and $f_{c}{ }^{\prime}$).

Problem 4.3-1

A rectangular beam has a width 250 mm , and an effective depth 505 mm . It is reinforced with $3 \Phi 25$ (assume $A_{b a r}=510 \mathrm{~mm}^{2}$). If $f_{y}=420 \mathrm{MPa}$ and $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=20$ MPa. Check the beam adequacy and compute its design flexural strength according to the ACI Code.

Answers

- Check if the provided steel reinforcement agrees with $A C I$ limits on $A_{\text {smax }}$ and $A_{\text {smin }}$:
$A_{s}=1530 \mathrm{~mm}^{2}$
$\rho=12.1 \times 10^{-3}$
$\rho_{\max }=14.7 \times 10^{-3}$
$\therefore \rho<\rho_{\text {max }}$ Ok.
$A_{s \text { minimum }}=421 \mathrm{~mm}^{2}<A_{\mathrm{s}}$ Ok.
- Compute section nominal strength M_{n} :
$\mathrm{M}_{\mathrm{n}}=275 \mathrm{kN} . \mathrm{m}$
- Compute strength reduction factor \varnothing :
a. Compute steel stain:
$\mathrm{a}=151 \mathrm{~mm}$
$\mathrm{c}=178 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=0.00551$
b. $\epsilon_{t}>0.005$, then $\emptyset=0.9$
- Compute section design strength $\emptyset M_{n}$: $\emptyset \mathrm{M}_{\mathrm{n}}=247 \mathrm{kN} . \mathrm{m}$

Problem 4.3-2

Same as Problem 4.3-1 except that $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=40 \mathrm{MPa}$. Compare the flexure strength for this problem with that of Problem 4.3-1.

Answers

- Check if the provided steel reinforcement agrees with ACI limitss on $A_{\text {smax }}$ and
$A_{\text {smin }}$:
$\mathrm{A}_{\mathrm{s}}=1530 \mathrm{~mm}^{2}$
$\rho=12.1 \times 10^{-3}$
$\beta_{1}=0.76 \geq 0.65 \quad$ Ok.
$\rho_{\text {max }}=26.4 \times 10^{-3}$
$\therefore \rho<\rho_{\max }$ Ok.
$A_{\mathrm{s} \text { minimum }}=475 \mathrm{~mm}^{2}<\mathrm{A}_{\mathrm{s}}$ Ok.
- Compute section nominal strength Mn :
$\mathrm{M}_{\mathrm{n}}=300 \mathrm{kN} . \mathrm{m}$
- Compute strength reduction factor \emptyset :
- Compute steel stain:
$\mathrm{a}=75.6 \mathrm{~mm}$
$\mathrm{c}=99.5 \mathrm{~mm}$
$\epsilon_{t}=0.0122$
- $\epsilon_{\mathrm{t}}>0.005$, then $\emptyset=0.9$
- Compute section design strength $\emptyset \mathrm{M}_{\mathrm{n}}$:
$\emptyset \mathrm{M}_{\mathrm{n}}=270 \mathrm{kN} . \mathrm{m}$
- Comparison with the design strength of Problem 4.3-1:

Increasing percentage in design strength due to increasing $f_{c}{ }^{\prime}$ from 20 MPa to 40 MPa can be computed as follows:
Increasing Percent $=\frac{270-247}{247} \times 100 \%=9.31 \%$
Note that doubling the concrete strength increased $\varnothing M_{n}$ by only 9.31%.

Problem 4.3-3

Same as Problem 4.3-1 except that $\mathrm{f}_{\mathrm{y}}=300 \mathrm{MPa}$. Compare the flexure strength for this problem with that of Problem 4.3-1.

Answers

- Check if the provided steel reinforcement agrees with $A C I$ limits on $A_{\text {smax }}$ and $A_{\text {smin }}$:
$A_{s}=1530 \mathrm{~mm}^{2}$
$\rho=12.1 \times 10^{-3}$
$\rho_{\max }=20.6 \times 10^{-3}$
$\therefore \rho<\rho_{\text {max }}$ Ok.
$A_{\mathrm{s} \text { minimum }}=589 \mathrm{~mm}^{2}<\mathrm{A}_{\mathrm{s}}$ Ok.
- Compute section nominal strength M_{n} :
$\mathrm{M}_{\mathrm{n}}=207 \mathrm{kN} . \mathrm{m}$
- Compute strength reduction factor \varnothing :
- Compute steel stain:
$\mathrm{a}=108 \mathrm{~mm}$
$\mathrm{c}=127 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=0.00893$
- $\epsilon_{\mathrm{t}}>0.005$, then $\emptyset=0.9$
- Compute section design strength $\varnothing \mathrm{M}_{\mathrm{n}}$:
$\emptyset \mathrm{M}_{\mathrm{n}}=186 \mathrm{kN} . \mathrm{m}$
- Comparison with the design strength of Problem 4.3-1:

Increasing Percent $=\frac{|186-247|}{247} \times 100 \%=24.7 \%$
Note that reducing f_{y} by $\left(\frac{420-300}{420}=28.6 \%\right)$ reduces $\varnothing M_{n}$ by $24.7 \% ■$.
Based on results of Problem 4.3-1, Problem 4.3-2, and Problem 4.3-3 one concludes that the effect of changing in steel yield stress $\left(f_{y}\right)$ is more significant than the effect of changing in concrete compressive strength (f_{c}^{\prime}).

Problem 4.3-4

A rectangular beam has a width of 305 mm , and an effective depth of 444 mm . It is reinforced with $4 \emptyset 29 \mathrm{~mm}$ (assume $A_{b a r}=645 \mathrm{~mm}^{2}$). If $f_{y}=414 \mathrm{MPa}$ and $f_{c}^{\prime}=27.5 \mathrm{MPa}$. Check the beam adequacy and compute its design flexural strength according to the ACI Code.
Aim of the Problem:
This problem aims to show solution procedures for a section in the transition zone.

Answers

- Check if the provided steel reinforcement is in agreement with ACI requirements on $A_{\text {smax }}$ and $A_{\text {smin }}$:
$\mathrm{A}_{\mathrm{s}}=2580 \mathrm{~mm}^{2}$
$\rho=19.1 \times 10^{-3}$
$\rho_{\text {max }}=20.6 \times 10^{-3}$
$\therefore \rho<\rho_{\text {max }} 0 \mathrm{Ok}$.
$A_{s \text { minimum }}=458 \mathrm{~mm}^{2}<A_{s}$ Ok.
- Compute section nominal strength M_{n} :
$\mathrm{M}_{\mathrm{n}}=395 \mathrm{kN} . \mathrm{m}$
- Compute strength reduction factor \emptyset :
- Compute steel stain:
$\mathrm{a}=150 \mathrm{~mm}$
$\mathrm{c}=176 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=0.00457$
- $\epsilon_{\mathrm{t}}<0.005$, then $\emptyset=0.864$
- Compute section design strength $\emptyset \mathrm{M}_{\mathrm{n}}$:
$\emptyset M_{n}=\varnothing \times M_{n}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.864 \times 395 \mathrm{kN} . \mathrm{m}=341 \mathrm{kN} . \mathrm{m}$ ■

Problem 4.3-5

Determine if the beam shown in Figure 4.3-5 is adequate as governed by ACI Code (ACI $318 \mathrm{M}-14)$. If $\mathrm{f}_{\mathrm{y}}=414 \mathrm{MPa}$ and $\mathrm{f}_{\mathrm{c}}^{\prime}=27.5 \mathrm{MPa}$. Assume that $\mathrm{A}_{\mathrm{bar}}=510 \mathrm{~mm}^{2}$.

Figure 4.3-5: A simple bridge for the Problem 4.3-5.

Answers

- Check if the provided steel reinforcement agrees with ACI limits on $A_{s \text { max }}$ and $A_{s \text { min }}$:
$\mathrm{A}_{\mathrm{s}}=2040 \mathrm{~mm}^{2}$
$\mathrm{d}=508-40_{\text {Cover }}-12_{\text {Stirrups }}-\frac{25}{2}_{\text {Half the Bar Diameter }}=444 \mathrm{~mm}$
$\rho=15.1 \times 10^{-3}$
$\rho_{\text {max }}=20.6 \times 10^{-3} \Rightarrow:: \rho<\rho_{\text {max }}$ Ok.
$\mathrm{A}_{\mathrm{s} \text { minimum }}=458 \mathrm{~mm}^{2}<\mathrm{A}_{\mathrm{s}}$ Ok.
- Compute the nominal strength M_{n} :
$\mathrm{M}_{\mathrm{n}}=325 \mathrm{kN} . \mathrm{m}$
- Compute the strength reduction factor \varnothing :
- Compute steel stain:
$\mathrm{a}=118 \mathrm{~mm}$
$\mathrm{c}=139 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=0.00658$
- $\epsilon_{t}>0.005$, then $\emptyset=0.9$
- Compute the design strength $\emptyset \mathrm{M}_{\mathrm{n}}$: $\varnothing \mathrm{M}_{\mathrm{n}}=293 \mathrm{kN} . \mathrm{m}$
- Compute the Factored Moment:
- Moment due to the Dead Loads:

$$
\begin{aligned}
& \mathrm{W}_{\text {Selfweight }}=3.72 \frac{\mathrm{kN}}{\mathrm{~m}} \Rightarrow \mathrm{~W}_{\text {Dead }}=13.2 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \mathrm{M}_{\text {Dead }}=61.4 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

- Moment due to the Live Load:
$\mathrm{M}_{\text {Live }}=136 \mathrm{kN} . \mathrm{m}$
- Factored Moment M_{u} :
$\mathrm{M}_{\mathrm{u}}=$ Maximum of $\left(1.4 \mathrm{M}_{\mathrm{D}}\right.$ or $\left.1.2 \mathrm{M}_{\mathrm{D}}+1.6 \mathrm{M}_{\mathrm{L}}\right)$
$\mathrm{M}_{\mathrm{u}}=$ Maximum of [86 or 291] $=291 \mathrm{kN} . \mathrm{m}$
- Check Section Adequacy:
$\because \emptyset \mathrm{M}_{\mathrm{n}}=293 \mathrm{kN} . \mathrm{m}>\mathrm{M}_{\mathrm{u}}=291 \mathrm{kN} . \mathrm{m} \quad \therefore 0 \mathrm{k}$.

Problem 4.3-6

Check adequacy of the beam shown in Figure 4.3-6 for bending according to the requirements of ACI $318 \mathrm{M}-14$. Assume that $\mathrm{f}_{\mathrm{c}}^{\prime}=28 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$ and $A_{B a r}=510 \mathrm{~mm}^{2}$.

Figure 4.3-6: A simple beam for the Problem 4.3-5.
Answers

- Check if the provided steel reinforcement is in agreement with ACI requirements on $A_{s \text { max }}$ and $\mathrm{A}_{\mathrm{s} \text { min }}$:

$$
\mathrm{A}_{\mathrm{s}}=4080 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \mathrm{d}=750-40_{\text {Cover }}-12_{\text {Stirrups }}-25_{\text {the Bar Diameter }}-\left(\frac{25}{2}\right)_{\text {Half the Spacing between Layers }}=660 \mathrm{~mm} \\
& \rho=15.5 \times 10^{-3} \\
& \rho_{\text {max }}=20.6 \times 10^{-3} \Rightarrow \therefore \rho<\rho_{\max } \text { Ok. } \\
& \mathrm{A}_{\mathrm{s} \text { minimum }}=880 \mathrm{~mm}^{2}<\mathrm{A}_{\mathrm{s}} \text { Ok. }
\end{aligned}
$$

- Compute the nominal strength M_{n} :

$$
\mathrm{M}_{\mathrm{n}}=979 \mathrm{kN} \cdot \mathrm{~m}
$$

- Compute the strength reduction factor \varnothing :
- Compute steel stain:
$\mathrm{a}=180 \mathrm{~mm}$
$\mathrm{c}=212 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=0.00634$
- $\epsilon_{\mathrm{t}}>0.005$, then $\emptyset=0.9$.
- Compute the design strength $\emptyset \mathrm{M}_{\mathrm{n}}$: $\emptyset \mathrm{M}_{\mathrm{n}}=881 \mathrm{kN} . \mathrm{m}$
- Compute the Factored Moment:
- Moment due to the dead loads:

$$
\mathrm{W}_{\text {Selfweight }}=7.2 \frac{\mathrm{kN}}{\mathrm{~m}} \Rightarrow \mathrm{~W}_{\text {Dead }}=27.2 \frac{\mathrm{kN}}{\mathrm{~m}} \Rightarrow \mathrm{M}_{\text {Dead }}=395 \mathrm{kN} . \mathrm{m}
$$

- Moment due to the live load:

$$
\mathrm{M}_{\text {Live }}=202 \mathrm{kN} . \mathrm{m}
$$

- Factored Moment M_{u} :
$\mathrm{M}_{\mathrm{u}}=$ Maximum of $\left(1.4 \mathrm{M}_{\mathrm{D}}\right.$ or $\left.1.2 \mathrm{M}_{\mathrm{D}}+1.6 \mathrm{M}_{\mathrm{L}}\right)$
$\mathrm{M}_{\mathrm{u}}=$ Maximum of [553 or 797] $=797 \mathrm{kN} . \mathrm{m}$
- Check Section Adequacy:

$$
\because \emptyset \mathrm{M}_{\mathrm{n}}=881 \mathrm{kN} . \mathrm{m}>\mathrm{M}_{\mathrm{u}}=797 \mathrm{kN} . \mathrm{m} \quad \therefore \mathrm{Ok} .
$$

4.4 Practical Flexure Design of a Rectangular Beam with Tension Reinforcement Only and Pre-specified Dimensions (b and h)

4.4.1 Essence of Problem

- In the design problem, usually the beam span, beam dimensions (b, and h), dead, live, and other loads are defined based on functional and/or architectural requirements.
- Materials strength (f_{c}^{\prime} and f_{y}) are generally selected based on the available materials in the local market.
- Then, the main unknown in the design process is the reinforcement detail that can be summarized as follows:
- Number and diameters of rebars.
- Number of layers that required for these rebars.
- Required concrete cover to protect the reinforcement against probable corrosion.
- Points where bars are no longer needed for moments, i.e., points for bending or stopping of reinforcement, out the scope of this chapter and will be discussed thoroughly in Chapter 5.

4.4.2 Design Procedure

Based on above known and unknown quantities, design procedure can be summarized as follows:

1. Computed required factored applied moment $\left(M_{u}\right)$ based on given loads and spans. Beam selfweight can be computed based on given dimensions (b, and h).
2. Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\emptyset}$
Strength reduction factored can be assumed 0.9, and checked later.
3. Compute the effective beam depth "d":

Generally, in engineering practice the reinforcements are either put in one or two layers. Depend on number of layers, "d" can be computed based on one of the following relations ${ }^{2}$:
$\mathrm{d}_{\text {for One Layer }}=\mathrm{h}-$ Cover - Stirrups $-\frac{\text { Bar Diameter }}{2}$
$d_{\text {for Two Layer }}=h-$ Cover - Stirrups - Bar Diameter $-\frac{\text { Spacing between Layers }}{2}$
Based on above two relations, one can conclude that the designer must assume preliminary values for following items to be able to compute the effective depth "d":
a. Number of Layers

Heavy loads required a large reinforcement area that cannot be put in one layer and vice versa.
Diagnosis between heavy loads and light loads is generally depends on designer experience. For examination purposes, number of layers may be mentioned in question statement.
b. Concrete Cover

To provide the steel with adequate concrete protection against corrosion, the designer must maintain a certain minimum thickness of concrete cover outside of the outermost steel:
The thickness required will vary, depending upon:
i. The type of member.

[^0]ii. Conditions of exposure.
iii. Bar diameter.

According to article 20.6.1.3.1 of the (ACI318M, 2014), concrete cover can be determined based on Table 4.4-1 below.
Table 4.4-1: Specified concrete cover for cast-in-place nonprestressed concrete members, Table 20.6.1.3.1 of the (ACI318M, 2014).

Concrete exposure	Member	Reinforcement	Specified cover, mm
Cast against and permanently in contact with ground	All	All	75
Exposed to weather or in contact with ground	All	No. 19 through No. 57 bars	50
		No. 16 bar, MW200 or MD200 wire, and smaller	40
Not exposed to weather or in contact with ground	Slabs, joists, and walls	No. 43 and No. 57 bars	40
		No. 36 bar and smaller	20
	Beams, columns, pedestals, and tension ties	Primary reinforcement, stirrups, ties, spirals, and hoops	40

As a general case, (ACI318M, 2014) requirements for beams (that not exposed to weather) can be summarized in Figure 4.4-1.

Figure 4.4-1: Cover requirements for beams not exposed to weather.
c. Bar Diameter

As discussed in Chapter 2, data for metric rebars according to ASTM are summarized in Table 4.4-2 below.
No. 16 to No. 25 is usually used in for beam reinforcement. No. 13 rebars may be used in minor works like lintel beam reinforcement.
d. Stirrups Diameter

Stirrups are the hoop reinforcement that used for shear reinforcement.
No. 10 and No. 13 are usually used as stirrups. No. 16 may be used in some large beams with heavy loads.
e. Spacing between Layers

According to article 25.2.2 of (ACI318M, 2014), for parallel nonprestressed reinforcement placed in two or more horizontal layers,
i. reinforcement in the upper layers shall be placed directly above reinforcement in the bottom layer
ii. a clear spacing between layers of at least 25 mm .

Table 4.4-2ASTM standard metric reinforcing bars

Bar size, no.*	Nominal diameter, mm	Nominal area, mm^{2}	Nominal mass, kg / m
10	9.5	71	0.560
13	12.7	129	0.994
16	15.9	199	1.552
19	19.1	284	2.235
22	22.2	387	3.042
25	25.4	510	3.973
29	28.7	645	5.060
32	32.3	819	6.404
36	35.8	1006	7.907
43	43.0	1452	11.38
57	57.3	2581	20.24

*Bar numbers approximate the number of millimeters of the nominal diameter of the bar.
4. Compute the required steel ratio $\rho_{\text {Required }}$:

The basic relation between variables for rectangular beam with tension reinforcement:
$M_{n}=\rho_{y} b^{2}\left(1-0.59 \frac{\rho f_{y}}{f_{c}^{\prime}}\right)$
can be solved to compute $\rho_{\text {Required }}$ from known $f_{y}, f_{c}^{\prime}, b, d$, and M_{n} and as follows:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{f}_{\mathrm{c}}^{\prime} b d^{2}}}}{1.18 \times \frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}}$
Why only smaller one of two roots is adopted in the solution of above relation will be discussed thoroughly in Example 4.4-1 below.
If the quantities under the square root ($\left.1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}\right)$ has a negative value, this gives an indication that the failure is a compression failure and that the section is rejected according to ACI Code requirements. Then the designer must increase one or both of beam dimensions (b and h) and resolve the problem from Step 3.
5. Check if the beam failure is secondary compression failure or compression failure: If:
$\rho_{\text {Required }}>\rho_{\text {max }}=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$
Then the designer must increase one or both of beam dimensions (b and h) and resolve the problem from Step 3.
6. Compute the required steel area:
$A_{S \text { Required }}=\rho_{\text {Required }} \times \mathrm{bd}$
7. Compute required rebars number:

No. of Rebars $=\frac{A_{S \text { Required }}}{A_{\text {Bar }}}$
Round the required rebars number to nearest larger integer number.
8. Check if the available width " b " is adequate to put the rebars in a single layer:
$\mathrm{b}_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups Diamter

+ No. of Rebars \times Bar Diameter
$+($ No. of Rebars -1$) \times$ Spacing between Rebars
If
$b_{\text {required }}>b_{\text {available }}$
Then reinforcement cannot be put in a single layer. If your calculations have be based on assumption of single layer, then you must retain to Step 3 and recalculate "d" based on two reinforcement layers.
According to article 25.2.1 of (ACI318M, 2014), for parallel nonprestressed reinforcement in a horizontal layer, clear spacing shall be at least the greatest of:
$S_{\text {Clear Minimum }}=$ Maximum $\left[25 \mathrm{~mm}, d_{b}, \frac{4}{3} d_{\text {agg }}\right]$
As the maximum size of aggregate, $d_{\text {agg }}$, is usually selected to satisfy above relation, then it reduces into:
$S_{\text {Clear Minimum }}=$ Maximum $\left[25 \mathrm{~mm}, d_{b}\right]$

9. Checking cracks width or checking for $S_{\text {Maximum }}$:
a. As was discussed in Chapter 1 (Design Criteria) and in Second Stage of beam behavior (Elastic Cracked Section), current design philosophy doesn't aim to design a concrete beam without cracks but aims to limit these cracks to be fine (called hairline cracks), invisible to a casual observer, permitting little if any corrosion of the reinforcement.
b. Methods of cracks control:
i. Previously, ACI 318 requirements were based on computing of actual cracks width (w in Figure below) and compared it with a maximum limits.

Figure 4.4-2: Crack width computations terminology of previous code editions.
ii. Currently, ACI Code adopted a simpler approach that can be used for structures that not subjected to very aggressive exposure or designed to be watertight.
iii. This simplified approach based on following experimental and analytical fact:
Generally, to control cracking, it is better to use a larger number of smaller-diameter bars to provide the required A_{s} than to use the minimum number of larger bars.
iv. Then instead of working with crack width "w", we can work based on center to center spacing between bars "s in Figure above" which gives an indication on bars size as if we use a smaller number of bars with larger diameter instead of larger number of bars with smaller diameter spacing "s" will be larger and vice versa.
v. According to ACI Code (24.3.2) maximum spacing (center to center) between bars for crack control purposes can be computed as follows: $s=380 \frac{280}{f_{y}}-2.5 c_{c} \leq 300 \frac{280}{f_{s}}$
where

1. f_{s} is the stress in reinforcement closest to the tension face at service load shall be computed based on the unfactored moment. It shall be permitted to take fs as $2 / 3 f_{y}$.
2. cc is concrete clear cover.
vi. For traditional reinforcement of Grade 60 and traditional cover, ACI Code commentary (R24.3.2) shows that $s_{\max }$ can be taken as 250 mm.
3. Check with $\mathrm{A}_{\mathrm{s} \text { minimum }}$ requirements:

If
$\mathrm{A}_{\mathrm{S} \text { Provided }}<\mathrm{A}_{\mathrm{s} \text { minimum }}=\frac{0.25 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d} \geq \frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}$
Then used:
$A_{\text {Srovided }}=A_{\text {sminimum }}$

And recalculate rebars number based on this area.
11. Check the assumption of $\varnothing=0.9$:
a. Compute steel stain based on the following relations:

$$
\begin{aligned}
\mathrm{a} & =\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}}^{\prime} \mathrm{b}} \\
\mathrm{c} & =\frac{\mathrm{a}}{\beta_{1}} \\
\epsilon_{\mathrm{t}} & =\frac{\mathrm{d}-\mathrm{c}}{\mathrm{c}} \epsilon_{\mathrm{u}}
\end{aligned}
$$

b. If $\epsilon_{\mathrm{t}} \geq 0.005$, then $\emptyset=0.9 \mathrm{Ok}$.
c. If $\epsilon_{\mathrm{t}}<0.005$, then compute more accurate \varnothing :
$\emptyset=0.483+83.3 \epsilon_{\mathrm{t}}$ and retain to Step 2.
12. Draw final detailed beam section.

4.4.3 Examples

Example 4.4-1

For a beam with an effective depth of 450 mm and a width of 300 mm , draw a relation between provided reinforcement ratio, $\rho_{\text {Provided }}$, and corresponding nominal flexural strength, M_{n}, and then discuss why only smaller root is adopted in the solution of relation.
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}}}{1.18 \times \frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}}$
In your solution, assume $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.

Solution

- For each value of ρ, compute corresponding value of M_{n} based on following relation:

$$
M_{\mathrm{n}}=\rho \mathrm{f}_{\mathrm{y}} \mathrm{bd}^{2}\left(1-0.59 \frac{\rho \mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}\right)
$$

and draw resulting values as shown in Figure below.

- For a specific flexural strength, the larger root of above relation either gives reinforcement ratio greater than $\rho_{\text {maximum, }}$ a rejected design, or gives a larger value compared to first root, uneconomical design. Therefore, only smaller root should be considered in commuting required reinforcement ratio for a specific nominal strength.

Example 4.4-2

Design a simply supported rectangular reinforced concrete beam shown Figure 4.4-3 below. It is known that this beam is not exposed to weather and not in contact with ground.

Figure 4.4-3: Simply supported bridge for Example 4.4-2.
Assume that the designer intends to use:

- Concrete of $f_{c}{ }^{\prime}=30 \mathrm{MPa}$.
- Steel of $f_{y}=400 \mathrm{MPa}$.
- A width of 300 mm and a height of 430 mm (these dimensions have been determined based on deflection considerations).
- Rebar of No. 25 for longitudinal reinforcement.
- Rebar of No. 10 for stirrups.
- Single layer of reinforcement.

Solution

1. Computed required factored applied moment (M_{u}):
a. Moment due to Dead Loads:

$$
\begin{aligned}
& W_{\text {Selfweight }}=0.43 \mathrm{~m} \times 0.3 \mathrm{~m} \times 24 \frac{\mathrm{kN}}{\mathrm{~m}^{3}}=3.1 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& W_{\text {Dead }}=9.00 \frac{\mathrm{kN}}{\mathrm{~m}}+3.10 \frac{\mathrm{kN}}{\mathrm{~m}}=12.1 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \mathrm{M}_{\text {Dead }}=\frac{12.1 \frac{\mathrm{kN}}{\mathrm{~m}} \times 6.0^{2} \mathrm{~m}^{2}}{8}=54.5 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

b. Moment due to Live Load:

$$
\mathrm{M}_{\text {Live }}=\frac{46.9 \mathrm{kN} \times 6.0 \mathrm{~m}}{4}=70.4 \mathrm{kN} . \mathrm{m}
$$

c. Factored Moment M_{u} :
$\mathrm{M}_{\mathrm{u}}=$ Maximum of $\left(1.4 \mathrm{M}_{\mathrm{D}}\right.$ or $\left.1.2 \mathrm{M}_{\mathrm{D}}+1.6 \mathrm{M}_{\mathrm{L}}\right)$
$\mathrm{M}_{\mathrm{u}}=$ Maximum of $[1.4 \times 54.5$ or $(1.2 \times 54.5+1.6 \times 70.4)]=$
$\mathrm{M}_{\mathrm{u}}=$ Maximum of [76.3 or 178] $=178 \mathrm{kN} . \mathrm{m}$
2. Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\emptyset}$
Strength reduction factored can be assumed 0.9, and checked later.
$\mathrm{M}_{\mathrm{n}}=\frac{178 \mathrm{kN} . \mathrm{m}}{0.9}=198 \mathrm{kN} . \mathrm{m}$
3. Compute the effective beam depth "d":

Assuming that reinforcement can be put in a single reinforcement, then:
$\mathrm{d}_{\text {for One Layer }}=430-40-10-\frac{25}{2}=368 \mathrm{~mm}$
4. Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}}}{1.18 \times \frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}}$
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{198 \times 10^{6} \mathrm{~N} . \mathrm{mm}}{30 \times 300 \times 368^{2}}}}{1.18 \times \frac{400}{30}}=13.6 \times 10^{-3}$
5. Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$
$\beta_{1}=0.85-\frac{30-28}{7} \times 0.05=0.836>0.65 \mathrm{Ok}$
$\rho_{\max }=0.85 \times 0.836 \frac{30}{400} \frac{0.003}{0.003+0.004}=22.8 \times 10^{-3}>\rho_{\text {Required }} 0 \mathrm{k}$.
6. Compute the required steel area:
$A_{\text {Sequired }}=\rho_{\text {Required }} \times \mathrm{bd}$
$A_{S \text { Required }}=13.6 \times 10^{-3} \times 300 \times 368=1501 \mathrm{~mm}^{2}$
7. Compute required rebars number:
$A_{\text {Bar }}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No. of Rebars $=\frac{1501 \mathrm{~mm}^{2}}{490 \mathrm{~mm}^{2}}=3.06$
Try $4 \emptyset 25 \mathrm{~mm}$.
$A_{S \text { Provided }}=4 \times 490 \mathrm{~mm}^{2}=1960 \mathrm{~mm}^{2}$
8. Check if the available width " b " is adequate to put the rebars in a single layer:
$\mathrm{b}_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups + No. of Rebars \times Bar Diameter

$$
+(\text { No. of Rebars }-1) \times \text { Spacing between Rebars }
$$

$\mathrm{b}_{\text {required }}=2 \times 40 \mathrm{~mm}+2 \times 10+4 \times 25 \mathrm{~mm}+3 \times 25 \mathrm{~mm}=275 \mathrm{~mm}<300 \mathrm{~mm} \mathrm{Ok}$.
9. Checking for $S_{\text {maximum }}$ for Crack Control:
$s=\frac{300-40 \times 2-10 \times 2-25}{3}=58.3 \mathrm{~mm}<s_{\max } O k$
10. Check with A_{s} minimum requirements:
$A_{s \text { minimum }}=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{400} \times 300 \times 368=386 \mathrm{~mm}^{2}<A_{\text {S Provided }}=1960 \mathrm{~mm}^{2} \mathrm{Ok}$.
11. Check the assumption of $\emptyset=0.9$:
a. Compute steel stain based on the following relations:

$$
\begin{gathered}
\begin{array}{c}
\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}}= \\
\begin{array}{c}
\frac{1960 \times 400}{0.85 \times 30 \times 300} \\
=102 \mathrm{~mm} \Rightarrow \mathrm{c}
\end{array} \\
=\frac{102 \mathrm{~mm}}{0.836} \\
=
\end{array} \\
\begin{array}{c}
\epsilon_{\mathrm{t}}=\frac{368 \mathrm{~mm}}{122 \mathrm{~mm}-122 \mathrm{~mm}} \times 0.003 \\
=6.05 \times 10^{-3}
\end{array}
\end{gathered}
$$

b. As $\epsilon_{\mathrm{t}} \geq 0.005$, then $\varnothing=0.9$ Ok.
12.Final Reinforcement Details:
$2 \emptyset 12 \mathrm{~mm}$
Nominal Rebars to
Support the Stirrups

Example 4.4-3

Design lintel beam shown in Figure 4.4-4 below. In your solution, assume that the beam supports in addition to its own weight all brick works that lie directly on it and supports a dead load of $12 \mathrm{kN} / \mathrm{m}$ and live load of $8 \mathrm{kN} / \mathrm{m}$ transferred from supported slab. Seats of the lintel beam can be simulated as simple supports in your design.

Elevation View.

Section View.
Figure 4.4-4: Lintel beam for Example 4.4-3.

Solution

$W_{\text {self }}=0.5 \times 0.25 \times 24=3.0 \frac{\mathrm{kN}}{\mathrm{m}}, W_{\text {Brick }}=1.43 \times 0.25 \times 19=6.79 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{D}=3.0+6.79+12=21.8 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{L}=8.0 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{u}=\operatorname{maximum}(1.4 \times 21.8$ or $1.2 \times 21.8+1.6 \times 8.0)=\operatorname{maximum}(30.5$ or 39$)=39 \frac{\mathrm{kN}}{\mathrm{m}}$ ■
$M_{u}=\frac{W_{u} l_{n}^{2}}{8}=\frac{39 \times 6.3^{2}}{8}=193 \mathrm{kN} . \mathrm{m}$
Try $\phi 20$ for longitudinal reinforcement in two layers and $\phi 12$ for stirrups.
$d=500-40-12-20-\frac{25}{2}=415 \mathrm{~mm}$
Computed the required nominal or theoretical flexure strength (M_{n}) based on the following relation:
$M_{n}=\frac{M_{u}}{\emptyset}$
Strength reduction factored can be assumed 0.9 , and checked later.
$M_{n}=\frac{193}{0.9}=214 \mathrm{kN} . \mathrm{m}$
Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}}}{1.18 \times \frac{f_{y}^{\prime}}{f_{c}^{\prime}}}=\frac{1-\sqrt{1-2.36 \times \frac{214 \times 10^{6}}{28 \times 250 \times 415^{2}}}}{1.18 \times \frac{420}{28}}=13.4 \times 10^{-3}$
Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}=0.85 \times 0.85 \frac{28}{420} \frac{0.003}{0.003+0.004}=20.6 \times 10^{-3}>\rho_{\text {Required }}$ Ok.
Compute the required steel area:
$\mathrm{A}_{\text {Sequired }}=\rho_{\text {Required }} \times \mathrm{bd}=13.4 \times 10^{-3} \times 250 \times 415=1390 \mathrm{~mm}^{2}$
Compute required rebars number:
$A_{\text {Bar }}=\frac{\pi \times 20^{2}}{4} \approx 314 \mathrm{~mm}^{2} \Rightarrow$ No. of Rebars $=\frac{1390}{314}=4.43$
Try $5 \emptyset 20 \mathrm{~mm}$.
$\mathrm{A}_{\text {SProvided }}=5 \times 314=1570 \mathrm{~mm}^{2}$
Check if the available width " b " is adequate to put the rebars in a single layer:

$$
\mathrm{b}_{\text {required }}=2 \times \text { Side Cover }+2 \times \text { Stirrups }+ \text { No. of Rebars } \times \text { Bar Diameter }
$$

$$
+(\text { No. of Rebars }-1) \times \text { Spacing between Rebars }
$$

$\mathrm{b}_{\text {required }}=2 \times 40+2 \times 12+5 \times 20+4 \times 25=304 \mathrm{~mm}>250 \mathrm{~mm}$
Therefore, reinforcement should be placed in two layers as assumed, $3 \phi 20$ for first layer and $2 \phi 20$ for the second one.
Checking for $S_{\text {maximum }}$ for Crack Control:
$s=\frac{250-40 \times 2-12 \times 2-20}{2}=63 \mathrm{~mm}<s_{\max } O k$
Check with $\mathrm{A}_{\mathrm{s} \text { minimum }}$ requirements:
$\mathrm{A}_{\mathrm{s} \text { minimum }}=\frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=\frac{1.4}{420} \times 250 \times 415=349 \mathrm{~mm}^{2}<\mathrm{A}_{\text {S Provided }}=1570 \mathrm{~mm}^{2} \mathrm{Ok}$.
Check the assumption of $\varnothing=0.9$:
Compute steel stain based on the following relations:
$\mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{c}^{\prime} \mathrm{b}}=\frac{1570 \times 420}{0.85 \times 28 \times 250}=111 \mathrm{~mm} \Rightarrow \mathrm{c}=\frac{111}{0.85}=131 \mathrm{~mm} \Rightarrow \epsilon_{\mathrm{t}}=\frac{415-131}{131} \times 0.003=6.50 \times 10^{-3}$
As $\epsilon_{\mathrm{t}} \geq 0.005$, then $\emptyset=0.9 \mathrm{Ok}$.
Finally, beam details are presented in below:

Example 4.4-4

Design a rectangular beam to support a dead load of $35 \mathrm{kN} / \mathrm{m}$ and a live load of $25 \mathrm{kN} / \mathrm{m}$ acting on a simple span of 6 m . Assume that the designer intends to use:

- A width of 300 mm and a depth of 700 mm . These dimensions have been determined based on architectural considerations.
- $f_{c}^{\prime}=21 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.
- Bar diameter of 25 mm for longitudinal reinforcement.
- One layer of reinforcement.
- Bar diameter of 10 mm for stirrups.

Solution

1. Computed required factored applied moment (M_{u}):
a. Moment due to Dead Loads:

$$
\begin{aligned}
& W_{\text {Selfweight }}=0.3 \mathrm{~m} \times 0.7 \mathrm{~m} \times 24 \frac{\mathrm{kN}}{\mathrm{~m}^{3}}=5.04 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& W_{\text {Dead }}=35.0 \frac{\mathrm{kN}}{\mathrm{~m}}+5.04 \frac{\mathrm{kN}}{\mathrm{~m}}=40.0 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& M_{\text {Dead }}=\frac{40.0 \frac{\mathrm{kN}}{\mathrm{~m}} \times 6.0^{2} \mathrm{~m}^{2}}{8}=180 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

b. Moment due to Live Load:

$$
M_{\text {Live }}=\frac{25 \mathrm{kN} / \mathrm{m} \times 6.0^{2} \mathrm{~m}^{2}}{8}=113 \mathrm{kN} . \mathrm{m}
$$

c. Factored Moment M_{u} :
$M_{u}=$ Maximum of $\left(1.4 M_{D}\right.$ or $\left.1.2 M_{D}+1.6 M_{L}\right)$
$M_{u}=$ Maximum of $[1.4 \times 180 \mathrm{kN} . \mathrm{m}$ or $(1.2 \times 180 \mathrm{kN} . \mathrm{m}+1.6 \times 113 \mathrm{kN} . \mathrm{m})]$
$M_{u}=$ Maximum of $[252$ or 397$]=397 \mathrm{kN} . \mathrm{m}$
2. Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\emptyset}$
Strength reduction factored can be assumed 0.9, and checked later.
$M_{n}=\frac{397 \mathrm{kN} . \mathrm{m}}{0.9}=441 \mathrm{kN} . \mathrm{m}$
3. Compute the effective beam depth "d":

Assume that, reinforcement can be put in single reinforcement, then:
$d_{\text {for One Layer }}=700-40-10-\frac{25}{2}=637 \mathrm{~mm}$
4. Compute the Required Steel Ratio $\rho_{\text {Required }}$:

$$
\begin{aligned}
& \rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}}}{1.18 \times \frac{f_{y}}{f_{c}^{\prime}}} \\
& \rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{441 \times 10^{6} N . m m}{21 \times 300 \times 637^{2}}}}{1.18 \times \frac{420}{21}}=9.75 \times 10^{-3}
\end{aligned}
$$

5. Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\epsilon_{u}}{\epsilon_{u}+0.004}$
$\beta_{1}=0.85$
$\rho_{\max }=0.85 \times 0.85 \frac{21}{420} \frac{0.003}{0.003+0.004}=15.5 \times 10^{-3}>\rho_{\text {Required }} O k$.
6. Compute the required steel area:
$A_{\text {Sequired }}=\rho_{\text {Required }} \times b d$
$A_{S \text { Required }}=9.75 \times 10^{-3} \times 300 \times 637 \mathrm{~mm}=1863 \mathrm{~mm}^{2}$
7. Compute required rebars number:
$A_{B a r}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No. of Rebars $=\frac{1863 \mathrm{~mm}^{2}}{490 \mathrm{~mm}^{2}}=3.80$
Try $4 \emptyset 25 \mathrm{~mm}$.
$A_{\text {Provided }}=4 \times 490 \mathrm{~mm}^{2}=1960 \mathrm{~mm}^{2}$
8. Check if the available width " b " is adequate to put the rebars in a single layer:
$b_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups + No. of Rebars \times Bar Diameter $+($ No.of Rebars -1$) \times$ Spacing between Rebars
$b_{\text {required }}=2 \times 40 \mathrm{~mm}+2 \times 10+4 \times 25 \mathrm{~mm}+3 \times 25 \mathrm{~mm}=275 \mathrm{~mm}<300 \mathrm{~mm}$ Ok.
9. Check with $A_{\text {s minimum }}$ requirements:
$A_{\text {sminimum }}=\frac{1.4}{f_{y}} b_{w} d=\frac{1.4}{420} \times 300 \times 637=637 \mathrm{~mm}^{2}<A_{S_{\text {Provided }}}=1960 \mathrm{~mm}^{2} \mathrm{Ok}$.
10. Check $S_{\text {maximum }}$:

With four rebars, two stirrup legs, two covers, and a width of 300 mm , the requirement of maximum spacing is necessary satisfied.
11. Check the assumption of $\varnothing=0.9$:
a. Compute steel stain based on the following relations:

$$
\begin{aligned}
a & =\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \\
a & =\frac{1960 \times 420}{0.85 \times 21 \times 300}=154 \mathrm{~mm} \\
c & =\frac{154 \mathrm{~mm}}{0.85}=181 \mathrm{~mm} \\
\epsilon_{t} & =\frac{d-c}{c} \times \epsilon_{u} \\
\epsilon_{t} & =\frac{637 \mathrm{~mm}-181 \mathrm{~mm}}{181 \mathrm{~mm}} \times 0.003=7.56 \times 10^{-3}
\end{aligned}
$$

b. As $\epsilon_{t} \geq 0.005$, then $\emptyset=0.9$ Ok.
12.Final Reinforcement Details:

Example 4.4-5

What are the required longitdinal reinforcements for Scetion A and Section B of the beam shown in Figure 4.4-5 below?
In your solution assume that:

1. $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.
2. Rebar of 25 mm is used for longtudinal reinforcement.
3. Single layer of reinforcement.
4. Rebars of 12 mm is used for shear reinforcement.
5. Beam slefweight can be neglcted.
6. Uniform subgarde reaction.

Figure 4.4-5: Foundation beam for Example 4.4-5.

Solution

Design Forces

$P_{u}=$ maximum $\left(1.4 P_{\text {Dead }}\right.$ Or $\left.1.2 P_{\text {Dead }}+1.6 P_{\text {Live }}\right)$
$P_{u}=$ maximum $(1.4 \times 200$ Or $1.2 \times 200+1.6 \times 125)$
$P_{u}=$ maximum (280 Or 440)
$P_{u}=440 \mathrm{kN}$
$W_{u}=(440 \mathrm{kN} \times 2) \times \frac{1}{8 \mathrm{~m}}=110 \frac{\mathrm{kN}}{\mathrm{m}}$
$M_{u @ \text { Section } A-A}=110 \frac{\mathrm{kN}}{\mathrm{m}} \times 1.5 \mathrm{~m} \times \frac{1.5 \mathrm{~m}}{2}=124 \mathrm{kN} . \mathrm{m}$
$M_{u @ \operatorname{Section}{ }_{B-B}}=-\left(\frac{110 \frac{\mathrm{kN}}{\mathrm{m}} \times 5^{2} \mathrm{~m}^{2}}{8}\right)+124$
$M_{u @ \text { @ection } B-B}=-220 \mathrm{kN} . \mathrm{m}$

Design of Section A-A

1. Computed the required nominal or theoretical flexure strength (M_{n}) based on the following relation:
$M_{n}=\frac{M_{u}}{\emptyset}$
Strength reduction factored can be assumed 0.9, and checked later.

$$
\mathrm{M}_{\mathrm{n}}=\frac{124 \mathrm{kN} . \mathrm{m}}{0.9}=138 \mathrm{kN} . \mathrm{m}
$$

2. Compute the effective beam depth "d":

Assume that, reinforcement can be put in single reinforcement, then:
$\mathrm{d}_{\text {for One Layer }}=600-75_{\text {Casted and exposed to soil }}-12-\frac{25}{2}=505 \mathrm{~mm}$
3. Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime b d^{2}}}}}{1.18 \times \frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}}$
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{138 \times 10^{6} \mathrm{~N} . \mathrm{mm}}{28 \times 800 \times 505^{2}}}}{1.18 \times \frac{420}{28}}$
$\rho_{\text {Required }}=1.63 \times 10^{-3}$
4. Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}^{\prime}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$
$\rho_{\max }=0.85^{2} \frac{28}{420} \frac{0.003}{0.003+0.004}=20.6 \times 10^{-3}>\rho_{\text {Required }} 0 \mathrm{~K}$.
5. Compute the required steel area:
$A_{S_{\text {Required }}}=\rho_{\text {Required }} \times b d$
$A_{S_{\text {Required }}}=1.63 \times 10^{-3} \times 800 \times 505=660 \mathrm{~mm}^{2}$
6. Check with $\mathrm{A}_{\mathrm{s} \text { minimum }}$ requirements:
$A_{s \text { minimum }}=\frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=\frac{1.4}{420} \times 800 \times 505=1347 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {sminimum }}=1347 \mathrm{~mm}^{2}>1 \frac{1}{3} \mathrm{~A}_{\text {SRequired }}=878 \mathrm{~mm}^{2}$
Then used
$A_{s}=878 \mathrm{~mm}^{2}$
7. Compute required rebars number:
$A_{B a r}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No.of Rebars $=\frac{878 \mathrm{~mm}^{2}}{490 \mathrm{~mm}^{2}}=1.79$
Try $2 \emptyset 25 \mathrm{~mm}$.
$A_{S \text { Provided }}=2 \times 490 \mathrm{~mm}^{2}=980 \mathrm{~mm}^{2}$
8. Check if the available width " b " is adequate to put the rebars in a single layer:
$\mathrm{b}_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups + No. of Rebars \times Bar Diameter $+($ No. of Rebars -1$) \times$ Spacing between Rebars
$\mathrm{b}_{\text {required }}=2 \times 50+2 \times 12+2 \times 25+25=199 \mathrm{~mm}<800 \mathrm{~mm}$ Ok.
9. Checking for Smax for Crack Control:
$\mathrm{s}=800-50 \times 2-12 \times 2-25=651 \mathrm{~mm}>\mathrm{s}_{\max }$ Not $O k$
Then use $5 \phi 16 \mathrm{~mm}$ instead of $2 \phi 25 \mathrm{~mm}$.
$\mathrm{A}_{\mathrm{S}_{\text {Provided }}}=5 \times 200 \mathrm{~mm}^{2}=1000 \mathrm{~mm}^{2}$
10 . Check the assumption of $\varnothing=0.9$:
a. Compute steel stain based on the following relations:

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 f_{\mathrm{c}} \mathrm{~b}} \\
& \mathrm{a}=\frac{10000 \times 420}{0.85 \times 28 \times 800}=22.1 \mathrm{~mm} \\
& \mathrm{c}=\frac{22.1 \mathrm{~mm}}{0.85}=26 \mathrm{~mm} \\
& \epsilon_{\mathrm{t}}=\frac{505 \mathrm{~mm}-26 \mathrm{~mm}}{26 \mathrm{~mm}} \times 0.003=55.3 \times 10^{-3}
\end{aligned}
$$

b. As $\epsilon_{\mathrm{t}} \geq 0.005$, then $\emptyset=0.9$ Ok.

Design of Section B-B:

1. Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\varnothing}$
Strength reduction factored can be assumed 0.9 , and checked later.
$\mathrm{M}_{\mathrm{n}}=\frac{220 \mathrm{kN} . \mathrm{m}}{0.9}=244 \mathrm{kN} . \mathrm{m}$
2. Compute the effective beam depth "d":

Assume that, reinforcement can be put in single reinforcement, then:
$\mathrm{d}_{\text {for One Layer }}=600-50_{\text {Exposed to Soil }}-12-\frac{25}{2}=525 \mathrm{~mm}$
3. Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{bd}^{2}}}}{1.18 \times \frac{\mathrm{f}_{\mathrm{y}}}{\mathrm{f}_{\mathrm{c}}^{\prime}}} \rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{244 \times 10^{6} \mathrm{~N} . \mathrm{mm}}{28 \times 800 \times 525^{2}}}}{1.18 \times \frac{420}{28}}$

$$
\rho_{\text {Required }}=2.70 \times 10^{-3}
$$

4. Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$
$\rho_{\max }=0.85^{2} \frac{28}{420} \frac{0.003}{0.003+0.004}=20.6 \times 10^{-3}>\rho_{\text {Required }}$ Ok.
5. Compute the required steel area:
$\mathrm{A}_{\mathrm{S} \text { Required }}=\rho_{\text {Required }} \times \mathrm{bd}$
$A_{S_{\text {Required }}}=2.70 \times 10^{-3} \times 800 \times 525=1134 \mathrm{~mm}^{2}$
6. Check with $\mathrm{A}_{\mathrm{s} \text { minimum }}$ requirements:
$\mathrm{A}_{\mathrm{s} \text { minimum }}=\frac{1.4}{\mathrm{f}_{\mathrm{y}}} \mathrm{b}_{\mathrm{w}} \mathrm{d}=\frac{1.4}{420} \times 800 \times 525=1400 \mathrm{~mm}^{2}$
$A_{\text {s minimum }}=1400 \mathrm{~mm}^{2}<1 \frac{1}{3} A_{\text {SRequired }}=1508 \mathrm{~mm}^{2}$ Ok.
Then used
$A_{s}=\mathrm{A}_{\mathrm{s} \text { minimum }}=1400 \mathrm{~mm}^{2}$
7. Compute required rebars number:
$A_{B a r}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No. of Rebars $=\frac{1400 \mathrm{~mm}^{2}}{490 \mathrm{~mm}^{2}}=2.85$
Try $3 \emptyset 25 \mathrm{~mm}$.
$\mathrm{A}_{\text {Srovided }}=3 \times 490 \mathrm{~mm}^{2}=1470 \mathrm{~mm}^{2}$
8. Check if the available width " b " is adequate to put the rebars in a single layer:
$b_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups + No. of Rebars \times Bar Diameter $+($ No. of Rebars -1$) \times$ Spacing between Rebars
$\mathrm{b}_{\text {required }}=2 \times 50+2 \times 12+3 \times 25+2 \times 25=249 \mathrm{~mm}<800 \mathrm{~mm} \mathrm{Ok}$.
9. Checking for Smax for Crack Control:
$\mathrm{s}=\frac{800-50 \times 2-12 \times 2-25}{2}=326 \mathrm{~mm}>\mathrm{s}_{\max }$ Not $O k$
Then use $\mathbf{5 \phi 2 0} \mathbf{~ m m}$ instead of $3 \phi 25 \mathrm{~mm}$.

$$
\mathrm{A}_{\text {Srovided }}=5 \times 314 \mathrm{~mm}^{2}=1570 \mathrm{~mm}^{2}
$$

10. Check the assumption of $\varnothing=0.9$:
a. Compute steel stain based on the following relations:

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f} \mathrm{y}}{0.85 \mathrm{f}^{\prime} \mathrm{b} \mathrm{~b}} \\
& \mathrm{a}=\frac{1570 \times 420}{0.85 \times 28 \times 800}=34.6 \mathrm{~mm} \\
& \mathrm{c}=\frac{34.6 \mathrm{~mm}}{0.85}=40.7 \mathrm{~mm} \\
& \quad \epsilon_{\mathrm{t}}=\frac{525 \mathrm{~mm}-34.6 \mathrm{~mm}}{34.6 \mathrm{~mm}} \times 0.003=42.5 \times 10^{-3} \\
& \text { b. As } \epsilon_{\mathrm{t}} \geq 0.005, \text { then } \emptyset=0.9 \text { Ok. }
\end{aligned}
$$

Sections Details:

Section A-A

SECTION B-B
Example 4.4-6
Design Section A-A of beam shown in Figure 4.4-6 below for flexure requirements according to ACI 318M-14.

Figure 4.4-6: Inverted beam of Example 4.4-6.
In your solution, assume that:

1. $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=28 \mathrm{MPa}$.
2. $f_{y}=420 \mathrm{MPa}$.
3. Rebar of No. 25 for longitudinal reinforcement.
4. Single layer of reinforcement.
5. Rebar of No. 10 for stirrups.
6. Rebars can be put in a single layer.

Solution

1. Design Moments:
$W_{\text {selfweight }}=(0.1 \times 1.0+0.5 \times 0.3) \mathrm{m}^{2} \times 24 \frac{\mathrm{kN}}{\mathrm{m}^{2}}=6 \frac{\mathrm{kN}}{\mathrm{m}}$
$W_{\text {Dead }}=15+6=21 \frac{\mathrm{kN}}{\mathrm{m}}$
$\mathrm{W}_{\mathrm{u}}=1.4(21)$ or $[1.2 \times 21+1.6 \times 12]$
$\mathrm{W}_{\mathrm{u}}=29.4 \frac{\mathrm{kN}}{\mathrm{m}}$ or $44.4 \frac{\mathrm{kN}}{\mathrm{m}}$
$\mathrm{W}_{\mathrm{u}}=44.4 \frac{\mathrm{kN}}{\mathrm{m}}$
$\mathrm{M}_{\mathrm{u}}=\frac{\mathrm{W}_{\mathrm{u}} \mathrm{I}^{2}}{8}=\frac{44.4 \frac{\mathrm{kN}}{\mathrm{m}} \times 6.0^{2} \mathrm{~m}^{2}}{8}=200 \mathrm{kN} . \mathrm{m}$
2. Section Design:

As the flange is on the tension side, section should be designed as a rectangular section.
3. Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\varnothing}$
Strength reduction factored can be assumed 0.9 , and checked later.
$\mathrm{M}_{\mathrm{n}}=\frac{200 \mathrm{kN} . \mathrm{m}}{0.9}=222 \mathrm{kN} . \mathrm{m}$
4. Compute the effective beam depth "d":

Assume that, reinforcement can be put in single reinforcement, then:
$\mathrm{d}_{\text {for One Layer }}=600-40-10-\frac{25}{2}=538 \mathrm{~mm}$
5. Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{M_{n}}{f_{c}^{\prime} b d^{2}}}}{1.18 \times \frac{f_{y}}{f_{c}^{\prime}}}$
$\rho_{\text {Required }}=\frac{1-\sqrt{1-2.36 \frac{222 \times 10^{6} \mathrm{~N} . \mathrm{mm}}{28 \times 300 \times 538^{2}}}}{1.18 \times \frac{420}{28}}$
$\rho_{\text {Required }}=6.46 \times 10^{-3}$
6. Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\max }=0.85 \beta_{1} \frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{\mathrm{f}_{\mathrm{y}}} \frac{\epsilon_{\mathrm{u}}}{\epsilon_{\mathrm{u}}+0.004}$
$\beta_{1}=0.85$
$\rho_{\text {max }}=0.85^{2} \frac{28}{420} \frac{0.003}{0.003+0.004}=20.6 \times 10^{-3}>\rho_{\text {Required }}$ Ok.
$\rho_{\text {max }}=20.6 \times 10^{-3}>\rho_{\text {Required }}$ Ok.
7. Compute the required steel area:
$A_{S \text { Required }}=\rho_{\text {Required }} \times \mathrm{bd}$
$A_{S \text { Required }}=6.46 \times 10^{-3} \times 300 \times 538=1042 \mathrm{~mm}^{2}$
8. Compute required rebars number:
$A_{\text {Bar }}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No. of Rebars $=\frac{1042 \mathrm{~mm}^{2}}{490 \mathrm{~mm}^{2}}=2.12$
Try $3 \varnothing 25 \mathrm{~mm}$.
$A_{S \text { Provided }}=3 \times 490 \mathrm{~mm}^{2}=1470 \mathrm{~mm}^{2}$
9. Check if the available width " b " is adequate to put the rebars in a single layer:
$\mathrm{b}_{\text {required }}=2 \times$ Side Cover $+2 \times$ Stirrups + No. of Rebars \times Bar Diameter $+($ No. of Rebars -1$) \times$ Spacing between Rebars
$\mathrm{b}_{\text {required }}=2 \times 40 \mathrm{~mm}+2 \times 10+3 \times 25 \mathrm{~mm}+2 \times 25 \mathrm{~mm}=225 \mathrm{~mm}<300 \mathrm{~mm}$ Ok.
10. Checking for Smax for Crack Control:
$\mathrm{S}=(300-40 \times 2-10 \times 2-25) \times \frac{1}{2}=87.5 \mathrm{~mm}<\mathrm{S}_{\text {max }}$ Ok
Remember that $\mathrm{S}_{\max }$ is c / c distance.
11. Check with $\mathrm{A}_{\text {s minimum }}$ requirements:

As the span is statically determinate, and as flange is in tension side, As min will be computed based on following relation.
$A_{s \text { min }}=$ minimum $\left(\frac{0.25 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{f} d, \frac{0.50 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d\right)$
$A_{\text {smin }}=$ minimum $\left(\frac{0.25 \sqrt{28}}{420} 1000 \times 538, \frac{0.50 \sqrt{28}}{420} 300 \times 538\right)$
$A_{\text {smin }}=\operatorname{minimum}(1695,1017)$
$A_{\text {smin }}=1017 \mathrm{~mm}^{2}<A_{\text {sprovided }} \quad \therefore$ ok.
12. Check the assumption of $\varnothing=0.9$:
i. Compute steel stain based on the following relations:
$a=\frac{\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}}{0.85 \mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{b}}$
$a=\frac{1470 \times 420}{0.85 \times 28 \times 300}=86.5 \mathrm{~mm}$
$\mathrm{c}=\frac{86.5 \mathrm{~mm}}{0.85}=102 \mathrm{~mm}$
$\epsilon_{\mathrm{t}}=\frac{538 \mathrm{~mm}-102 \mathrm{~mm}}{102 \mathrm{~mm}} \times 0.003=12.8 \times 10^{-3}$
ii. As $\epsilon_{\mathrm{t}} \geq 0.005$, then $\varnothing=0.9 \mathrm{Ok}$.
13.Final Reinforcement Details:

4.4.4 Homework Problems

Problem 4.4-1

Design a simply supported rectangular reinforced concrete beam to carry a service dead load of $19.7 \mathrm{kN} / \mathrm{m}$ and a service live load of $27.7 \mathrm{kN} / \mathrm{m}$. The span is 5.5 m . It is known that this beam is not exposed to weather and not in contact with ground.
Assume that the designer intend to use:

1. Concrete of $f_{c}^{\prime}=28 \mathrm{MPa}$.
2. Steel of A615 Grade 60.
3. A width of 280 mm and a height of 560 mm (these dimensions have been determined based on architectural considerations).
4. Rebar of No. 25 for longitudinal reinforcement.
5. Rebar of No. 13 for stirrups.

Answers

- Computed required factored applied moment $\left(M_{u}\right)$:
a. Moment due to Dead Loads:

$$
\begin{aligned}
& \mathrm{W}_{\text {Selfweight }}=3.76 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \mathrm{~W}_{\text {Dead }}=23.5 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \mathrm{M}_{\text {Dead }}=88.9 \mathrm{kN.m}
\end{aligned}
$$

b. Moment due to Live Load:
$\mathrm{M}_{\text {Live }}=105 \mathrm{kN} . \mathrm{m}$
c. Factored Moment M_{u} :
$\mathrm{M}_{\mathrm{u}}=$ Maximum of $\left(1.4 \mathrm{M}_{\mathrm{D}}\right.$ or $\left.1.2 \mathrm{M}_{\mathrm{D}}+1.6 \mathrm{M}_{\mathrm{L}}\right)$
$M_{u}=$ Maximum of $[1.4 \times 88.9$ or $(1.2 \times 88.9+1.6 \times 105)]=$
$\mathrm{M}_{\mathrm{u}}=$ Maximum of [124 or 275] $=275 \mathrm{kN} . \mathrm{m}$

- Computed the required nominal or theoretical flexure strength $\left(M_{n}\right)$ based on the following relation:
$M_{n}=\frac{M_{u}}{\varnothing}$
Strength reduction factored can be assumed 0.9, and checked later.
$\mathrm{M}_{\mathrm{n}}=306 \mathrm{kN} . \mathrm{m}$
- Compute the effective beam depth "d":

Assume that, reinforcement can be put in a single layer, then:
$\mathrm{d}_{\text {for One Layer }}=495 \mathrm{~mm}$

- Compute the Required Steel Ratio $\rho_{\text {Required }}$:
$\rho_{\text {Required }}=11.9 \times 10^{-3}$
- Check if the beam failure is secondary compression failure or compression failure:
$\rho_{\text {max }}=20.6 \times 10^{-3}>\rho_{\text {Required }}$ Ok.
- Compute the required steel area:

$$
\begin{aligned}
A_{S \text { Required }} & =\rho_{\text {Required }} \times \mathrm{bd} \\
A_{S \text { Required }} & =1649 \mathrm{~mm}^{2}
\end{aligned}
$$

- Compute required rebars number:
$A_{\text {Bar }}=\frac{\pi \times 25^{2}}{4}=490 \mathrm{~mm}^{2}$
No. of Rebars $=3.36$
Try $4 \emptyset 25 \mathrm{~mm}$.
$\mathrm{A}_{\text {Srovided }}=1960 \mathrm{~mm}^{2}$
- Check if the available width " b " is adequate to put the rebars in a single layer:
$\mathrm{b}_{\text {required }}=281 \mathrm{~mm} \approx 280 \mathrm{~mm}$ Ok.
- Check for $S_{\max }$:

As the total width is only 280 mm , and as we have used 4 rebars, then the spacing center to center of bars will of course be less than smax.

- Check with $A_{\text {s minimum }}$ requirements:
$A_{s \text { minimum }}=462 \mathrm{~mm}^{2}<A_{\text {S Provided }}=1960 \mathrm{~mm}^{2} \mathrm{Ok}$.
- Check the assumption of $\varnothing=0.9$:
a. Compute steel stain based on the following relations:
$a=124 \mathrm{~mm}$
$\mathrm{c}=146 \mathrm{~mm}$

$$
\epsilon_{\mathrm{t}}=0.00717
$$

b. As $\epsilon_{\mathrm{t}} \geq 0.005$, then $\emptyset=0.9$ Ok.

- Final Reinforcement Details:

2012 mm
Nominal Rebars to
Support the Stirrups

Problem 4.4-2

Design a simply supported pedestrian's bridge to carry the following loads:

1. Dead load of slab and pavement surfacing is $5.0 \mathrm{kN} / \mathrm{m}$.
2. Handrail weight can be taken as $0.5 \frac{\mathrm{kN}}{\mathrm{m}}$.
3. Service live load of $6.0 \mathrm{kN} / \mathrm{m}$.

Elevation View

[^0]: ${ }^{2}$ It is useful to note that, the equation of effective depth for a beam with two reinforcement layers is based on the assumption that centroid of two layers lies at mid distance between two layers. This assumption is correct for two identical layers. For other conditions, it gives conservative results that accepted in the engineering practice.

