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• For the figure below, the critical section for computing of Vu is at the face of 

support as loads are not applied at or near the top of the member (Nilson, Design 

of Concrete Structures, 14th Edition, 2010). 

 
• For the figure below, the critical section for computing of Vu is at the face of 

support as concentrated load occurs within a distance “d” from the face of support 

(Nilson, Design of Concrete Structures, 14th Edition, 2010). 
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5.3 SHEAR STRENGTH PROVIDED BY CONCRETE 𝑽𝒄 

5.3.1 Upper Bound of Concrete Compressive Strength, 𝒇𝒄′, in Estimating 𝑽𝒄 
• According to article 22.5.3.1 of ACI code, except for article 22.5.3.2, related to 

prestressed beams and joist construction, the value of √fc′ used to calculate Vc 

shall not exceed 8.3 MPa. 

• The above statement is because of a lack of test data and practical experience 

with concretes having compressive strengths greater than 70 MPa. 

5.3.2 Plain Concrete Beams 
• As the load increases in such a beam, a tension crack will form where the tensile 

stresses are largest, and it will immediately cause the beam to fail.  
• Except for beams of very unusual proportions, the largest tensile stresses are 

those caused at the outer fiber by bending alone, at the section of maximum 

bending moment. In this case, shear has little, if any, influence on the strength of 

a beam. 

 
Figure 5.3-1: Behavior of plain concrete beams. 

5.3.3 Reinforced Concrete Beams without Shear Reinforcement 
• For beams designed properly for flexure, diagonal cracks may propagate faster 

than flexural cracks, and shear aspects may govern the beam failure. 

 
Figure 5.3-2: Behavior of a beam reinforced for flexure only. 

• For concrete beams reinforced for flexure only, shear force required to initiates 

diagonal cracks in web-shear cracks region, or to propagate cracks in a flexure-

shear region can be estimated from relation below, Article 22.5.5.1 of (ACI318M, 

2014): 

Vc =  0.17λ√fc
′ bwd Eq. 5.3-1 

where: 
λ is the lightweight modification factor that taken from Table 5.3-1 below, Table 

19.2.4.2 of (ACI318M, 2014). 
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Table 5.3-1: Modification factor λ, Table 19.2.4.2 of (ACI318M, 2014).  

 

 

Figure 5.3-3: Diagonal 

tension cracking in reinforced 
concrete beams. 

• With referring to Figure 5.3-3 above, it is useful to note that the Eq. 5.3-1 is more 

suitable flexure-shear crack and relatively conservative for web-shear cracks. A 

more accurate relation has been presented in Article 5.8 of this chapter. 
• In spite of its conservative nature in the web-shear crack region, in practice, most 

of the beams are usually designed based on Eq. 5.3-1. 
• For solid circular members, the area used to compute Vc shall be taken as shown 

in Figure 5.3-4 (Article 22.5.2.2 of ACI Code). 

 

Figure 5.3-4: Effective 
area for shear in solid 

circular sections. 
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5.3.4 Beams Reinforced for Shear 
• As for flexural behavior, current ACI code permits formation of web-shear cracks 

and flexure-shear cracks when beams are reinforced for shear and diagonal 
tension. 

• With shear reinforcements, that resist propagation of web-shear cracks, the free 

body diagram for one side of crack at failure stage would be as shown Figure 5.3-5 

below. 

 

Figure 5.3-5: Forces at a diagonal 

crack in a beam with vertical 
stirrups. 

where 
𝐴𝑣𝑓𝑣 is shear force resisted by each stirrup, will be discussed in detail in Article 

5.4.2 of this chapter, 
𝑉𝑐𝑧 shear force resisted by uncracked concrete portion, 

𝑉𝑖 shear force resisted by the interlocking of concrete on two sides of the crack, 

𝑉𝑑 shear force resisted by longitudinal rebars, dowel action, 

• From equilibrium in vertical direction, 

𝑉𝑒𝑥𝑡 = 𝑉𝑐𝑧 + 𝑉𝑑 + 𝑉𝑖𝑦 + 𝑉𝑠 Eq. 5.3-2 

• Empirically and conservatively current ACI code assumes that: 

𝑉𝑐𝑧 + 𝑉𝑑 + 𝑉𝑖𝑦 ≈ 𝑉𝑐 = 0.17λ√fc
′ bwd Eq. 5.3-3 

• Therefore, in the current ACI code, the relation: 

𝑉𝑐 = 0.17λ√fc
′ bwd Eq. 5.3-4 

has two roles: 

o It is used rationally to estimate the shear force that either initiates web-shear 

cracks or propagate flexure-shear cracks. 
o It is used empirically to estimate the order for summation of 𝑉𝑐𝑧, 𝑉𝑑, and 𝑉𝑖𝑦.  
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5.4 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT 𝑽𝒔 

5.4.1 Type of Shear Reinforcement 
• Several types and arrangements of shear reinforcement permitted by ACI are 

illustrated in Figure 5.4-1 (Kamara, 2005) (Page 12-6). 

 

Figure 5.4-1: Types 

of shear 

reinforcement. 

• Spirals, circular ties, or hoops are explicitly recognized as types of shear 

reinforcement starting with the 1999 code (Kamara, 2005) (Page 12-6).  

• Vertical stirrups are the most common type of shear reinforcement.  

• Inclined stirrups and longitudinal bent bars are rarely used as they require a 

special care during placement in the field.  
• U-shaped bars similar to those presented in Figure 5.4-2 below are the most 

common, although multiple-leg stirrups such as shown are sometimes necessary. 

 

 
Figure 5.4-2: U stirrups 

shear reinforcement. 

5.4.2 Theoretical Spacing between Vertical Stirrups 
• Theoretical spacing for vertical stirrups can be related to other design parameters 

based on following relations: 

 

Figure 5.4-3: Forces at a diagonal 

crack in a beam with vertical 
stirrups, reproduced for 

convenience. 

Vs =  Fore per each stirrup ×  No. of stirrups through the inclined crack 

Vs = (Av ×  fyt)
Fore per each stirrup

 × (
p

s
)

No.of stirrups through the inclined crack
 

where: 



Design of Concrete Structures Chapter 5: Shear and Diagonal Tension in Beams 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 13  
 

Av =  area of shear reinforcement =
π∅Stirrups

2

4
× No. of Legs 

• If the crack is assumed to have an angle of 45 degree with the horizon, then p 

can be computed approximately based on following relation: 
p ≈ d 

Then: 

Vs =
Avfytd

s
 Eq. 5.4-1 

Above relation that suitable for analysis purpose, can be solved for s to be more 
suitable for design purpose: 

s =
Avfytd

Vs 
∎ Eq. 5.4-2 

• In addition to this theoretical spacing for shear reinforcement, ACI Code also 

includes many other nominal requirements that related to shear reinforcement. 

ACI practical procedure for shear design has been summarized in article below. 
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5.5 SUMMARY OF PRACTICAL PROCEDURE FOR SHEAR DESIGN 

5.5.1 Essence of the Problem 
• Generally, beam dimensions (b and h) are determined based on considerations 

other than shear and diagonal tension requirements.  

• Then, in a shear problem, the designer deals with a beam that has pre-specified 

dimensions and main unknowns in the design problem are the shear reinforcement 
(if needed) and its details that can be summarized as follows: 

o The diameter of shear reinforcement. 

o Spacing (for economic aspect, a beam may be divided to sub-regions with 

different shear reinforcements) for shear reinforcements. 

o Anchorage requirements for shear reinforcements.  
• The detailed procedure for each one of the above three unknowns will be discussed 

below. 

5.5.2 Bar Diameter for Stirrups and Stirrups Support Bars 
• As was previously discussed in Chapter 4, bar diameters that used for shear 

reinforcements usually include 10mm, or 13mm.  

• A Bar diameter of 16mm rarely used as shear reinforcement. 

• Where no top bars are required for flexure, stirrups support bars must be used. 

These are usually about the same diameter as the stirrups themselves (Nilson, 
Design of Concrete Structures, 14th Edition, 2010).  

5.5.3 Spacing for Shear Reinforcements 
Computing of required spacing can be summarized as follows: 

• Draw the shear force diagram based on factored load and span length, and divide 

the diagram into the three distinct regions shown in Figure 5.5-1 (Kamara, 2005) 

(Page 12-9): 

 
Figure 5.5-1: Three distinguish regions of shear force diagram.  

• Based on Table 5.5-1, compute the required spacing for each one of the regions 

shown above (if shear reinforcement is required for this region) (Kamara, 2005) 

(Page 12-8): 
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Table 5.5-1: ACI provisions for shear design. 

Region Vu ≤ ∅
Vc

2
 ∅

Vc

2
< Vu ≤ ∅Vc ∅Vc ≤ Vu 

Vs None None 
=

Vu − ∅Vc

∅
≤ 0.66√fc′bwd 

Else, change beam dimensions. 

STheoretical None None =
Avfytd

Vs 
 

Sfor Av minimum 
(9.6.3.3) 

None minimum (
Avfyt

0.062√fc’bw

or
Avfyt

0.35bw
) minimum (

Avfyt

0.062√fc’bw

or
Avfyt

0.35bw
) 

Smaximum 
(9.7.6.2.2) 

None Minimum [
d

2
or 600mm] 

Vs ≤ 0.33√fc′bwd 

Minimum [
d

2
or 600mm] 

Vs > 0.33√fc′bwd 

Minimum [
d

4
or 300mm] 

SRequired None Minimum [
Sfor Av minimum ,

Smaximum
] Minimum [

STheoretical ,
 Sfor Av minimum , Smaximum

] 

• Notes on 𝐴𝑣𝑚𝑖𝑛: 

According to Article 9.6.3.1, for cases presented in Table below, 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 is not 

required even with ∅
Vc

2
< Vu ≤ ∅Vc: 

Table 5.5-2: Cases where 𝑨𝒗 𝐦𝐢𝐧  is not required if 𝟎. 𝟓𝝓𝑽𝒄 <  𝑽𝒖 ≤  𝝓𝑽𝒄, Table 9.6.3.1 of 

(ACI318M, 2014). 

 

5.5.4 Anchorage Requirement for Shear Reinforcements 

5.5.4.1 Design Assumptions Regarding to Anchorage 

Above design is based on assumption that the stirrups will yield at ultimate load. This 

will be true only if the stirrups are well anchored.  

5.5.4.2 General Anchor Requirements 

• Generally, the upper end of the inclined crack approach very closed to the 

compression face of the beam. Thus, the portion of the stirrups shown shaded in 

Figure 5.5-2 must be able to anchor the stirrups. 

 

Figure 5.5-2: General 
requirements for 

anchorage of stirrups. 

• ACI general anchor requirement can be summarized in Figure 5.5-3. 
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Figure 5.5-3: 

General 

requirements 
for anchorage 

of stirrups, 

continued. 

• According to anchorage requirements, stirrups may be classified into the following 

two types. 

5.5.4.3 Open Stirrups 

• They may take any one of the shapes indicated in Figure 5.5-4. 

• As shown in Figure 

5.5-5, anchorage of 

an open stirrup 

depends on using 
standard hooks at 

the corners of the stirrups supporting rebars.  

 

Figure 5.5-5: Standard 
hook anchorage for open 

stirrups. 

• Minimum inside bend diameters and standard hook geometry for stirrups, ties, 

and hoops are presented in Table 5.5-3. 
Table 5.5-3: Minimum inside bend diameters and standard hook geometry for stirrups, 

ties, and hoops, Table 25.3.2 of (ACI318M, 2014). 

 

  Figure 5.5-4: Open stirrups. 
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• According to ACI (25.7.1.3b), for No. 19, through No. 25 stirrups with fyt greater 

than 280 MPa, a standard stirrup hook around a longitudinal bar plus an 
embedment between mid-height of the member and the outside end of the hook 

equal to or greater than 0.17𝑑𝑏  𝑓𝑦𝑡  /(𝜆 √𝑓𝑐
′). 

 

Figure 5.5-6: Embedment length for open stirrups with 

for No. 19, through No. 25 stirrups with fyt greater than 
280 MPa. 

• This requirement has been included as it is not possible to bend a No. 19, No. 22, 

or No. 25 stirrup tightly around a longitudinal. 

5.5.4.4 Closed Stirrups 

• Its typical shapes are shown Figure 5.5-7. 

 
Figure 5.5-7: Typical closed 
stirrups. 

• It may be taking the form of 

closed tie shown in Figure 

5.5-8. 

• Closed stirrups or closed ties 

should be used for: 

o For beams with compression 
reinforcements. 

o For members subjected to torsion. 

 
Figure 5.5-9: Beam subjected to torsion where 

closed stirrups should be adopted. 

o For reversals stresses. 

5.5.4.5 Spliced Stirrup 

• According to article 25.7.1.7 of (ACI318M, 2014), except where used for torsion 

or integrity reinforcement, closed stirrups are permitted to be made using pairs 
of U-stirrups spliced to form a closed unit where lap lengths are at least 1.3𝑙𝑑.  

• In members with a total depth of at least 450 mm, such splices with 𝐴𝑏𝑓𝑦𝑡 ≤  40 𝑘𝑁  

per leg shall be considered adequate if stirrup legs extend the full available depth 

of member. 

 Figure 5.5-10: Closed stirrup configurations. 

 Figure 5.5-8: Tie reinforcement. 
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• The development length may be defined as the length of embedment necessary 

to develop the full tensile strength of the bar. It will be discussed in details in 
Chapter 6.  

• Its approximate value can be computed from Table below: 
Table 5.5-4: Simplified tension development length in bar diameters 𝒍𝒅/𝒅𝒃 for uncoated 

bars and normalweight concrete 
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5.6 BASIC DESIGN EXAMPLES 
Example 5.6-1 

Check adequacy of proposed size and determine required spacing of vertical stirrups for 

a 9.15m span simply supported beam with following data: 

bw =  330mm, d = 508mm, fc’ = 21 MPa, fyt =  275 MPa, Wu =  65.5
kN

m
 

 

 
Proposed beam section. 

Figure 5.6-1: Simply supported beam for 

Example 5.6-1. 

Solution 
• Regarding to bar diameter for stirrups, the proposed diameter of 13mm is common 

and accepted one.   

• Draw the shear force diagram for the beam: 
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• Compute of Shear Strength Provided by Concrete Vc: 

Vc =  0.17λ√fc
′ bwd 

As λ = 1.0 for normal weight concrete, then: 

Vc =  0.17√fc
′ bwd = 0.17 × √21

N

mm2
× 330mm × 508mm = 131 000 N = 131 kN  

∅Vc = 0.75 × 131 kN = 98.3 kN 

• Based on value of ∅Vc divide the shear force diagram into three regions indicated 

below. As all limitations of article (9.4.3.2) are satisfied, then sections located 
less than a distance “d” from face of support shall be permitted to be designed for 
𝑉𝑢 computed at a distance “d”. 

 
To compute shear force at distance “d” from face of supported any one of the 

following two approaches can be adopted: 

o Based on differential equations of equilibrium: 

From mechanics of materials, to satisfy equilibrium of an infinitesimal element, 

following differential equations should be satisfied: 

𝑤 =
𝑑𝑉

𝑑𝑥
 

𝑉 =
𝑑𝑀

𝑑𝑥
 

The first equation indicates that the load value, 𝑤, represents the slope for shear 

diagram while the second equation indicates that the value of shear force 

represents the slope of the bending moment diagram. It is useful to note that both 
equations are consistent in units.  

From the first equation: 
𝑑𝑉 = 𝑤𝑑𝑥 

Integrate to obtain 

𝑉2 − 𝑉1 =  ∫ 𝑤 𝑑𝑥

2

1

 

Or 

𝑉𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 =  ∫ 𝑤 𝑑𝑥

𝑇𝑜 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 d 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝐹𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

  + 𝑉𝑢 @ 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

It is worthwhile to note that the above finite integral is equal to area under 

load diagram from face of support to a distance “d” from face of support.  
𝑉𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 = (−65.5 × 0.508  + 300) ≈ 266 𝑘𝑁 

o Based on Symmetry 

From problems that have symmetry, shear force at distance “d” can be determined 

based on following relation: 
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𝑉𝑢 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
1

2
× 𝑊𝑢(𝑙𝑛 − 2𝑑) 

where 𝑙𝑛 is the clear span measured from face to face of supports. 

𝑉𝑢 𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
1

2
× 65.5 × (9.15 − 2 × 0.508) = 266 𝑘𝑁 

• Compute stirrups spacing for each region based on the table presented below: 
Try U Shape stirrups of 13mm diameter, then Av will be: 

Av =
π × 132

4
× 2 = 265 mm2 

Stirrups Spacing for Example 5.6-1 

Region 𝑉𝑢 ≤ ∅
𝑉𝑐

2
 ∅

𝑉𝑐

2
< 𝑉𝑢 ≤ ∅𝑉𝑐 ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  None None 

=
𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

266 − 98.3

0.75
 ?  0.66 × √21 × 330 × 508 

224𝑘𝑁 <  507 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  None None =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

265 × 275 × 508

224 000
= 165 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

 
None 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤

) 

= 630 𝑚𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤

) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
265 × 275

0.062√21 × 330
𝑜𝑟

265 × 275

0.35 × 330
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 777 𝑜𝑟 630) 

= 630 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

 
None 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] 

= 254 𝑚𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

224𝑘𝑁 ≤ 0.33√21 × 330 × 508 

224 𝑘𝑁 ≤ 254 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
508

2
𝑜𝑟 600𝑚𝑚] = 254 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  None 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [630  𝑚𝑚, 254 𝑚𝑚] 
= 254 mm 

Use ∅13𝑚𝑚 @ 250𝑚𝑚 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ,

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚
] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
165 𝑚𝑚 ,

630  𝑚𝑚, 254 𝑚𝑚
] 

= 165 𝑚𝑚 

Use ∅13𝑚𝑚 @ 150𝑚𝑚 

• Selecting of Nominal Reinforcement for Stirrups Supports: 

As no top bars are required for 

flexure, stirrups support bars must 
be used. These are usually about 

the same diameter as the stirrups 

themselves (Nilson, Design of 

Concrete Structures, 3th Edition , 

2003) (Page 180).  

 
 

 

• Anchorage Requirement for Shear 

Reinforcements:  

If one assumes that no 
compression reinforcement is 

required for this beam, any one of 

following anchorage can be used: 
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• Final stirrup spacing would be as indicated in below: 

 
 

Example 5.6-2 

Re-design Example 5.6-1 but with using same spacing along beam span. Then compare 

the two designs. 

Solution 
It practices, structural designers may use the same spacing along beam span. This 

spacing should be computed based on maximum shear force and can be used in other 

regions where shear forces are less than the force that used in design. 

• Compute Vu: 

As all limitations of article (9.4.3.2) are satisfied, then sections located less than 
a distance “d” from face of support shall be designed for 𝑉𝑢 computed at a distance 

“d”. 

Vu =
[65.5

kN
m

× (9.15 − 2 × 0.508)m ]

2
= 266 kN  

• Compute Concrete Shear Strength Vc: 

Vc =  0.17λ√fc
′ bwd 

With λ = 1.0 for normal weight concrete: 

Vc =  0.17√fc
′ bwd = 0.17 × √21

N

mm2
× 330mm × 508mm = 131 000 N = 131 kN  

∅Vc = 0.75 × 131 kN = 98.3 kN 
∵ Vu = 266 kN >  ∅Vc = 98.3 kN 

Then the beam will be designed based of provisions of 𝑉𝑢 > 𝜙𝑉𝑐. 

SHEAR SPACING DESIGN OF Example 5.6-2 
Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 

=
𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

266 − 98.3

0.75
 ?  0.66 × √21 × 330 × 508 ⟹ 224𝑘𝑁 <  507 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

265 × 275 × 508

224 000
= 165 𝑚𝑚 

S for Av minimum 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
265 × 275

0.062√21 × 330
𝑜𝑟

265 × 275

0.35 × 330
) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 777 𝑜𝑟 630) 

= 630 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

224𝑘𝑁 ≤ 0.33√21 × 330 × 508 ⟹ 224 𝑘𝑁 ≤ 254 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

508

2
𝑜𝑟 600𝑚𝑚] = 254 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [165 𝑚𝑚 , 630  𝑚𝑚, 254 𝑚𝑚] = 165 𝑚𝑚 

Use ∅𝟏𝟑𝒎𝒎 @ 𝟏𝟓𝟎𝒎𝒎 



Design of Concrete Structures Chapter 5: Shear and Diagonal Tension in Beams 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 23  
 

• Anchorage Requirement for Shear Reinforcements:  

As for previous example, if one assumes that no compression reinforcement is 
required for this beam, any one of following anchorage can be used: 

 
• Comparison between two designs: 

Required Number of Stirrups for the more accurate design of Example 5.6-1 is:  

No. of Stirrups = [(
3.0

0.150
+ 1) +

0.75

0.250
] × 2 = 48 U Stirrups  

Required Number of Stirrups for the simplified design of Example 5.6-2 is:  

No. of Stirrups = (
9.0

0.150
+ 1) = 61 U Stirrups 

Then dividing the beam into three regions and design of each region for its shear 

force can save 13 stirrups. 

 

 
v
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Example 5.6-3 

Design Region 1 and Region 2 of floor beam indicated in Figure 5.6-2 for shear. The 

beam has a width of 375mm and an effective depth of 775mm. Assume that the designer 

intends to use: 

• fc’ = 27.5 MPa. 
• fyt =  414 MPa.  

• Stirrups of 10mm diameter (ABar =  71mm2). 

 

 Figure 5.6-2: Floor beam for Example 5.6-3. 

Solution 

• Shear Reinforcement for Region 1: 
o Compute factored shear force Vu: 

As girder is deeper than floor beam, then all ACI limitations are satisfied 

and the shear force for Region 1 can be determined at distance “d” from 

face of support. 

Vu =  14.6
kN

m
× (4.6m − 2 × 0.775m) ×

1

2
+ 445 kN = 467 kN 

o Shear strength of concrete Vc: 

Vc =  0.17λ√fc
′ bwd 

with λ = 1.0 for normal weight concrete: 

Vc =  0.17√fc
′ bwd = 0.17 × √27.5

N

mm2
× 375mm × 775mm = 259 kN  

o Stirrups spacing: 
∅Vc = 0.75 × 259 kN = 194 kN 
∵ Vu = 467 kN >  ∅Vc = 194 kN 

Then, shear reinforcement must be used and its spacing can be computed 

from Table below: 
Av = 71 × 2 = 142 mm2 
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Shear Spacing Design of Example 5.6-3 for Region 1 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 

=
𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

467 − 194

0.75
 ?  0.66 × √27.5 × 375 × 775 

364 <  1 006 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

142 × 414 × 775

364 000
= 125 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
142 × 414

0.062√27.5 × 375
𝑜𝑟

142 × 414

0.35 × 375
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 482 𝑜𝑟 448) 
= 448 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

364𝑘𝑁 ≤ 0.33√27.5 × 375 × 775 
364𝑘𝑁 𝑘𝑁 ≤ 503 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
775

2
𝑜𝑟 600𝑚𝑚] = 387 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [125 𝑚𝑚, 448 𝑚𝑚, 387 𝑚𝑚] 
= 125 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟏𝟐𝟓𝒎𝒎 

• Shear Reinforcement for Region 2: 
o Factored shear force Vu: 

Due to symmetry 

Vu = (14.6
kN

m
× 1.53m) ×

1

2
= 11.1 kN 

o Shear strength of concrete Vc: 

According to simplified equation of the code, concrete shear force is 
constant along span of prismatic beam. Therefore, concrete shear strength 

of Region 2 would be equal to that of Region 1. 
Vc =  259 kN 
∅Vc =  0.75 × 259 kN = 194 kN 

∵
∅Vc

2
=

194 kN

2
= 97 kN > Vu 

Then, no shear reinforcement is required for Region 2. 

• Anchorage  

As nothing is mentioned about longitudinal reinforcement, then one cannot select 
between closed or open stirrups. 
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Example 5.6-4 

For a simply supported beam, that has a clear span of 6m, design 10mm U stirrup at a 
mid-span section. In your design, assume that load pattern must be included and 

assume: 

• 𝑓𝑐
′ =  21 𝑀𝑃𝑎, 𝑓𝑦𝑡 =  420 𝑀𝑃𝑎  

• ℎ = 500, 𝑑 =  450 𝑚𝑚, 𝑏𝑤 =  300𝑚𝑚  

• 𝑊𝑢𝑑 =  60
𝑘𝑁

𝑚
 (Including Beam Selfweight) and 𝑊𝑢𝑙 =  200

𝑘𝑁

𝑚
 

Solution 

• Compute Vu 

Although the dead load is always 
present over the full span, the live 

load may act over the full span as 

shown or over a part of span as shown 

in below. 

Based on influence line for shear at 
mid-span of simply supported beam, 

the maximum effect of live load 

occurs when this load acting on one 

half of beam span as indicated in 

above. Therefore, for design case 

when load pattern is important, shear force must be computed based on partial 
loading of one half of beam span: 

Vu @ mid span =  0.0Shear due to WD
+  

WuLL

8 Shear Due to LL on half of Beam Span
=  

WuLL

8

=
200

kN
m

× 6m

8
= 150 kN 

• Compute 𝑉𝑐 

Vc =  0.17√fc
′ bwd = 0.17 × √21

N

mm2
× 300mm × 450mm = 105 kN ⟹ ∅Vc = 0.75 × 105 kN

= 78.8 kN 

• Stirrups Design 

As  
Vu >  ∅Vc 

then shear stirrups is designed as presented in Table below. 
Shear Spacing Design of Example 5.6-4 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 

=
𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

150 − 78.8

0.75
 ?  0.66 × √21 × 300 × 450 ⟹ 94.9 𝑘𝑁 <  408  𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

157 × 420 × 450

94.9 × 103 
= 313 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
157 × 420

0.062√21 × 300
𝑜𝑟

157 × 420

0.35 × 300
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 774 𝑜𝑟 628) = 628 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

94.9 𝑘𝑁 ≤ 0.33√21 × 300 × 450 
94.9 𝑘𝑁 < 204 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

450

2
𝑜𝑟 600𝑚𝑚] = 225 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [313 𝑚𝑚, 628 𝑚𝑚, 225 𝑚𝑚] =  225 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟐𝟐𝟓𝒎𝒎 
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• Stirrups Details 

As movable live load is a reversal load, then 
closed stirrup must be used here as shown 

in the figure below. 

 

 

 
 

 

 

 

 
 

Example 5.6-5 

For the roof system shown in Figure 5.6-3 below, design shear reinforcement for a typical 

floor beam and a typical girder.  

 
Figure 5.6-3: Roof system for Example 5.6-5. 

In your design, assume that: 

• 𝑓𝑐
′ =  21 𝑀𝑃𝑎 and 𝑓𝑦𝑡 =  420 𝑀𝑃𝑎. 

• Floor beams have b = 250mm, h = 450mm, and d = 400mm and subjected to a 
uniformly distributed factored load of Wu = 55 kN/m transferred from the 

supported slab. 

• Girders have b = 400mm, h = 600mm, and d = 520mm.  

• Selfweight of floor beams and girders should be included in your design. 

• Try 10mm U stirrups for the floor beam and 12mm U 
stirrups for the girder.  

Solution  

• Design Shear Reinforcement for Floor Beam: 

o Computing of Vu: 
As the girder is deeper than the floor beam, then 

critical section for the floor beam can be taken at 

distance “d” from face of support (girder in this 

case). 
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Wu = 55
kN

m
+  ((0.45 × 0.25 m2) × 24

kN

m3
) × 1.2 = 58

kN

m
 

Vu @ d from face of support = (58
kN

m
× (5.0 − 0.4 × 2)m) ×

1

2
= 122 kN 

o Compute 𝑉𝑐: 

Vc =  0.17√fc
′ bwd = 0.17 × √21

N

mm2
× 250mm × 400mm = 77.9 kN  

∅Vc = 0.75 × 77.9 kN = 58.4 kN 

o Design of Shear Reinforcement: 

As  
Vu >  ∅Vc  
Then shear reinforcement must be designed based on zone 1 (see the table 

below). 
Stirrups Design of Example 5.6-5 (Floor Beam)  

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 

=
𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

122 − 58.4

0.75
 ?  0.66 × √21 × 250 × 400 ⟹ 84.8  𝑘𝑁 <  302  𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

157 × 420 × 400

84.8 × 103 
= 311 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
157 × 420

0.062√21 × 250
𝑜𝑟

157 × 420

0.35 × 250
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 928 𝑜𝑟 754) 

= 754 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

84.8 𝑘𝑁 ≤ 0.33√21 × 250 × 400 ⟹ 84.8 𝑘𝑁 ≤ 151 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

400

2
𝑜𝑟 600𝑚𝑚] = 200 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [311 𝑚𝑚, 754 𝑚𝑚, 200 𝑚𝑚]= 200 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟐𝟎𝟎𝒎𝒎 

o Draw of Stirrups: 

 
• Design of Shear Reinforcement for Girder: 

o Compute of Vu: 

Forces acting on the girder are summarized in the figure below. Shear force, 
𝑅𝑢, transfers from floor beams to the supporting girder can be computed as 

follows: 

Ru =  58
kN

m
×

5m

2
= 145 kN 

Shear force due to girder selfweight is 

Vu Due to Girder Selfweight = ( (0.6 × 0.4)m2 × 24
kN

m3
× (7.8 − 0.52 × 2)m ×

1

2
) 1.2 = 23.4 kN 

Therefore, the total factored shear force would be: 

Vu = ((3 × 145 kNReactions from 3 floor beam ) × 2Two faces)
1

2
 +  23.4 kN = 458 kN  
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o Compute 𝑉𝑐: 

Vc =  0.17√fc
′ bwd = 0.17 × √21

N

mm2
× 400mm × 520mm = 162 kN  

∅Vc = 0.75 × 162 kN = 121 kN 

o Design of Shear Reinforcement: 

As  
Vu >  ∅Vc  
then, shear reinforcement is designed as indicated in the table below. 
Stirrups Design of Example 5.6-5 (Girder Design) 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹

458 − 121

0.75
 ?  0.66 × √21 × 400 × 520 

⟹ 449  𝑘𝑁 <  629  𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

226 × 420 × 520

449 × 103 
= 110 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
226 × 420

0.062√21 × 400
𝑜𝑟

226 × 420

0.35 × 400
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 835 𝑜𝑟 678) 

= 678 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 

449 𝑘𝑁 > 0.33√21 × 400 × 520 ⟹ 449 𝑘𝑁 > 314 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

520

4
𝑜𝑟 300𝑚𝑚] = 130 𝑚𝑚 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚]

⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [110 𝑚𝑚, 678𝑚𝑚, 130 𝑚𝑚]
= 110 𝑚𝑚 

Use ∅𝟏𝟐𝒎𝒎 @ 𝟏𝟎𝟎𝒎𝒎 

o Draw stirrups for the girder. 
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Important Notes 

o It is useful to note that shear forces in this example have been determined 
based on assumption of equal shear at beam-ends. More accurate 

assumption will be discussed later when we study the analysis and design 

of slabs and continuous beams.  

o Hanger Stirrups: 

▪ Proper detailing of steel in the region of beam-to-girder connection such 
a joint requires the use of well-anchored "hanger" stirrups in the girder, 

as shown in below: 

 
 

▪ The hanger stirrups are required in addition to the normal girder stirrups. 

▪ Possible failure due to lack of hanger stirrups is presented in below: 

 
▪ Design of hanger stirrups is out of our scope, for more information about 

their design see (Darwin, Dolan, & Nilson, 2016), page 557. 
 

Example 5.6-6 

For the singly reinforced beam of the portal frame shown in Figure 5.6-4 below, a 

designer has proposed to use open U stirrups with diameter of 10mm and with indicated 

spacing for shear reinforcement of the beam. 

• Is using of open U stirrups justified according to ACI requirements? Explain your 
answer. 

• Based on proposed spacing and beam shear strength, what is the maximum 
uniformly factored load 𝑊𝑢 that could be applied? In your solution assume 𝑓𝑐

′ =
28 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎. 

  
Longitudinal Sectional View. Beam Cross Section 
Figure 5.6-4: Frame for Example 5.6-6. 
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Solution 

• Using of Open U Stirrups: 

As the beam is singly reinforced and with assuming that it is not subjected to 
torsion nor to reversal loads, then using of open U stirrups is justified according 

to ACI code. 
• Maximum Uniformly Distributed Load 𝑾𝒖: 

Based on Shear Strength of Region 1: 

𝑉𝑐 = 0.17 × 1.0 × √28 × 300 × 536 = 145 𝑘𝑁 

𝐴𝑣 =
𝜋 × 102

4
× 2 = 157 𝑚𝑚2 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑

𝑠
=

157 × 420 × 536

150
= 236 𝑘𝑁 < 0.33 × 1.0 × √28 × 300 × 536 = 281 𝑘𝑁 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (
536

2
, 600) = 268 𝑚𝑚 > 150𝑚𝑚 ∴ 𝑂𝑘.  

𝜙𝑉𝑛 = 0.75 × (145 + 236) = 286 𝑘𝑁 

𝑉𝑢 =
𝑊𝑢 × (7.0 − 2 × 0.536)

2
= 286 ⟹ 𝑊𝑢 = 96.5

𝑘𝑁

𝑚
 

Based on Shear Strength of Region 2: 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑

𝑠
=

157 × 420 × 536

250
= 141 𝑘𝑁 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 268 𝑚𝑚 > 250𝑚𝑚 ∴ 𝑂𝑘. 
𝜙𝑉𝑛 = 0.75 × (145 + 141) = 214 𝑘𝑁 

𝑉𝑢 =
𝑊𝑢 × 3

2
= 214 

𝑊𝑢 = 143
𝑘𝑁

𝑚
 

Finally, 

𝑊𝑢 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (96.5, 143) = 96.5
𝑘𝑁

𝑚
∎ 

 

 

Example 5.6-7 

For a frame shown in Figure 5.6-5 below, based on shear capacity of Girder 300x600, 

what are maximum values for point load "Pu", and distributed load "Wu" that can be 

supported by the beam?  
In your solution, assume that selfweight could be neglected, 𝑓𝑐

′ = 28 𝑀𝑃𝑎  and 𝑓𝑦 =

420 𝑀𝑃𝑎. 

  
Longitudinal Sectional View. Girder Section. 
Figure 5.6-5: Frame for Example 5.6-7. 

Solution 

Distributed load "Wu" could be computed from middle region where no shear 

reinforcement are used: 

𝑉𝑢 =
𝜙𝑉𝑐

2
=

1

2
× (0.75 × 0.17 × √28 × 300 × 510) ⟹ 𝑉𝑢 =

𝜙𝑉𝑐

2
= 51.6 𝑘𝑁 

𝑉𝑢 =
𝑊𝑢 × 2.00

2
= 51.6 𝑘𝑁 ⟹ 𝑊𝑢 = 51.6 𝑘𝑁 ∎ 
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Point load "Pu" could be computed from support regions where stirrups of 𝜙10 @ 150𝑚𝑚 

are used. 

𝑉𝑠 = 2 ×
𝜋 × 102

4
× 420 ×

510

150
= 224 𝑘𝑁 ⟹ Vs = 224 <  0.66√28 × 300 × 510 = 534 𝑘𝑁 ∴ 𝑂𝑘. 

∵ Vs = 224 <  0.33√28 × 300 × 510 = 267 𝑘𝑁 ⟹ S = 150mm < Minimum [
510

2
or 600] 

S = 150mm < 255 mm ∴ 𝑂𝑘. 

𝑉𝑐 =  0.17 × √28 × 300 × 510 = 138 𝑘𝑁 ⟹ 𝑉𝑢 = 0.75 × (138 + 224) = 272 𝑘𝑁   
(𝑊𝑢 × (5.4 − 0.51 × 2) + 2𝑃𝑢) =  2 × 272 ⟹ (51.6 × (5.4 − 0.51 × 2) + 2𝑃𝑢) =  2 × 272 
⟹ 𝑃𝑢 = 159 𝑘𝑁 ∎ 

 

Example 5.6-8 

For beam shown in Figure 5.6-6 below, select beam width such that concrete shear 

strength would be adequate for shear requirements in the overhang parts.  

  
Logitudinal veiw A Section in Overhang Region 
Figure 5.6-6: Foundation for Example 5.6-8.  

In your solution, assume that:  

• Beam selfweight can be neglected. 
• 𝑓𝑐

′ = 21 𝑀𝑃𝑎  

Solution 

𝑊𝑢 =
800 × 2

6
= 267

𝑘𝑁

𝑚
⟹ 𝑉𝑢 @ 𝑑 𝑓𝑟𝑎𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 267

𝑘𝑁

𝑚
(1.5 − 0.25 − 0.6)𝑚 = 174 𝑘𝑁  

𝑉𝑢 =
𝜙𝑉𝑐

2
⟹ 174000 𝑁 =

1

2
(0.75(0.17√21 × 𝑏 × 600)) ⟹ 𝑏 = 993 𝑚𝑚 

Say  
𝑏 = 1000 𝑚𝑚 ∎ 

 

Example 5.6-9 

For the frame shown in Figure 5.6-7 below,  

• Design Region 1 for shear according ACI requirements. 

• Is shear reinforcement for Region 1 adequate for Region 2? 

  
Elevation view. Section A-A 
Figure 5.6-7: Frame for Example 5.6-9. 
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In your solution, assume that:  

• 𝑓𝑐
′ = 21 𝑀𝑃𝑎, 𝑓𝑦 = 420 𝑀𝑃𝑎 

• No.10 for stirrups. 

Solution 

Region 1: 

𝑉𝑢 𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑜𝑛 1 = 80
𝑘𝑁

𝑚
(4 − 0.4 − 2 × 0.39)𝑚 ×

1

2
=  113 𝑘𝑁 

𝜙𝑉𝑐 = 0.75 × 0.17 × √21 × 300 × 390 = 68.4 𝑘𝑁 < 𝑉𝑢 

Shear Spacing Design of Region 1 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠 
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹

113 − 68.4 

0.75
 ?  0.66 × √21 × 300 × 390 

59.5𝑘𝑁 <  354 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

157 × 420 × 390

59.5 × 103
= 432 𝑚𝑚 

Sfor Av minimum 
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

157 × 420

0.062√21 × 300
𝑜𝑟

157 × 420

0.35 × 300
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 773 𝑜𝑟 628) = 628 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 59.5𝑘𝑁 ≤ 0.33√21 × 300 × 390 ⟹ 59.5𝑘𝑁 ≤ 177 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

390

2
𝑜𝑟 600𝑚𝑚] = 195 𝑚𝑚 

 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [432 𝑚𝑚 , 628  𝑚𝑚, 195 𝑚𝑚] = 195 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟏𝟕𝟓𝒎𝒎 

Region 2: 

𝑉𝑢 𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑜𝑛 2 =  80
𝑘𝑁

𝑚
(2.0 −

0.4

2
− 0.39) 𝑚 = 113 𝑘𝑁 

∵  𝑉𝑢 𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑜𝑛 2 =  𝑉𝑢 𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑜𝑛 1 

Therefore, the shear reinforcement for Region 1 is adequate for Region 2. 
 

 

Example 5.6-10 

Design for shear the most critical region of pedestrian bridge shown in Figure 5.6-8 

below. In your solution, assume that: 
• Shear force at interior support to be increased by 15%. 

• Beam selfweight could be neglected. 

• U stirrups with 10mm diameter. 
• 𝑓𝑐

′ = 28 𝑀𝑃𝑎 𝑓𝑦𝑡 = 420 𝑀𝑃𝑎  

 Longitudinal Section 

 Typical Cross Section 
Figure 5.6-8: Pedestrian 

bridge for Example 5.6-10. 
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Solution  

• Design Shear Force: 

As will be discussed in design of one-way slabs and continuous beams, according 
to ACI code, the most critical shear for continuous beams occurs at the exterior 

face of first interior support with a shear force of 15% greater than average shear 

force for simple beams. 

𝑉𝑢 @ 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1.15
𝑊𝑢𝑙𝑛

2
, 𝑙𝑛 = 8.0 −

0.8

2
−

0.4

2
= 7.4 𝑚 

𝑉𝑢 @ 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1.15
(35

𝑘𝑁
𝑚

× 7.4𝑚)

2
= 149 𝑘𝑁 

As all related conditions are satisfied, then shear at distance “d” could be used in 
beam design. 

𝑉𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 149 𝑘𝑁 − 35
𝑘𝑁

𝑚
× 0.54𝑚 = 130 𝑘𝑁 

• Concrete Shear Strength: 

ϕVc = ϕ(0.17λ√fc
′ bwd) = ϕ(0.17 × 1 × √28 × 400 × 540) = 146 kN 

∵ ∅
Vc

2
< Vu ≤ ∅Vc 

then only nominal shear reinforcement is required. 
• Required Shear Reinforcement: 

𝐴𝑣 =
𝜋 × 102

4
× 2 =  157 𝑚𝑚2 

Shear reinforcement for Example 5.6-10 

Region ∅
Vc

2
< Vu ≤ ∅Vc 

Vs None 

STheoretical None 

Sfor Av minimum 

minimum ( 
Avfyt

0.062√fc’bw

or
Avfyt

0.35bw
) 

minimum ( 
157 × 420

0.062 × √28 × 400
,

157 × 420

0.35 × 400
) ⟹ minimum ( 502, 471) = 471 𝑚𝑚 

Smaximum Minimum [
d

2
or 600mm] = 270 

SRequired 
Minimum [

471,
270

] = 270 𝑚𝑚 

𝑼𝒔𝒆 𝑼 𝑺𝒕𝒊𝒓𝒓𝒖𝒑𝒔 𝝓𝟏𝟎𝒎𝒎 @ 𝟐𝟓𝟎𝒎𝒎 

• Reinforcement Drawings: 

 

 

Example 5.6-11 

For the frame that shown in Figure 5.6-9 below. 

• Based on shear reinforcement that proposed for Region 1, what is maximum 

uniform distributed live load “WL” that could be supported? 

• Is shear reinforcement that proposed for Region 1 adequate when used in Region 

2? 
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In your solution, assume that: 

• U stirrups with 12mm diameter. 
• 𝑓𝑐

′ = 28 𝑀𝑃𝑎 𝑓𝑦𝑡 = 420 𝑀𝑃𝑎 

• Wu = 1.2D + 1.6L 

  
Longitudinal Section Typical Cross Section. 
Figure 5.6-9: Frame for Example 5.6-11. 

Solution 

• Based on shear reinforcement that proposed for Region 1, the maximum uniform 
distributed live load “WL” that could be supported would be: 

𝐴𝑣 =
𝜋 × 122

4
× 2 =  226 𝑚𝑚2 ⟹ 𝑉𝑠 =

𝐴𝑣𝑓𝑦𝑡𝑑

𝑠
=

226 × 420 × 540

150
=  342 𝑘𝑁 

Vc = (0.17λ√fc
′ bwd) = 0.17 × √28 × 300 × 540 = 146 𝑘𝑁 ⟹ 𝜙𝑉𝑛 = 𝜙(𝑉𝑐 + 𝑉𝑠)

= 0.75 × (146 + 342) =  366 𝑘𝑁 
𝑉𝑢 @ 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝜙𝑉𝑛 =  366 𝑘𝑁 

𝑃𝑢 = 1.2 × 80 + 1.6 × 60 =  192 𝑘𝑁 

(𝑊𝑢 × (6.0 − 0.6 − 0.54 × 2) + 192) ×
1

2
= 366 ⟹ 𝑊𝑢 = 125

𝑘𝑁

𝑚
 

𝑊𝐷 =  40 + (0.6 × 0.3 × 24) =  44.3 𝑘𝑁 
𝑊𝑢 = 125 = 1.2 × 44.3 + 1.6 × 𝑊𝐿 ⟹ 𝑊𝑙 = 44.9 𝑘𝑁 ∎ 

• Check if the shear reinforcement that proposed for Region 1 is adequate when 
used in Region 2? 
𝑃𝑢 = 1.2 × 40 + 1.6 × 30 =  96.0 𝑘𝑁 

𝑉𝑢 𝑎𝑡 𝑑 = 125 × (2.0 −
0.6

2
− 0.54) + 96.0 ⟹ 𝑉𝑢 𝑎𝑡 𝑑 = 241 𝑘𝑁 < 𝜙𝑉𝑛  ∴ 𝑂𝑘. ∎  
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5.7 PROBLEMS FOR SOLUTION ON BASIC SHEAR ASPECTS  
Problem 5.7-1 

A reinforced concrete beam with a rectangular cross section is reinforced for moment 
only and subjected to a shear 𝑉𝑢 of 40.0 kN. Beam width b=300mm and effective depth 

d=184mm, fc’ = 21MPa and fy =  414MPa. Is beam satisfactory for shear? 

Answers 

Vc =  43.0,
1

2
∅Vc ? Vu ,   ∵

1

2
∅Vc < Vu 

Then shear reinforcement is required for this beam. As no shear reinforcement is 

provided, then the beam is inadequate for shear. 
 

Problem 5.7-2 

For beam shown below, design single-loop stirrups. The loads shown are factored loads. 
Use fc’ = 21MPa and fy =  414MPa. The uniformly load includes the beam selfweight.  

 

 
Answers 

Draw the shear force diagram: 
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d =  833 mm 

Shear Design for 1st Region: 
Vu @ d from Face of Support =  323 kN 

∅Vc =  170 kN 
Av = 157 mm2 
Stirrups Design of Problem 5.7-2 (Region 1) 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹ 204𝑘𝑁 <  882 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
= 266 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 654 𝑜𝑟 531) = 531 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 204 𝑘𝑁 ≤ 441 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
833

2
𝑜𝑟 600𝑚𝑚] = 416 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [266𝑚𝑚 , 531  𝑚𝑚, 416 𝑚𝑚] 

=266 𝑚𝑚 

Use ∅10𝑚𝑚 @ 250𝑚𝑚 

Shear Design for 2nd Region: 
Stirrups Design of Problem 5.7-2 (Region 2) 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹ 78.7𝑘𝑁 <  882 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
= 688 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 654 𝑜𝑟 531) = 531 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  
𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 204 𝑘𝑁 ≤ 441 𝑘𝑁 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

833

2
𝑜𝑟 600𝑚𝑚] = 416 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [688 𝑚𝑚  , 531  𝑚𝑚, 416 𝑚𝑚] = 416𝑚𝑚 

Use ∅10𝑚𝑚 @ 400𝑚𝑚 

Shear Design for 3rd Region: 

∵ Vu =  104 kN <  ∅Vc =  170 kN 

Then, only nominal requirement is 

required for 2nd Region: 

SRequired = Minimum [ 531  mm, 416 mm] 

SRequired = 416mm

⟹ Use ∅10mm @ 400mm 
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Problem 5.7-3 

Design stirrups for the beam shown. Service loads are 21.9 kN/m dead load (including 

beam selfweight) and 27.7 kN/m live load. Beam width “b” is 325mm and effective depth 
“d” is 600mm for both top and bottom reinforcement. Use fc’ = 21MPa and fy =  414MPa. 

Use 10mm U Stirrups. 

 
Answers 

Computed the factored load: 
Wu =  maximum of [1.4 Dead or 1.2 Dead +  1.6 Live] 

Wu =  maximum of [31.0
kN

m
or 70.6

kN

m
 ] =  70.6

kN

m
  

Shear Design for Region 1: 
Vu @ d = 70.6(2.44 − 0.15 − 0.6) = 119 𝑘𝑁 
∅Vc =  0.75 × 152 kN = 114 kN 
Av = 157 mm2 

Summary of stirrups design for this region is given in Table below. 

Shear Design for Region 2: 

Vu @ d = 70.6 (6.7 − 0.15 × 2 − 0.6 × 2) ×
1

2
= 184 𝑘𝑁 

∅Vc =  114 kN 
Av = 157 mm2 
Summary of stirrups design for this region is given in the table below. 
Draw of Stirrups: 

 

Stirrups Design of (Region 1) 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 

6.67𝑘𝑁 <  590 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
= 5847 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 704 𝑜𝑟 571) = 571 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 6.67𝑘𝑁 ≤ 295 𝑘𝑁 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
600

2
𝑜𝑟 600𝑚𝑚] = 300 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [5847 𝑚𝑚 , 571 𝑚𝑚, 300 𝑚𝑚] 

=300 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟑𝟎𝟎 𝒎𝒎 
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Stirrups Design of (Region 2) 

Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹ 93.3𝑘𝑁 <  590 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
= 418 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 704 𝑜𝑟 571) = 571 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 93.3𝑘𝑁 ≤ 295 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

600

2
𝑜𝑟 600𝑚𝑚] = 300 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [418 𝑚𝑚 , 571 𝑚𝑚, 300 𝑚𝑚] = 300𝑚𝑚 

Use ∅10𝑚𝑚 @ 300 𝑚𝑚 
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5.8 *SHEAR DESIGN BASED ON THE MORE DETAILED RELATION FOR 𝑽𝒄 

5.8.1 Basic Concepts 
• As discussed in Article 5.3 above, there are two types of shear or diagonal tension 

cracks: 

o First Type (Flexure-shear 

Crack): Shear cracks of this 
type occur after formation of 

flexural cracks and growth form 

the end of flexural cracks.  

 

o Second Type (Web-shear crack): 
Shear cracks of this type occur in 

region with small bending 

moments and form mainly due 

to applied shear force. 
• For flexure-shear cracks, value of 𝑉𝑐 

represents shear force that is required 
to expand preexisting flexural cracks. While for web-shear crack, 𝑉𝑐 represents 

shear force required to initiate web cracks and has a value greater than that 
required for expands preexisting flexural cracks.  

• Factors Affecting 𝑉𝑐: 

o Based on above definition, it is evident that the shear value at which diagonal 

cracks developed or/and propagate depends on the ratio of shear force to 
bending moment. This ratio can be expressed in terms of 𝑉𝑢𝑑/𝑀𝑢. 

o It can also be shown that increasing values of reinforcing ratio 𝜌𝑤  have a 

beneficial effect in that they increase the shear at which diagonal cracks 

develop. This is so because larger amount of longitudinal steel results in 

smaller and narrower flexural tension cracks prior to the formation of diagonal 
cracks, leaving a larger area of uncracked concrete available to resist shear. 

• Based on above reasoning, ACI offers Table 5.8-1 below to simulate the effects of 
𝑉𝑢𝑑/𝑀𝑢 and 𝜌𝑤 on concrete cracking shear strength. 

• Expression (b) in Table 5.8-1 limits 𝑉𝑐 near points of inflection. 
Table 5.8-1: Detailed method for calculating 𝑽𝒄, Table 22.5.5.1 of the code. 

 

5.8.2 Detailed versus Simplified Relations for 𝑽𝒄 
• In simplified equation of Article 5.3, the second term in expressions (a) and (b) of 

Table 5.8-1 have been assumed equals 0.01𝜆√𝑓𝑐  and use 𝑉𝑐  equal to 𝑉𝑐 =

 0.17𝜆√𝑓𝑐
′ 𝑏𝑤𝑑 

This simplified relation has been used in solutions of previous examples and 

problems.  

• It is useful to note that the simplified equation has been derived based assumption 

of low 
(𝑉𝑢𝑑)

𝑀𝑢
 and low 𝜌𝑤  that lead to a second term that has a small value of 

(0.01𝜆√𝑓𝑐
′). Therefore, it gives an accurate estimation of 𝑉𝑐 in regions with large 

moment but gives an underestimation (conservative value) in regions with small 

moment.  
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5.8.3 Which Relation Should be Adopted 
Use of more detailed or simplified ACI relations can be summarized with refers to Figure 

5.8-1, Figure 5.8-2, and Figure 5.8-3 below. 

• Simple Span with Uniformly Distributed Load: 

 
Figure 5.8-1: Simple span with uniformly distributed loads.  

• Simple Span with a Concentrated Load at Mid-span: 

 
Figure 5.8-2: Simple span with a point load. 
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• Continuous Span with Uniformly Distributed: 

 
Figure 5.8-3: Continuous span with uniformly distributed loads.  

 

5.8.4 Examples 
Example 5.8-1 

Based on a statically indeterminate analysis, shear force and bending moment have been 

computed and drawn for the continuous beam shown in Figure 5.8-4 below. For this 
beam, compute 𝑉𝑐 based on simplified relation and more detailed relation at exterior and 

interior supports. Assume that 𝑓𝑐′ =  21 𝑀𝑃𝑎 and 𝑓𝑦 = 𝑓𝑦𝑡  =  420 𝑀𝑃𝑎.  

Based on flexural design following values have been determined: 

b = 300mm, d= 535mm, h = 600mm. 
𝜌 −𝑣𝑒 = 19.4 × 10−3, 𝜌+𝑣𝑒 = 10.6 × 10−3 

 
Figure 5.8-4: Continuous beam for Example 5.8-1 with its shear force and bending 

moment diagrams.  
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Solution 

At Exterior Support 
Based on Simplified Relation: 

𝑉𝑐 =  0.17𝜆√𝑓𝑐
′ 𝑏𝑤𝑑 ⟹ 𝑉𝑐 = 0.17√21 × 300 × 535 = 0.779 𝑀𝑃𝑎 × 300 × 535 =  125 𝑘𝑁 

Based on the more detailed relation: 

𝑉𝑐 = (0.16𝜆√𝑓𝑐
′ + 17𝜌𝑤

(𝑉𝑢𝑑)

𝑀𝑢
 ) 𝑏𝑤𝑑 ≤ 0.29𝜆√𝑓𝑐

′𝑏𝑤𝑑 

For inflection points that have zero moment, 
(𝑉𝑢𝑑)

𝑀𝑢
 taken equal to 1.0, then: 

𝑉𝑐 = (0.16√21 + 17 × (10.6 × 10−3) × 1.0 )300 × 535 ?  0.29𝜆√𝑓𝑐
′𝑏𝑤𝑑 

𝑉𝑐 = (0.733 𝑀𝑃𝑎 + 0.180 𝑀𝑃𝑎 )300 × 535 ?  0.29𝜆√𝑓𝑐
′𝑏𝑤𝑑 

𝑉𝑐 = (0.913 𝑀𝑃𝑎 )300 × 535 ?  0.29𝜆√𝑓𝑐
′𝑏𝑤𝑑 ⟹ 𝑉𝑐 = 147 𝑘𝑁 <  213 𝑘𝑁 Ok. ⟹ 𝑉𝑐 = 147 𝑘𝑁 

Increase percentage due to use of the more detailed relation: 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
147 − 125

125
× 100% = 17.6 % 

At Interior Support 

Based on Simplified Relation: 

𝑉𝑐 =  0.17𝜆√𝑓𝑐
′ 𝑏𝑤𝑑 ⟹ 𝑉𝑐 = 0.17√21 × 300 × 535 = 0.779 𝑀𝑃𝑎 × 300 × 535 =  125 𝑘𝑁 

Based on the more detailed relation: 

𝑉𝑐 = (0.16𝜆√𝑓𝑐
′ + 17𝜌𝑤

(𝑉𝑢𝑑)

𝑀𝑢
 ) 𝑏𝑤𝑑 ≤ 0.29𝜆√𝑓𝑐

′𝑏𝑤𝑑 

(𝑉𝑢𝑑)

𝑀𝑢
= (

449000 𝑁 × 535 𝑚𝑚

536 × 106 𝑁. 𝑚𝑚
) = 0.448 < 1.0 𝑂𝑘. 

𝑉𝑐 = (0.16√21 + 17 × (19.4 × 10−3) × 0.448)300 × 535 ?  0.29𝜆√𝑓𝑐
′𝑏𝑤𝑑 

𝑉𝑐 = (0.733 𝑀𝑃𝑎 + 0.147 𝑀𝑃𝑎 )300 × 535 ?  0.29𝜆√𝑓𝑐
′𝑏𝑤𝑑 ⟹ 𝑉𝑐 = 141 𝑘𝑁 <  213 𝑘𝑁 Ok. 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
141 − 125

125
× 100% = 12.8 % 

As it is expected, using of the more detailed ACI equation is more useful in regions of 

large shear and small moment (regions of inflection points). 
 

Example 5.8-2 

For the simply supported beam shown in Figure 5.8-5 below, make a complete shear 

design use same spacing of 10mm U stirrups along beam span. In your design assume 

that: 

• Beam selfweight can be neglected, 
• 𝑓𝑐

′ =  28 𝑀𝑃𝑎 and 𝑓𝑦 = fyt =  420 𝑀𝑃𝑎, 

• Beam has dimensions of d = 550 mm and b = 300mm, 
• 𝑉𝑐 must be computed from the more detailed ACI relation. Use the same 𝑉𝑐 value 

along beam span. 
• Steel reinforcement area for positive moment has been computed to be 2835 𝑚𝑚2. 

 
Figure 5.8-5: Simply supported beam for 

Example 5.8-2. 

Solution 

• Compute of 𝑉𝑐 

As same 𝑉𝑐  must be used along 

beam span, therefore 𝑉𝑐 must be 

computed based on a region of 
large shear and large moment 

(under concentrated load in this 

example) to obtain a value that is 

conservative along beam span. 
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𝑉𝑐 = (0.16𝜆√𝑓𝑐
′ + 17𝜌𝑤

(𝑉𝑢𝑑)

𝑀𝑢
 ) 𝑏𝑤𝑑 ≤ 0.29𝜆√𝑓𝑐

′𝑏𝑤𝑑 

𝜌𝑤 =
2835 𝑚𝑚2

550 × 300 𝑚𝑚2
= 17.2 × 10−3  

𝑉𝑢𝑑

𝑀𝑢
=

(250 𝑘𝑁 × 0.55𝑚)

500 𝑘𝑁. 𝑚
= 0.275 < 1.0 ∴ 𝑂𝑘.  

𝑉𝑐 = (0.16√28 + 17 × 17.2 × 10−3 ×
(250 𝑘𝑁 × 0.55𝑚)

500 𝑘𝑁. 𝑚
 ) 300 × 550  ?  0.29√28 × 300 × 550 

𝑉𝑐 = (0.847 𝑀𝑃𝑎 + 0.080 𝑀𝑃𝑎 )300 × 550  ?  0.29√28 × 300 × 550 ⟹ 𝑉𝑐 = 153 𝑘𝑁 <  253 𝑘𝑁 
As 𝑉𝑐 < 𝑉𝑢, therefore shear must be designed based on region of theoretical and 

nominal reinforcement. 
• Shear Design: 

Shear design is summarized in Table below. 

Stirrups Design of Example 5.8-2  
Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  
=

𝑉𝑢 − ∅𝑉𝑐

∅
  ?   0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹

250 − 0.75 × 153

0.75
 ?  0.66√28 × 300 × 550 

180𝑘𝑁 <  576 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

157 𝑚𝑚2 × 420
𝑁

𝑚𝑚2 × 550𝑚𝑚

180 000 𝑁 
= 201 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 
157 𝑚𝑚2 × 420

𝑁
𝑚𝑚2

0.062√28 × 300
𝑜𝑟

157 𝑚𝑚2 × 420
𝑁

𝑚𝑚2

0.35 × 300
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 700 𝑜𝑟 628) = 628 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 180𝑘𝑁 ≤ 0.33√28 × 300 × 550 
180  𝑘𝑁 < 288  𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

2
𝑜𝑟 600𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

550

2
𝑜𝑟 600𝑚𝑚] = 225 𝑚𝑚 

𝑉𝑠 > 0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [201 𝑚𝑚 , 628 𝑚𝑚, 225 𝑚𝑚]=201 𝑚𝑚 

Use ∅𝟏𝟎𝒎𝒎 @ 𝟐𝟎𝟎 𝒎𝒎 

• Drawing and Details of Stirrups: 

The longitudinal section through beam cannot be drawn in this example, as 

nothing has been mentioned about supports widths. Cross section for this beam 

is shown below: 
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5.9 *SHEAR DESIGN WITH EFFECTS OF AXIAL LOADS 

5.9.1 Scope 
• The beams considered in the preceding sections were subjected to shear and 

flexure only.  

• Reinforced concrete beams may also be subjected to axial forces, acting 

simultaneously with shear and flexure, due to a variety of causes. These include: 
o External axial loads,  

o Longitudinal prestressing,  

o Restraint forces introduced as a result of shrinkage of the concrete or 

temperature changes. 

• Axial forces due to prestressing are out of our scope where this article deals only 
with non-prestressed members. 

• As for members without axial forces, the ACI codes offers simplified and detailed 

relations to simulate the effect of axial forces on shear strength of concrete. Only 

simplified equations are considered in this article.  

5.9.2 Effects of Axial Forces on Shear Strength of Concrete 
• The main effect of axial load is to modify the diagonal cracking load of the member. 

• It was shown in Article 5.1 that diagonal tension cracking will occur when the 

principal tensile stress in the web of a beam, resulting from combined action of 
shear and bending, reaches the tensile strength of the concrete.  

• It is clear that the introduction of longitudinal force, which modifies the magnitude 

and direction of the principal tensile stresses, may significantly alter the diagonal 

cracking load. Axial compression will increase the cracking load, while axial 

tension will decrease it. 

5.9.3 Members with Compressive Axial Forces 
• According to Article 22.5.6.1 of the ACI code, for nonprestressed members with 

axial compression, 𝑉𝑐 shall be calculated by: 

𝑉𝑐 = 0.17 (1 +
𝑁𝑢

14𝐴𝑔
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 Eq. 5.9-1 

where 
o 𝑁𝑢 is the factored axial force normal to cross section occurring simultaneously 

with 𝑉𝑢; to be taken as positive for compression , it is expressed in unit of “N”, 

o 𝐴𝑔 is gross area of concrete section, 𝑚𝑚2. For a hollow section, 𝐴𝑔 is the area 

of the concrete only and does not include the area of the void(s). 

• From equation above, it is clear that the term of 
𝑁𝑢

14𝐴𝑔
⁄  represents the increasing 

in concrete shear strength, 𝑉𝑐, due to existing of the compressive axial force 𝑁𝑢. 

5.9.4 Member with Significant Axial Tensile Forces  
• According code commentary, R22.5.7.1, the term “significant” is adopted to 

recognize that judgment is required in deciding whether axial tension needs to be 

considered. Axial tension often occurs due to volume changes, but the levels may 

not be detrimental to the performance of a structure with adequate expansion 

joints and minimum reinforcement.  

• According to Article 22.5.7.1 of the code, for nonprestressed members with 
significant axial tension, 𝑉𝑐 shall be calculated by: 

𝑉𝑐 = 0.17 (1 +  
𝑁𝑢

3.5𝐴𝑔
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 ≥ 0 Eq. 5.9-2 

where 
o 𝑁𝑢 is the factored axial force normal to cross section occurring simultaneously 

with 𝑉𝑢; to be taken as negative for tension, it is expressed in unit of “N”, 

o 𝐴𝑔 is gross area of concrete section, 𝑚𝑚2. For a hollow section, 𝐴𝑔 is the area 

of the concrete only and does not include the area of the void(s). 
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o From equation above, it is clear that the term of 
𝑁𝑢

3.5𝐴𝑔
⁄  represents the 

decreasing in concrete shear strength, 𝑉𝑐, due to existing of the tensile axial 

force 𝑁𝑢. 

• According commentary Article R22.5.7.1, it may be desirable to design shear 

reinforcement to resist the total shear if there is uncertainty about the magnitude 

of axial tension. 

5.9.5 Comparing between Effect of Axial Compression and Axial Tension 

Comparing between effect of axial compression, 
𝑁𝑢

14𝐴𝑔
⁄ , and the effect of axial tension, 

𝑁𝑢
3.5𝐴𝑔

⁄ , one concludes that the code is more conservative in estimating decreasing in 

shear strength, 𝑉𝑐 , due to tensile stresses than its increasing due to compressive 

stresses.   
 

5.9.6 Examples 
Example 5.9-1 

Concrete roof slab and its supporting beams indicated in Figure 5.9-1 below have been 

casted against and supported on brick bearing walls. The slab and beams have been 

concreted monolithically at a temperature of 20oC. Determine axial forces that are 

developed in a typical beam when the temperature decreases into 0oC or increases into 
40oC then show how these forces can alter concrete shear strength, 𝑉𝑐, for the beam. 

  
3D view.  

 

 
Longitudinal section. Cross section. 
Figure 5.9-1: Roof slab and its supporting beams for Example 5.9-1. 

In your analysis,  

• Assume that the contact surface between beams and walls is rough enough to 

restrained beam movement, 
• Assume that 𝑓𝑐′  is 28 MPa and that the coefficient for thermal expansion of 

concrete is 𝛼𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 11 × 10−6 1/𝑜𝐶. 

• Assume a load factor of 1.6 for forces due to temperature change. 
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Solution 

With assumption of rough 
surface, the analytical 

model for a typical 

supporting beam would be 

as indicated in below: 

From strength of materials, 
with equating of strain due 

to temperature to that due 

to restrained forces, the 

relation would be: 
∵ 𝜖𝐹𝑜𝑟𝑐𝑒𝑠 = 𝜖𝑇𝑒𝑚𝑝.  

∴
𝜎

𝐸𝐶
= 𝛼Δ𝑇  

𝜎 = 𝐸𝐶𝛼Δ𝑇 
𝑁

𝐴𝑔
= 𝐸𝐶𝛼Δ𝑇    ∎ 

With a compressive strength of 𝑓𝑐′ of 28MPa, the modulus of elasticity of concrete, 𝐸𝑐 in 

MPa would be: 

𝐸𝑐 =  4700√𝑓𝑐′ = 4700 × √28 = 24870 𝑀𝑃𝑎 

The normal force per gross area would be: 
𝑁

𝐴𝑔
= ±(24870 × 11 × 10−6 × 20) = ±5.47 MPa 

These stresses would be tensile when temperature decreases while it would be 

compressive when temperature increases. With a load factor of 1.6, the ultimate stresses 

due to temperature change would be: 
𝑁𝑢

𝐴𝑔
= ±1.6 × 5.47 = 8.75 MPa 

When these stresses are compressive, the shear strength of concrete, 𝑉𝑐, would increase 

by 62.5% as indicated in below: 

𝑉𝑐 = 0.17 (1 +
𝑁𝑢

14𝐴𝑔
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 = 𝑉𝑐 = 0.17 (1 +

8.75 

14
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 = 0.17(1 + 0.625)𝜆√𝑓𝑐′𝑏𝑤𝑑 

While, when these stresses are tensile, the shear strength of concrete, 𝑉𝑐, would decrease 

to zero as indicated in below.  

𝑉𝑐 = 0.17 (1 +  
𝑁𝑢

3.5𝐴𝑔
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 = 0.17 (1 −  

8.75

3.5
) 𝜆√𝑓𝑐′𝑏𝑤𝑑 = 0.17(1 −  2.5)𝜆√𝑓𝑐′𝑏𝑤𝑑 < 0.0

∴ 𝑁𝑜𝑡 𝑂𝑘.  
𝑉𝑐 = 0.0  

 

Example 5.9-2: A Portal Frame Subjected to Gravity Loads Only 

Based on a statically 

indeterminate analysis, 

reactions for the portal 

frame shown in Figure 

5.9-2 above have been 

computed and 

presented as shown. 

Design 12mm U 

Stirrups for the beam 
BC. In your design, 

assume that: 

• 𝑓𝑐′ =  21 𝑀𝑃𝑎  and 
𝑓𝑦 = 𝑓𝑦𝑡  =

 420 𝑀𝑃𝑎, 

 
Figure 5.9-2: A portal frame subjected for gravity loads. 
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• 𝑏𝑤  =  300𝑚𝑚, ℎ =  600𝑚𝑚 and 𝑑 =  550𝑚𝑚, 

• Selfweight of the frame can be neglected,  
• Effects of axial forces on concrete shear strength 𝑉𝑐  of beam BC should be 

included. 

Solution 

• Computing of 𝑉𝑢: 

Applied factored shear force Vu can be computed based on any one of the following 

two approaches: 

o First Approach (Based on Forces Diagrams): 
▪ Based on simple 

static of column AB 

and beam BC, forces 

acting on beam BC 

can be determined 
based on indicated 

figure. 

▪ From above Figure, it 
is clear that column 
shear force transfer 

to beam axial force 
and column axial 

force transfer to 

beam shear. 
▪ As the forces that 

computed based on 

structural analysis 

represent forces at 
center lines, then two transformation of beam shear force (𝑉𝑢  =  613 𝑘𝑁) 

seems necessary to obtain required 𝑉𝑢 @𝑑. The first one transforms shear 

force for column center line to the face of column and the second one 
transforms shear force from face of column to a distance (d) from face of 

column as all ACI conditions are satisfied (See Figure below). These 

transformation can be done based on following relation: 

∵ 𝑊 =
𝑑𝑉

𝑑𝑥
⟹ 𝑑𝑉 = 𝑊𝑑𝑥 ⟹ 𝑉𝑢 @ 𝑑 − 𝑉@ 𝐶𝐿 =  ∫ 𝑊𝑑𝑥

𝑇𝑜 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝐹𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑓𝑟𝑜𝑚 𝐶𝐿

 

𝑉𝑢 @ 𝑑 =  ∫ 𝑊𝑑𝑥

𝑇𝑜 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝐹𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑓𝑟𝑜𝑚 𝐶𝐿

  +   𝑉@ 𝐶𝐿 

𝑉𝑢 @ 𝑑 = (−175
𝑘𝑁

𝑚
) × (

0.6𝑚

2
+ 0.55𝑚)   +   613 = 464 𝑘𝑁 
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o Second Approach (Based on Symmetry): 

▪ For our symmetrical 
problem, principle of 

symmetry can be 

used to computed 

required shear force 

at distance (d) from 
face of support as 

indicated in the 

figure. 
• Compute of 𝑉𝑐: 

Based on ACI code, for member with a compression axial force, concrete shear 

strength will be: 

𝑉𝑐 =  0.17 (1 +
𝑁𝑢

14𝐴𝑔
) 𝜆√𝑓𝑐

′ 𝑏𝑤𝑑 ⟹ 𝑉𝑐 =  0.17 (1 +
129 000

14(300 × 600)
) × 1.0 × √21  × 300 × 550 

𝑉𝑐 =  0.17(1 + 0.051) × 1.0 × √21  × 300 × 550 = 135 kN 

Relation above indicates that concrete shear strength, 𝑉𝑐, increases by about 5% 

due to existing of the axial compressive force, 𝑁𝑢, with magnitude of 129 kN.  

Including the strength reduction factor, 𝜙, for shear, design shear strength of the 

concrete would be: 
∅𝑉𝑐 =  0.75 × 135 𝑘𝑁 = 101 𝑘𝑁 

• Shear Design: 

As applied shear force Vu is greater that ØVc, then beam should be designed on 

region with theoretical and nominal shear reinforcement (See Table below): 

SHEAR DESIGN OF Example 5.9-2 
Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹

464 − 101

0.75
 ?  0.66 × √21 × 300 × 550 

484 𝑘𝑁 <  499 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

226 × 420 × 550

484 000
= 108 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

226 × 420

0.062√21 × 300
𝑜𝑟

226 × 420

0.35 × 300
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 1 114 𝑜𝑟 904) = 904 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑉𝑠 ?  0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑉𝑠 = 484 >  0.33√21 × 300 × 550 = 249 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

550

4
𝑜𝑟 300𝑚𝑚] = 137 𝑚𝑚 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [108 𝑚𝑚 , 904  𝑚𝑚, 137 𝑚𝑚] = 108 𝑚𝑚 
Use ∅𝟏𝟐𝒎𝒎 @ 𝟏𝟎𝟎𝒎𝒎 

• Stirrups Details: 
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Example 5.9-3: A Portal Frame Subjected to Gravity and Lateral Loads. 

Based on a statically indeterminate analysis, reactions for the portal frame shown Figure 

5.9-3 below have been computed and presented as shown. Design 12mm U Stirrups for 

the beam BC. In your design, assume that: 

• 𝑓𝑐′ =  21 𝑀𝑃𝑎 and 𝑓𝑦𝑡  =  420 𝑀𝑃𝑎, 

• 𝑏𝑤  =  300𝑚𝑚, ℎ =  600𝑚𝑚 and 𝑑 =  550𝑚𝑚, 

• Selfweight of the frame can be neglected,  
• Effects of axial forces on concrete shear strength, 𝑉𝑐 , of beam BC should be 

included. 
• Ultimate forces to be determined based on following load combination: 

U = 1.2D + 1.6Lr + 0.8W. 

 

 
Figure 5.9-3: A portal frame subjected to gravity and lateral forces. 

Solution 
Compute Vu: 

Vu @ Left Support (Support B): 
To determine if reaction at support is compression or tension, the resultant for 𝑅𝐷, 𝑅𝐿, 

and 𝑅𝑊 should be determined: 

𝑅𝐷 = (100 × 7) ×
1

2
= 350 𝑘𝑁, 𝑅𝐿𝑟 = (34 × 7) ×

1

2
= 119 𝑘𝑁, 𝑅𝑤 =  −10.7 𝑘𝑁 

The ultimate reaction due to indicated load combination would be: 
𝑅𝑢 = 1.2𝑅𝐷 + 1.6𝑅𝐿𝑟 + 0.8𝑅𝑊 = 1.2 × 350 + 1.6 × 119 − 0.8 × 10.7 = 602 𝑘𝑁  
As the ultimate reaction is compressive, therefore shear force can be determined at 

distance “d” from face of support “B”: 

𝑉𝐷 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵 = 100
𝑘𝑁

𝑚
 (7.0 −

0.6

2
× 2 − 0.55 × 2)𝑚 ×

1

2
= 265 𝑘𝑁  

𝑉𝐿 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵 = 34
𝑘𝑁

𝑚
(7.0 −

0.6

2
× 2 − 0.55 × 2) 𝑚 ×

1

2
= 90.1 𝑘𝑁 
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𝑉𝑊 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵 =  𝑅𝑊𝑦 =  −10.7 𝑘𝑁 
𝑉𝑢 = 1.2𝑉𝐷 + 1.6𝑉𝐿 + 0.8𝑉𝑊 
𝑉𝑢 @ 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵 = 1.2 × 265 + 1.6 × 90.1 − 0.8 × 10.7 = 454 𝑘𝑁 

Vu @ Right Support (Support C): 

As all reactions (due to dead, live, and wind) are compression reactions, therefore shear 
force could be computed at distance “d” from face of right support “C”. 

𝑉𝐷 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶 = 100
𝑘𝑁

𝑚
 (7.0 −

0.6

2
× 2 − 0.55 × 2)𝑚 ×

1

2
= 265 𝑘𝑁  

𝑉𝐿 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶 = 34
𝑘𝑁

𝑚
(7.0 −

0.6

2
× 2 − 0.55 × 2) 𝑚 ×

1

2
= 90.1 𝑘𝑁 

𝑉𝑊 @ 𝑑 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶 =  𝑅𝑊𝑦 =  +10.7 𝑘𝑁 
𝑉𝑢 = 1.2𝑉𝐷 + 1.6𝑉𝐿 + 0.8𝑉𝑊 
𝑉𝑢 @ 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶 = 1.2 × 265 + 1.6 × 90.1 + 0.8 × 10.7 = 471 𝑘𝑁 

Critical Vu: 

𝑉𝑢 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝑉𝑢 @ 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐵 , 𝑉𝑢 @ 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝐶) 

𝑉𝑢 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (454 𝑘𝑁, 471 𝑘𝑁) = 471 𝑘𝑁 

Compute Vc: 

𝑉𝑐 =  0.17 (1 +
𝑁𝑢

14𝐴𝑔
) 𝜆√𝑓𝑐

′ 𝑏𝑤𝑑 

𝑁𝐷 = 𝑅𝐷𝑥 = 105 𝑘𝑁, 𝑁𝐿 = 𝑅𝐿𝑥 =  36 𝑘𝑁  
𝑁𝑊 = 𝑊 − 𝑅𝑊𝑥 = 25 − 12.5 = 12.5 𝑘𝑁, 𝑁𝑢 = 1.2 × 105 + 1.6 × 36 + 0.8 × 12.5 = 194 𝑘𝑁 

𝑉𝑐 =  0.17 (1 +
194 000

14(300 × 600)
) × 1.0 × √21  × 300 × 550

=  0.17(1 + 0.077) × 1.0 × √21  × 300 × 550 = 138 kN 
𝜙𝑉𝑐 = 0.75 × 138 𝑘𝑁 = 104 𝑘𝑁 

Shear design for Example 5.9-3 
Region ∅𝑉𝑐 ≤ 𝑉𝑢 

𝑉𝑠  
=

𝑉𝑢 − ∅𝑉𝑐

∅
= 0.66√𝑓𝑐′𝑏𝑤𝑑 ⟹

471 − 104

0.75
 ?  0.66 × √21 × 300 × 550 ⟹ 489 𝑘𝑁 <  499 𝑘𝑁 𝑂𝑘 

Beam dimensions are adequate. 

𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑠 
=

226 × 420 × 550

489000
= 107 𝑚𝑚 

𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

𝐴𝑣𝑓𝑦𝑡

0.062√𝑓𝑐’𝑏𝑤

𝑜𝑟
𝐴𝑣𝑓𝑦𝑡

0.35𝑏𝑤
) ⟹ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 

226 × 420

0.062√21 × 300
𝑜𝑟

226 × 420

0.35 × 300
) 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ( 1 114 𝑜𝑟 904) = = 904 𝑚𝑚 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑉𝑠 ≤ 0.33√𝑓𝑐′𝑏𝑤𝑑 

𝑉𝑠 ?  0.33√𝑓𝑐′𝑏𝑤𝑑 ⟹ 𝑉𝑠 = 484 >  0.33√21 × 300 × 550 = 249 𝑘𝑁 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [
𝑑

4
𝑜𝑟 300𝑚𝑚] ⟹ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [

550

4
𝑜𝑟 300𝑚𝑚] = 137 𝑚𝑚 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , 𝑆𝑓𝑜𝑟 𝐴𝑣 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 , 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚] 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 [107 𝑚𝑚 , 904  𝑚𝑚, 137 𝑚𝑚] = 107 𝑚𝑚 

Use ∅𝟏𝟐𝒎𝒎 @ 𝟏𝟎𝟎𝒎𝒎 

• Stirrups Details: 
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CHAPTER 6 
BOND, ANCHORAGE,  

AND  
DEVELOPMENT LENGTH 

6.1 FUNDAMENTALS OF FLEXURAL BOND 

6.1.1 BOND ROLE 

• An experiment to show importance of the bond: 

o If the reinforced concrete beam of Figure 6.1-1a below were constructed using 

plain round reinforcing bars, and, furthermore, if those bars were to be greased 
or otherwise lubricated before the concrete were cast, the beam would be very 

little stronger than if it were built of plain concrete, without reinforcement.  

o If a load were applied, as shown in Figure 6.1-1b, the bars would tend to 

maintain their original length as the beam deflected. The bars would slip 
longitudinally with respect to the adjacent concrete, which would experience 

tensile strain due to flexure. 

o Then, the assumption that the strain in an embedded reinforcing bar is the 

same as that in the surrounding concrete, would not be valid. 

• For reinforced concrete to behave as intended, it is essential that bond forces be 

developed on the interface between concrete and steel, such as to prevent 

significant slip from occurring at that interface. Figure 6.1-1c shows the bond 

forces that act on the concrete at the interface as a result of bending, while Figure 

6.1-1d shows the equal and opposite bond forces acting on the reinforcement. It 
is through the action of these interface bond forces that the slip indicated in Figure 

6.1-1b is prevented. 

  
Figure 6.1-1: Bond forces due to flexure: (a) beam before loading; (b) unrestrained slip 

between concrete and steel; (c) bond forces acting on concrete; (d) bond forces acting 
on steel. 

6.1.2 PLAIN AND DEFORMED REBARS 

6.1.2.1 Plain Rebars 

• Some years ago, when plain bars without surface deformations were used, initial 

bond strength was provided only by the relatively weak chemical adhesion and 

mechanical friction between steel and concrete. Once adhesion and static friction 

were overcome at larger loads, small amounts of slip led to interlocking of the 

natural roughness of the bar with the concrete.  

• However, this natural bond strength is so low that in beams reinforced with plain 

bars, the bond between steel and concrete was frequently broken.  

• Such a beam will collapse as the bar is pulled through the concrete. To prevent 

this, end anchorage was provided, chiefly in the form of hooks, as in Figure 6.1-2. 



Design of Concrete Structures Chapter 6: Bond, Anchorage, and Development Length 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 2  
 

 
Figure 6.1-2: Tied-arch action in a beam with little or no bond. 

• If the anchorage is adequate, such a beam will not collapse, even if the bond is 

broken over the entire length between anchorages. This is so because the member 
acts as a tied arch, as shown in Figure 6.1-2, with the uncracked concrete shown 

shaded representing the arch and the anchored bars the tie-rod.  

• Main Disadvantage of Plain Rebars: 

In this case, over the length in which the bond is broken, bond forces are zero. 
This means that over the entire unbonded length the force in the steel is constant 

and equal to: 

𝑇 =
𝑀𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑗𝑑
 

As a consequence, the total steel elongation in such beams is larger than in beams 

in which bond is preserved, resulting in larger deflections and greater crack 

widths. 

6.1.2.2 Deformed Bars 

• To improve this situation, deformed bars are now universally used in the United 

States and many other countries. 

   
Figure 6.1-3: Marking system for reinforcing bars meeting ASTM Specifications. 

6.1.3 BOND FORCE BASED ON SIMPLE CRACKED SECTION ANALYSIS 

• In a short piece of a beam of length 𝑑𝑥, such as shown in Figure 6.1-4a, the 

moment at one end will generally differ from that at the other end by a small 
amount 𝑑𝑀. If this piece is isolated, and if one assumes that, after cracking, the 

concrete does not resist any tension stresses, the internal forces are those shown 

in Figure 6.1-4a. 

 

Figure 6.1-4: Forces acting on elemental length of 
beam: (a) free-body sketch of reinforced concrete 

element; (b) free-body sketch of steel element. 
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• Theoretical Relation for Bond Stresses: 

o The change in bending moment, 𝑑𝑀, produces a change in the bar force: 

𝑑𝑇 =
𝑑𝑀

𝑗𝑑
 

o If U is the magnitude of the local bond force per unit length of bar, then, by 

summing horizontal forces 

𝑈𝑑𝑥 =  𝑑𝑇 ⇒ 𝑈 =
𝑑𝑇

𝑑𝑥
 

𝑈 =
1

𝑗𝑑

𝑑𝑀

𝑑𝑥
 ⇒ 𝑈 =

1

𝑗𝑑
 𝑉 

• Main Conclusions for the Relation: 

o Equation above is the "elastic cracked section equation" for flexural bond force, 

and it indicates that the bond force per unit length is proportional to the shear 

at a particular section, i.e., to the rate of change of bending moment. 

o Basic Assumption that Used in Relation: 

Equation assumes that concrete zone to be fully cracked, with the concrete 

resisting no tension.  

• Applicability of Relation: 

The relation applies, therefore, to  

o The tensile bars in simple spans,  

o The continuous spans, either to the bottom bars in the positive bending region 

between inflection points or to the top bars in the negative bending region 

between the inflection points and the supports, 

o It does not apply to compression reinforcement.  

6.1.4 ACTUAL DISTRIBUTION OF FLEXURAL BOND FORCE: 

• The actual distribution of bond force along deformed reinforcing bars is much more 

complex than that represented by 𝑈 =
1

𝑗𝑑
 𝑉. 

• Beam with Pure Bending: 

According to 𝑈 =
1

𝑗𝑑
 𝑉, beam with pure bending has no bond stresses, but as the 

concrete fails to resist tensile stresses only where the actual crack is located and 

as between cracks, the concrete does resist moderate amounts of tension, 

therefore bond stresses distribution will be as shown in Figure 6.1-5 below: 

     
Figure 6.1-5: Variation of steel and bond forces in a reinforced concrete member subject 
to pure bending: (a) cracked concrete segment; (b) bond forces acting on reinforcing 

bar; (c) variation of tensile force in steel; (d) variation of bond force along steel.  

• Beams with Bending and Shear Forces: 

o Beams are seldom subject to pure bending moment; they generally carry 

transverse loads producing shear and moment that vary along the span. Figure 
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6.1-6a shows a beam carrying a distributed load. The cracking indicated is 

typical.  

o The steel force 𝑇 predicted by simple cracked section analysis is proportional to 

the moment diagram and is as shown by the dashed line in Figure 6.1-6b.  

o However, the actual value of T is less than that predicted by the simple analysis 

everywhere except at the actual crack locations.  

o In Figure 6.1-6c, the bond forces predicted by the simplified theory are shown 

by the dashed line, and the actual variation is shown by the solid line.  

 

Figure 6.1-6: Effect of flexural cracks on bond forces in 

beam: (a) beam with flexural cracks; (b) variation of 

tensile force Tin steel along span; (c) variation of bond 
force per unit length U along span. 

6.1.5 MAIN CONCLUSION ABOUT BOND STRESSES 

It is evident that actual bond forces in beams bear very little relation to those predicted 

by 𝑈 =
1

𝑗𝑑
 𝑉, except in the general sense that they are highest in the regions of high 

shear. 

6.1.6 BOND STRENGTH 

For reinforcing bars in tension, two types of bond failure have been observed: 

6.1.6.1 Pullout Mode 

• Occurs when ample confinement is provided by the surrounding concrete.  

• It could be expected when relatively small-diameter bars are used with 

sufficiently large concrete cover distances and bar spacing. 

6.1.6.2 Splitting Mode 

• Occurs along the bar when cover, confinement, or bar spacing is insufficient to 
resist the lateral concrete tension resulting from the wedging effect of the bar 

deformations. 

• It is more common in beams than direct pullout. 

• It may occur either in a vertical plane as in Figure 6.1-7a or horizontally in the 

plane of the bars as in Figure 6.1-7b. 
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Figure 6.1-7: Splitting of concrete 
along reinforcement. 

6.1.7 CONCEPT OF DEVELOPMENT LENGTH 

• Based on above discussion, local failures result in small local slips and some 

widening of cracks and increase of deflections but will be harmless as long as 

failure does not propagate all along the bar, with resultant total slip.  

• This fact suggests the concept of development length of a reinforcing bar which 
could be defined as that length of embedment necessary to develop the full 

tensile strength of the bar, controlled by either pullout or splitting. 

 

 
Figure 6.1-8: Concepts of development length. 
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6.2 ACI PROVISIONS FOR DEVELOPMENT OF REINFORCEMENT 

6.2.1 STRENGTH REDUCTION FACTOR, 𝝓 

• According to (ACI318M, 2014), article 25.4.1.3, the strength reduction factor ϕ is 

not used in the development length and lap splice length equations.  

• An allowance for strength reduction is already included in the expressions for 

determining development and splice lengths. 

6.2.2 MAXIMUM VALUE FOR 𝒇𝒄′ 

• According to (ACI318M, 2014), article 25.4.1.4, the values of √𝑓𝑐′ used to calculate 

development length shall not exceed 8.3 MPa. This equivalent to a 𝑓𝑐′ of 68.9 MPa. 

• Why this limitation: 

o Tests show that the force developed in a bar in development and lap splice tests 

increases at a lesser rate than √𝑓𝑐′ with increasing compressive strength.  

o Using √𝑓𝑐′ , however, is sufficiently accurate for values of √𝑓𝑐′ up to 8.3 MPa. 

o ACI Committee 318 has chosen not to change the exponent applied to the 

compressive strength used to calculate development and lap splice lengths, but 

rather to set an upper limit of 8.3 MPa on √𝑓𝑐′. 

6.3 ACI CODE PROVISIONS FOR DEVELOPMENT OF TENSION REINFORCEMENT 

6.3.1 BASIC EQUATION FOR DEVELOPMENT OF TENSION BARS 

• According to ACI Code 25.4.2.3, for deformed bars or deformed wires, 

 
 

• Confinement term has been explained in more detailed below: 
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• Excess reinforcement: 

According to (ACI318M, 2014), article 25.4.10.1, reduction of development 

lengths shall be permitted by use of the ratio (As,required)/(As,provided). 

• Important Notes on ACI Basic Equation: 

o Above single basic equation includes all the influences thus appears highly 

complex because of its inclusiveness. 

o However,  

1. It does permit the designer to see the effects of all the controlling variables  

2. It allows more rigorous calculation of the required development length when it 

is critical. 

6.3.2 SIMPLIFIED EQUATIONS FOR DEVELOPMENT LENGTH 

• Calculation of required development length (in terms of bar diameter) by above 

basic equation requires that the term (cb + Ktr)/db be calculated for each particular 

combination of cover, spacing, and transverse reinforcement.  

• Alternatively, according to the Code, article 25.4.2.2, a simplified form of basic 

equation may be used in which (cb + Ktr)/db is set equal to 1.5, provided that 

certain restrictions are placed on cover, spacing, and transverse reinforcement. 
These requirements have been presented in term of confinement cases 1 and 2 

that indicated in below. 

• If confinement cases 1 and 2 are not satisfied, a confinement factor (cb + Ktr)/db 

of 1.0 is adopted. 

Table 6.3-1: Simplified ACI Relations for Development Length (Table 25.4.2.2 of 

(ACI318M, 2014)). 

 
• Case 1 and Case 2 have been presented graphically in Figure 6.3-1 below: 

 
Figure 6.3-1: Explanation of Cases 1 and 2. 
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Figure 6.3-1: Explanation of Cases 1 and 2. Continue. 

6.3.3 SUMMARY OF ACI MODIFICATION FACTORS OF DEFORMED BARS IN TENSION 

ACI modification factors adopted in basic equation, Article 6.3.1, and simplified 
equations, Article 6.3.2, have been summarized in Table 6.3-2. 
Table 6.3-2: Modification factors for development of deformed bars and deformed wires 

in tension, Table 25.4.2.4 of (ACI318M, 2014). 

 

6.3.4 FURTHER SIMPLIFIED TABULAR VALUES FOR DEVELOPMENT LENGTH 

• Further simplifications are possible for the most common condition of  

o Normal density concrete (𝜆 = 1.0), 

o Uncoated reinforcement (𝜓𝑒 = 1.0).  

• With these simplifications, the development lengths, in terms of bar diameters, 

would be a function of 𝑓𝑐′, 𝑓𝑦 and the bar location factor 𝜓𝑡.  

• Thus, development lengths are easily tabulated for the  

o Usual combinations of material strengths, 

o Bottom or top bars, 

o And for the restrictions on bar spacing, cover, and transverse steel defined.  

• Results are given in Table 6.3-3 below. 
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Table 6.3-3: Further Simplified tension development length in bar diameters 𝒍𝒅/𝒅𝒃  for 

uncoated bars and normal weight concrete, adopted from (Nilson, Design of Concrete 

Structures, 14th Edition, 2010): 

 

6.3.5 NOTES ON THE THREE DIFFERENT METHODS 

• When the confinement term, (cb + Ktr)/db, differs from the assumed values of 1.5 

or 1.0, there would be a significant difference between values of the basic method 

and those of the other two methods. 

• Slight differences between second and third methods are due to the unit systems. 
Where values for the third method have been originally prepared in US customary 

system.  

6.3.6 ACI LOWER BOUND LIMITATION ON 𝒍𝒅 FOR TENSION REBARS 

According to ACI 25.4.2.1 𝒍𝒅 shall not be less than 300 mm. 

 

6.3.7 DESIGN EXAMPLES FOR REBARS IN TENSION 
Example 6.3-1 

Figure 6.3-2 below shows a beam-column joint in a continuous building frame with the 

following data: 

• Based on frame analysis, the negative steel required at the end of the beam is 
1870mm2; two No. 36 bars are used providing 𝐴𝑠 of 2012mm2. 

• The design will include No. 10 stirrups spaced four at 75mm, followed by a 

constant 125mm spacing in the region of the support, with 40mm clear cover.  

• Normal weight concrete is to be used, with 𝑓𝑐
′ = 28 𝑀𝑃𝑎, and reinforcing bars have 

𝑓𝑦 = 420 𝑀𝑃𝑎. 

Find the minimum distance 𝑙𝑑  at which the negative bars can be cut off, based on 

development of the required steel area at the face of the column, using: 

• The simplified equations,  

• Further simplified tabulated values,  

• The basic equation. 
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Figure 6.3-2: Bar details at beam-column joint for bar development examples. 

Solution 

• The simplified equations: 

Checking for lateral spacing in the No. 36 bars determines that the clear distance 

between the bars is: 

𝐶𝑙𝑒𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑏
  =

250 − 40 × 2 − 2 × 10 − 2 × 36

36
=  2.17 > 2𝑑𝑏   

𝐶𝑙𝑒𝑎𝑟 𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟

𝑑𝑏
=

40 + 10

36
= 1.39 > 𝑑𝑏 

𝐶𝑙𝑒𝑎𝑟 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟

𝑑𝑏
=

530 − 450 −
36
2

36
= 1.72 

These dimensions meet the restrictions stated in the second row of Table 6.3-1, 
and as 𝑑𝑏 > 𝑁𝑜. 22 then: 

 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑑 

For uncoated top bars with normal-density concrete: 

𝜓𝑡 = 1.3, 𝜓𝑒 = 1.0, 𝜆 = 1.0  

𝑙𝑑 = (
420 × 1.3 × 1.0

1.7 × 1.0 × √28
) 𝑑𝑑 = 60.7𝑑𝑏 = 2185 𝑚𝑚 
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This can be reduced by the ratio of steel required to that provided, so that the 

final development length is 

𝑙𝑑 = 2185 ×
1870

2012
= 2031 𝑚𝑚 > 300mm ∴ Ok. ∎ 

• Further simplified tabulated values: 

 
𝑙𝑑

𝑑𝑏
= 62 ⟹ 𝑙𝑑 = 62 × 36 ×

1870

2012
= 2074𝑚𝑚 > 300𝑚𝑚 ∴ 𝑂𝑘. ∎ 

• The basic equation: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟, 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐
) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (40 + 10 +
36

2
, 530 − 450,

1

2
× (250 − 40 × 2 − 10 × 2 −

36

2
× 2)) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(68, 80, 57) = 57 𝑚𝑚  

The smallest of these three distances controls and 𝑐𝑏 =  57𝑚𝑚. Potential splitting 

would be in the horizontal plane of the bars. 

𝐾𝑡𝑟 =
40𝐴𝑡𝑟

𝑠𝑛
=

40 × 2 ×
(𝜋 × 102)

4
125 × 2

= 25  

𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑟𝑚 =   
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

57 + 25

36
= 2.27 < 2.5 ∴ 𝑂𝑘. 

∵ 𝑑𝑏 > 19 ∴ 𝜓𝑠 = 1.0 

𝑙𝑑 = (
420

1.1 × 1.0 × √28
×

1.3 × 1.0 × 1.0

2.27
) 𝑑𝑏 = 41.3𝑑𝑑 =  41.3 × 36 = 1487 𝑚𝑚 

This can be reduced by the ratio of steel required to that provided, so that the 

final development length is 

𝑙𝑑 = 1487 ×
1870

2012
= 1382 𝑚𝑚 > 300𝑚𝑚 ∴ 𝑂𝑘∎ 

• Main conclusions about different approaches to compute 𝑙𝑑: 

o Clearly, the use of the more accurate equation permits a considerable reduction 

in development length.  

o Even though its use requires much more time and effort, it is justified if the 

design is to be repeated many times in a structure. 
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Example 6.3-2 

Figure 6.3-3 below shows cross-section of a simply supported beam reinforced with four 
No. 25 bars that are confined with No. 10 stirrups spaced at 150mm. Determine the 

development length of the bars if the beam is made of normal-weight concrete, bars are 
not coated, 𝑓𝑐

′ = 21 𝑀𝑃𝑎, and 𝑓𝑦 = 𝑓𝑦𝑡 =  420 𝑀𝑃𝑎. 

In your solution, use: 

• The simplified equations,  

• Simplified tabulated values,  

• The basic equation. 

In your solution, assume that 𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 could be computed based on: 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑑

2
, 600) 

 

Figure 6.3-3: Beam Cross Section for Example 

6.3-2. 

Solution 

• The Simplified Relation: 

o Case for Spacing and Concrete Cover: 

Check conditions to see if spacing and concrete cover are to be classified as 

case 1, case 2, or other cases. 
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o For No. 25 bars, 𝑑𝑏  =  25𝑚𝑚. 

𝐶𝑙𝑒𝑎𝑟 𝑐𝑜𝑣𝑒𝑟 =  62.5 –
25

2
 =  50𝑚𝑚 >  𝑑𝑏 

𝐶𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑎𝑟𝑠 =
300 − 2 × 62.5 − 3 × 25

3
=  33.3 >  𝑑𝑏 

∵ 𝐶𝑙𝑒𝑎𝑟 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 = 33.3 < 2𝑑𝑏 

o Therefore, the provided stirrups should be compared with minimum limitations 

required by ACI Code: 

𝑆𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (
488

2
, 600) =  244 > 150𝑚𝑚 ∴ 𝑂𝑘. 

Sfor Av minimum = minimum ( 
Avfyt

0.062√fc’bw

or
Avfyt

0.35bw
) 

Sfor Av minimum = minimum ( 

𝜋 × 102

4
× 2 × 420

0.062√21 × 300
or

𝜋 × 102

4
× 2 × 420

0.35 × 300
) 

Sfor Av minimum = minimum ( 774 or 628) = 628 𝑚𝑚 > 150𝑚𝑚 ∴ 𝑂𝑘. 

Then, rebars confinement could be classified as case 1, and as bar diameter is 

greater 22mm, then development could be computed based on following 

relation: 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑏 

For bottom rebars: 

𝜓𝑡 = 1.0  

For uncoated rebars: 

𝜓𝑒 = 1.0 

For normal weight concrete: 

𝜆 = 1.0 

𝑙𝑑 = (
1.0 × 1.0 × 420

1.7 × 1.0 × √21
) 𝑑𝑑 = 53.9𝑑𝑏 = 53.9 × 25 ⟹ 𝑙𝑑 = 1348 𝑚𝑚 > 300𝑚𝑚 ∎ 

• Simplified Tabulated Values: 

As 𝑓𝑐
′ = 21 𝑀𝑃𝑎 has not been tabulated within the Table, then tabulated values 

cannot be used in this example. 

• The basic equation: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝐾𝑡𝑟 =
40𝐴𝑡𝑟

𝑠𝑛
=

40 × 2 ×
(𝜋 × 102)

4
150 × 4

= 10.5 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟, 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐
) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (62.5, 550 − 488, ((300 − 2 × 62.5) ×
1

3
) ×

1

2
) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(62.5, 62, 29.2) = 29.2 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

29.2 + 10.5

25
= 1.59 < 2.5 ∴ 𝑂𝑘. 

𝑙𝑑 = (
420

1.1 × 1.0 × √21
 
1.0 × 1.0 × 1.0

1.59
) 𝑑𝑏 = 52.4 𝑑𝑏 

𝑙𝑑 = 52.4 × 25 = 1310 𝑚𝑚 > 300𝑚𝑚 ∴ 𝑂𝑘. ∎ 
 

Example 6.3-3 

Repeat Example 6.3-2 if the beam is made of lightweight aggregate concrete, the bars 
are epoxy coated, and 𝐴𝑠 required from analysis is 1800 mm2. In your solution, use the 

simplified equations. 
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Solution 

As confinement is same as Example 6.3-2, then confinement case could be classified as 

case 1, and development length could be computed based on following relation: 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑑 

For bottom rebars: 
𝜓𝑡 = 1.0  
For coated rebars, and with cover less than 3d, then: 
𝜓𝑒 = 1.5 

According to ACI: 
𝜓𝑡𝜓𝑒 = 1.0 × 1.5 = 1.5 < 1.7 ∴ 𝑂𝑘. 
For a lightweight aggregate concrete: 
𝜆 = 0.75 

𝑙𝑑 = (
1.0 × 1.5 × 420

1.7 × 0.75 × √21
) 𝑑𝑏 ⟹ 𝑙𝑑 = 108𝑑𝑑 

Development could be reduced by ratio of steel required to that provided, 

𝑙𝑑 = 108 ×
1800

4 × (𝜋 ×
252

4
)

𝑑𝑏 

𝑙𝑑 = 108 ×
1800

4 × (𝜋 ×
252

4
)

𝑑𝑏 = 99 × 25 = 2475 𝑚𝑚 > 300𝑚𝑚 ∴ 𝑂𝑘. ∎ 

 

Example 6.3-4 

Check adequacy of the embedded length of 
1000𝑚𝑚  indicated in Figure 6.3-4 for 

development requirement of tension 

member. In your checking assume the 

following: 
• 𝑓𝑐

′ = 28 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎, 

• Use ACI basic equation, 

• Uncoated rebar, 
• 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑   ≈ 1.0. 

Solution 

According to the ACI basic relation, the 

development length for tension is: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

As no more 300mm of fresh concrete is cast 
below the rebar, therefore 𝜓𝑡 = 1.0. For the 

uncoated rebars, 𝜓𝑒 = 1.0 . As the rebars 

have a size smaller than No.22, 𝜓𝑠 = 0.8. 

Regarding the confinement term, as there is 
no shear reinforcement, therefore 𝐾𝑡𝑟 = 0. The 𝑐𝑏 is: 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ((
10

2
+ 20) 𝑜𝑟

200

2
) = 25𝑚𝑚 ⟹

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

(25 + 0)

10
= 2.5 ≯ 𝐶𝑜𝑑𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 2.5 ∴ 𝑂𝑘. 

The development length would be: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 = ((
420

1.1 × 1.0 × √28
) × (

1.0 × 1.0 × 0.8

2.5
)) 𝑑𝑏 = 23𝑑𝑏 = 23 × 10

= 230 𝑚𝑚 < 300𝑚𝑚 ∴ 𝑁𝑜 𝑂𝑘. 
∴ 𝑙𝑑 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐴𝐶𝐼 𝑐𝑜𝑑𝑒 = 300𝑚𝑚 < 𝑙embedded = 1000 𝑚𝑚 ∴ 𝑂𝑘 

Therefore, the proposed embedment is adequate from bond point of view but for the 
final decision, it should be checked for the requirements of the cutoff points.  

 

  

 
Figure 6.3-4: Slab rebars for Example 
6.3-4. 
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Example 6.3-5 

Use ACI basic relation to determine the 
development length of the bottom tensile rebars 

indicated in Figure 6.3-5. In your solution assumes 
that 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≈ 750 𝑚𝑚2 

Solution 

The basic equation: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (

𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,

 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐

) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (40 + 10 +
20

2
, 40 + 10 +

20

2
,
1

2
× (250

− 40 × 2 − 10 × 2 −
20

2
× 2)) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(60, 60, 65) = 60 𝑚𝑚  
The smallest of these three distances controls and 𝑐𝑏 =  60𝑚𝑚.  

𝐾𝑡𝑟 =
40𝐴𝑡𝑟

𝑠𝑛
=

40 × 2 ×
(𝜋 × 102)

4
150 × 5

= 8.38  

𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑟𝑚 =   
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

60 + 8.38

20
= 3.42 > 2.5 ∴ Not 𝑂𝑘. 

Therefore, use confinement term of 2.5. 

For uncoated bottom bars with normal-density concrete: 
𝜓𝑡 = 1.0, 𝜓𝑒 = 1.0, 𝜆 = 1.0  
∵ 𝑑𝑏 > 19 ∴ 𝜓𝑠 = 1.0 

𝑙𝑑 = (
420

1.1 × 1.0 × √28
×

1.0 × 1.0 × 1.0

2.5
) 𝑑𝑏 = 28.9𝑑𝑑 =  28.9 × 20 = 578 𝑚𝑚 

This can be reduced by the ratio of steel required to that provided, so that the final 

development length is 

𝑙𝑑 = 578 ×
750

5 × 314
= 276 𝑚𝑚 < 300𝑚𝑚 ∴ Not 𝑂𝑘 

∴ ℓd = 300mm ∎ 
 

Example 6.3-6 

Based on a structural analysis and design, a 

designer has adopted reinforcement of 
𝑁𝑜. 12@200𝑚𝑚 for the cantilever slab indicated 

in Figure 6.3-6 above. Using ACI basic 
equation, determine the development length, 
𝑙𝑑, for the adopted negative reinforcements and 

then check to see if the available overhang part 

is adequate for their anchorage.  

Solution 

According to basic equation of the ACI code, the 
development length for tension rebars, 𝑙𝑑 , 

would be: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (

𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,

 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐

) 

 
Figure 6.3-5: Beam section for 
Example 6.3-5. 

 
Figure 6.3-6: Reinforcement for the 

cantilever slab of Example 6.3-6. 
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𝑐𝑏 = min (
(20 +

12

2
) ,

 (20 +
12

2
) , (

1

2
× 200)

) ⟹ cb = min(26,26,100) = 26 𝑚𝑚 

As there is no shear reinforcement in the cantilever slab, therefore: 
𝐾𝑡𝑟 = 0 

As the concrete is normal weight concrete, 𝜆 = 1.0. For uncoated rebars, 𝜓𝑒 = 1.0. As slab 

has thickness less than 300𝑚𝑚, therefore, the rebars are considered bottom rebars from 

bond point of view. Finally, for rebars with size less than 19mm, 𝜓𝑠 = 0.8. 

𝑙𝑑 = ((
420

1.1 × 1.0 × √28
) × (

1.0 × 1.0 × 0.8

26 + 0
12

)) 𝑑𝑏 = 26.6𝑑𝑏 

As nothing is mentioned about 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑⁄ , therefore it can be conservatively 

assumed 1.0. 
𝑙𝑑 = 26.6𝑑𝑏 = 26.6 × 12 = 319 𝑚𝑚 > 300 𝑚𝑚 ∴ 𝑂𝑘. 
Check adequacy of the available overhang part for anchorage of negative slab 

reinforcement: 
∵ 𝑙𝑑 = 319𝑚𝑚 ≪  1550𝑚𝑚 ∴ 𝑂𝑘. 

 

Example 6.3-7 

Referring to beam section of Figure 

6.3-7 and based on ACI basic equation, 
what is the development length, 𝑙𝑑, for 

bottom rebars with 25mm diameter? In 

your solution, assume that the 
coefficient of 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑⁄  can 

conservatively be neglected. Based on 
your calculations, is a standard hook 

should adopt for the bottom rebars? 

Solution 

According to basic relation, 

development length for rebars in 

tension is: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (

𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,

bottom 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐

) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (40 + 10 +
25

2
, 40 + 10 +

25

2
,
1

2
× (300 − 40 × 2 − 10 × 2 −

25

2
× 2)) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(62.5, 62.5, 87.5) = 62.5 𝑚𝑚 ⟹ 𝐾𝑡𝑟 =
40𝐴𝑡𝑟

𝑠𝑛
=

40 × 2 ×
(𝜋 × 102)

4
200 × 4

= 7.9 

𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑟𝑚 =   
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

62.5 + 7.9

25
= 2.82 > 2.5 ∴ 𝑁𝑜𝑡 𝑂𝑘. 

To avoid overemphasis of confinement role, use: 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
= 2.5 

For bottom bars, uncoated, and with normal-density concrete, we have the values of: 
𝜓𝑡 = 1.0, 𝜓𝑒 = 1.0, 𝜆 = 1.0 

For 25mm rebars, greater than 19mm, we have: 
𝜓𝑠 = 1.0 

𝑙𝑑 = (
420

1.1 × 1.0 × √28
 
1.0 × 1.0 × 1.0

2.5
) 𝑑𝑏 = 28.7 𝑑𝑏 = 28.7 × 25 = 717.5 𝑚𝑚 <

6000

2
 𝑚𝑚 ∴ 𝑂𝑘 

Therefore, bottom rebars can be developed with available room and no hook should be 

adopted. 
 

 

 
Figure 6.3-7: Beam for Example 6.3-7. 
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Example 6.3-8 

Referring to beam section of Figure 

6.3-7 and based on ACI basic equation, 
what is the development length, 𝑙𝑑, for 

bottom rebars with 20mm diameter? In 

your solution, assume that the 
coefficient of 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑⁄  can 

conservatively be neglected. Based on 

your calculations, is a standard hook 

should adopt for the bottom rebars? 
Solution 

According to basic relation, 

development length for rebars in tension is: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (

𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,

bottom 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐

) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (40 + 10 +
20

2
, 40 + 10 +

20

2
,
1

2
× (300 − 40 × 2 − 10 × 2 −

20

2
× 2)) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(60, 60, 90) = 60 𝑚𝑚 ⟹ 𝐾𝑡𝑟 =
40𝐴𝑡𝑟

𝑠𝑛
=

40 × 2 ×
(𝜋 × 102)

4
150 × 3

≈ 14 

𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑟𝑚 =   
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

60 + 14

20
= 3.7 > 2.5 ∴ 𝑁𝑜𝑡 𝑂𝑘. 

To avoid overemphasis of confinement role, use: 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
= 2.5 

For bottom uncoated bars and with normal-density concrete, values of 𝜓𝑠 would be: 
𝜓𝑡 = 1.0, 𝜓𝑒 = 1.0, 𝜆 = 1.0  
For 20mm rebars, i.e. greater than 19mm, 𝜓𝑠 is: 
𝜓𝑠 = 1.0 

𝑙𝑑 = (
420

1.1 × 1.0 × √28
 
1.0 × 1.0 × 1.0

2.5
) 𝑑𝑏 = 28.7 𝑑𝑏 = 28.7 × 20 = 574 𝑚𝑚 <

6300 + 300 × 2

2
= 3450𝑚𝑚 ∴ 𝑂𝑘 

Therefore, bottom rebars can be developed with available room and no hook should be 

adopted. 
 

 

  

 
Figure 6.3-8: Beam for Example 6.3-8 
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6.4 ANCHORAGE OF TENSION BARS BY HOOKS 
In the event that the desired tensile stress in a bar cannot be developed by bond alone, 

it is necessary to provide special anchorage at the ends of the bar, usually by means of: 

• a 90° hook,  

• a 180° hook, 

• a headed bar (out the scope of this course). 

   

Figure 6.4-1: 90° Hook, 180o Hook, 

and Headed Bar. 

6.4.1 BASIC CONCEPTS 
• Forces Acting on Hooks: 

o A 90° hook loaded in tension develops forces in the manner shown in Figure 

6.4-2 below.  

o The stress in the bar is resisted by the bond on the surface of the bar and by 

the bearing on the concrete inside the hook. 

 

Figure 6.4-2: Forces Acting on a 
90-degree Hooked Bars. 

• Mode of Failure: 

o Hooked bars resist pullout by the combined actions of bond along the straight 
length of bar leading to the hook and anchorage provided by the hook. Then 
Pullout strength of hook is okay. 

o Tests indicate that the main cause of failure of hooked bars in tension is 

splitting of the concrete in the plane of the hook. 

• Splitting Stresses: 

o This splitting is due to the very high stresses in the concrete inside of the hook; 

these stresses are influenced mainly by: 

▪ the bar diameter db for a given tensile force,  

▪ the radius of bar bend.  

o Resistance to splitting: 

Resistance to splitting has been found to depend on the concrete cover for the 

hooked bar, measured laterally from the edge of the member to the bar 

perpendicular to the plane of the hook, and measured to the top (or bottom) of 
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the member from the point where the hook starts, parallel to the plane of the 

hook.  

o Increase resistance to splitting: 

The strength of the anchorage can be substantially increased by providing 

confinement steel in the form of closed stirrups or ties. 

6.4.2 STANDARD HOOK DIMENSIONS 
According to (ACI318M, 2014), 25.3.1, Standard hooks for the development of deformed 

bars in tension shall conform to Table 6.4-1 below, Table 25.3.1 of the (ACI318M, 2014). 

Table 6.4-1: Standard hook geometry for development of deformed bars in tension, 
Table 25.3.1 of the (ACI318M, 2014). 

 

6.4.3 DESIGN OF HOOKED ANCHORAGES 

• The design process described in ACI Code does not distinguish between 90° and 

180° hooks or between top and bottom bar hooks.  

• ACI design procedure for hooked anchorage can be summarized as follows: 

o Compute 𝑙𝑑ℎ based on a basic relation of ACI 25.4.3.1, 

o Reduce 𝑙𝑑ℎ by multiplier of ACI 25.4.3.2 when applicable, 

o Check ACI provisions related to discontinuous end (ACI 25.4.3.3), 

o Check 𝑙𝑑ℎ with minimum code limitations (ACI 25.4.3.1). 

6.4.3.1 Basic Relation for 𝒍𝒅𝒉 

According to ACI 25.4.3.1, a total development length, 𝑙𝑑ℎ, defined as shown in Table 

6.4-1 above, for deformed bars in tension terminating in a standard hook shall be: 

𝑙𝑑ℎ = (
0.24 𝑓𝑦𝜓𝑒𝜓𝑐𝜓𝑟

𝜆√𝑓𝑐′
) 𝑑𝑏 Eq. 6.4-1 

6.4.3.2 Multiplier Factors of ACI 12.5.3 

• According to ACI 25.4.3.2, for the calculation of 𝑙𝑑ℎ, modification factors shall be 

in accordance with Table 6.4-2 below, Table 25.4.3.2 of (ACI318M, 2014).  

• Factors 𝜓𝑐 and 𝜓𝑟 shall be permitted to be taken as 1.0. 

• According to 25.4.10.1 of (ACI318M, 2014), reduction of development lengths 

defined by provision above shall be permitted by use of the ratio: 

(𝐴𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)/(𝐴𝑠𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑) 
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Table 6.4-2: Modification factors for development of hooked bars in tension, Table 
25.4.3.2 of (ACI318M, 2014). 

 

6.4.3.3 Transverse Confinement Steel at Discontinuous Ends 

6.4.3.3.1 Provisions for Discontinues Ends 

According to (ACI318M, 2014), 25.4.3.3, for bars being developed by a standard hook: 

• At discontinuous ends of members, 

• With both side cover and top (or bottom) cover to hook less than 65 mm 

provisions (a) through (c) shall be satisfied, see Figure 6.4-3 below: 
(a) The hook shall be enclosed along 𝑙𝑑ℎ within ties or stirrups perpendicular to ℓ𝑑ℎ 

at 𝑠 ≤  3𝑑𝑏, 

(b) The first tie or stirrup shall enclose the bent portion of the hook within 2𝑑𝑏 of 

the outside of the bend, 
(c) 𝜓𝑟  shall be taken as 1.0 in calculating ℓdh in accordance with Table 6.4-2 

above. 

where 𝑑𝑏 is the nominal diameter of the hooked bar. 

 

Figure 6.4-3: Transverse confinement 

steel at discontinuous ends. 
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6.4.3.3.2 Discontinuous Ends 

Cases where hooks may require ties or stirrups for confinement are, adopted from 

R25.4.3.3 of (ACI318M, 2014) 

• At ends of simply-supported beams,  

• At the free end of cantilevers, 

• At ends of members framing into a joint where members do not extend beyond the 

joint.  

6.4.3.3.3 Discontinuous Ends of Slabs 

Above provisions do not apply for hooked bars at discontinuous ends of slabs where 

confinement is provided by the slab on both sides and perpendicular to the plane of the 

hook. 

6.4.3.4 ACI Minimum Limitations on Hook Development Length 

According to ACI 25.4.3.1,  
𝑙𝑑ℎ ≥ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (8𝑑𝑏 , 150𝑚𝑚) 

6.4.3.5 Hooks Effectiveness in Compression Rebars 

According to ACI 25.4.1.2, hooks shall not be considered effective in developing bars in 

compression. 
 

6.4.4 DESIGN EXAMPLES FOR TENSION ANCHORAGE WITH HOOK 
Example 6.4-1 

Referring to the beam-column joint of Example 6.3-1 that is represented below for 

convenience, the No. 36 negative bars are to be extended into the column and 
terminated in a standard 90° hook, keeping 50mm clear to the outside face of the 

column. The column width in the direction of beam width is 400mm. Find the minimum 

length of embedment of the hook past the column face, and specify the hook details. As 
in Example 6.3-1, assume that normal weight concrete is to be used, with 𝑓𝑐

′ = 28 𝑀𝑃𝑎, 

and reinforcing bars have 𝑓𝑦 = 420 𝑀𝑃𝑎. 

 

Figure 6.4-4: Bar details at 
beam-column joint for bar 

development of Example 
6.3-1 (Re-presenting). 

 

Figure 6.4-5: Bar details at 

beam-column joint for bar 
development examples (3D 

Views). 
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Solution 

Basic Relation 

The development length for hooked bars, measured from the critical section along the 
bar to the far side of the vertical hook, is given by: 

𝑙𝑑ℎ = (
0.24𝑓𝑦𝜓𝑒𝜓𝑐𝜓𝑟

𝜆√𝑓𝑐′
) 𝑑𝑏 

For uncoated or zinc-coated (galvanized): 
𝜓𝑒 = 1.0 

Confinement Provided by Increased Cove: 

𝑆𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 = 40 +
400 − 250

2
= 115 𝑚𝑚 > 65𝑚𝑚  

In this case, side cover for the (No. 36) bars exceeds 65mm and cover beyond the bent 
bar is adequate, so: 
𝜓𝑐 = 0.7 

As there is no confinement reinforcement, therefore: 
𝜓𝑟 = 1.0 

𝑙𝑑ℎ = (
0.24 × 420 × 1.0 × 0.7 × 1.0

1.0 × √28
) 𝑑𝑏 = 13.3 𝑑𝑏 

Multiplication Factor of AS Required/ AS Provided 

As 
𝐴𝑆 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑆 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
=  

1870

2012
= 0.929 

Then: 
𝑙𝑑ℎ = 0.929 × 13.3 𝑑𝑏 = 12.4 𝑑𝑏 = 12.4 × 36 = 446 𝑚𝑚 

Code Minimum Limitations 

Check with code minimum limitations: 
𝑙𝑑ℎ =   446𝑚𝑚 ?  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (8 × 36, 150𝑚𝑚) ⟹ 𝑙𝑑ℎ =   446𝑚𝑚 ?  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (288, 150𝑚𝑚) 
𝑙𝑑ℎ =   446𝑚𝑚 >  288 ∴ 𝑂𝑘. 
𝑙𝑑ℎ =   446 𝑚𝑚 < 530 − 50 = 480 ∴ 𝑂𝑘. 
𝑙𝑑ℎ =  445 𝑚𝑚 ∎ 

Transverse Confinement Steel at Discontinuous Ends: 

As side, bottom, and top coves are greater than 65mm, then no need for transverse 

confinement reinforcement. 

Final Details for Hooked Bar: 
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Example 6.4-2 

Design standard hook details to anchor exterior negative slab reinforcement to the 
supporting beam, see Figure 6.4-6 below. In your solution assume 𝑓𝑐

′ = 28 𝑀𝑃𝑎, 𝑓𝑦 =

420 𝑀𝑃𝑎, and 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 is 
216

524
. 

  

Figure 6.4-6: Details for exterior negative 
reinforcement of a slab to the supporting beam. 

Solution 

Basic Relation 

The development length for hooked bars, measured from the critical section along the 
bar to the far side of the vertical hook, is given by: 

𝑙𝑑ℎ = (
0.24𝑓𝑦𝜓𝑒𝜓𝑐𝜓𝑟

𝜆√𝑓𝑐′
) 𝑑𝑏 

For normal weight concrete: 
𝜆 = 1.0 

For uncoated or zinc-coated (galvanized): 
𝜓𝑒 = 1.0 

As cover extends beyond hook is less than 50mm, then: 
𝜓𝑐 = 1.0 

As there are no transverse confinement reinforcement, then 
𝜓𝑟 = 1.0 

𝑙𝑑ℎ = (
0.24 × 420 × 1.0 × 1.0 × 1.0

1.0 × √28
) 𝑑𝑏 = 19𝑑𝑏 = 19 × 10 = 190𝑚𝑚  

Multiplication Factor of AS Required/ AS Provided 
Finally, reduction factor of 𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 is applicable. 

𝑙𝑑ℎ = 190 ×
216

524
= 78.3 𝑚𝑚 

Transverse Confinement Steel at Discontinuous Ends: 

Provisions of discontinuous edges do not apply for hooked bars at discontinuous ends of 

slabs where confinement is provided by the slab on both sides and perpendicular to the 

plane of the hook. 
ACI Minimum Limitations on Hook Development Length: 
𝑙𝑑ℎ > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (8𝑑𝑏 , 150𝑚𝑚) 
𝑙𝑑ℎ = 78.3 𝑚𝑚 > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (8 × 10, 150𝑚𝑚) = 150𝑚𝑚 ∴ 𝑁𝑜𝑡 𝑂𝑘. 
Then, use 
𝑙𝑑ℎ = 150𝑚𝑚  
Final Details  

 
 

Example 6.4-3 

The short beam shown in Figure 6.4-7 cantilevers from a supporting column at the left. 

It must carry a calculated dead load of 29 𝑘𝑁/𝑚 including its own weight and a service 

live load of 38 𝑘𝑁/𝑚. Based on these loads, required reinforcement of As Required = 1593 mm2 

have been determined. Tensile flexural reinforcement consists of two No. 36 bars have 

been provided. Transverse No. 10 U stirrups with 40mm cover are provided at the 
following spacings from the face of the column: 𝟏𝟎𝟎𝒎𝒎, 𝟑 𝒂𝒕 𝟐𝟎𝟎𝒎𝒎, and 𝟓 𝒂𝒕 𝟐𝟔𝟎𝒎𝒎. 
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a) If the flexural and shear steel use 𝑓𝑦 = 420 𝑀𝑃𝑎 and if the beam uses lightweight 

concrete having 𝑓𝑐
′ = 28 𝑀𝑃𝑎, check to see if proper development length can be 

provided for the No. 36 bars. Use the simplified development length equations. 
b) If the column material strengths are 𝑓𝑦 = 420 𝑀𝑃𝑎 and 𝑓𝑐

′ = 35 𝑀𝑃𝑎 (normalweight 

concrete), check to see if adequate embedment can be provided within the column 

for the No. 36 bars. In your checking, use the basic equation.  
c) If hooks are required, specify detailed dimensions. 

2No.36

75mm
525
mm

600
mm

2400 mm500
mm

50
mm

450
mm

275
mm

 
Figure 6.4-7: Cantilever beam for Example 6.4-3. 

Solution 

a) Anchorage to beam based on the simplified equations: 

Checking for lateral spacing to determine if rebar is confined according to Case 1 or Case 

2 below: 

 

 
Start with checking for Case 2 where confinement depends on concrete mass only:  
𝐶𝑙𝑒𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑𝑏
  =

275 − 40 × 2 − 2 × 10 − 2 × 36

36
=  2.86 > 2𝑑𝑏 ∴ Ok. 

𝐶𝑙𝑒𝑎𝑟 𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟

𝑑𝑏
=

40 + 10

36
= 1.39 > 𝑑𝑏 ∴ 𝑂𝑘. 

𝐶𝑙𝑒𝑎𝑟 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟

𝑑𝑏
=

600 − 525 −
36
2

36
= 1.58 > db ∴ 𝑂𝑘. 

Therefore, the rebars can be considered confined depends on concrete mass, Case 2. 
With bar diameter of 36𝑚𝑚, i.e. greater than No. 22, the required development length 

would be:  
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`

 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑑 

Then for top bars, uncoated, and with lightweight concrete, we have the values of: 
𝜓𝑡 = 1.3, 𝜓𝑒 = 1.0, 𝜆 = 0.75 

𝑙𝑑 = (
420 × 1.3 × 1.0

1.7 × 0.75 × √28
) 𝑑𝑑 = 80.9𝑑𝑏 = 80.9 × 36 = 2912 𝑚𝑚 

This can be reduced by the ratio of steel required to that provided, so that the final 

development length is 

𝑙𝑑 = 2912 ×
As Required

𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
= 2912 ×

1593

2 ×
𝜋 × 362

4

= 2279 > 300mm ∴ Ok. 

𝑙𝑑 = 2279𝑚𝑚 ∎ 
∵ 𝑙𝑑 = 2279𝑚𝑚 < 2400𝑚𝑚 ∴ 𝑂𝑘. 

b) Anchorage to the column using straight rebar with 𝑙𝑑 determined based on the basic 

relation: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟, 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐
) 

𝑐𝑏 = min ((
450 − 275

2
+ 40 + 10 +

36

2
) , ∞, (

1

2
× (275 − 40 × 2 − 10 × 2 −

36

2
× 2)))

= min(156, ∞ , 69.5) = 69.5𝑚𝑚 

As no stirrups have been adopted in column joint region, therefore the parameter of 𝑘𝑡𝑟 

which simulate stirrup confinement would be: 

𝐾𝑡𝑟 = lim
𝑠→∞

40𝐴𝑡𝑟

𝑠𝑛
= 0  

Finally, the confinement term would be 

𝐶𝑜𝑛𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑟𝑚 =   
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

69.5 + 0

36
= 1.93 < 2.5 ∴ 𝑂𝑘. 

∵ 𝑑𝑏 > 19 ∴ 𝜓𝑠 = 1.0 

𝑙𝑑 = (
420

1.1 × 1.0 × √35
×

1.3 × 1.0 × 1.0

1.93
) 𝑑𝑏 = 43.5𝑑𝑑 =  43.5 × 36 = 1566 𝑚𝑚 

This can be reduced by the ratio of steel required to that provided, so that the final 
development length is: 

𝑙𝑑 = 1566 ×
As Required

𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
= 1566 ×

1593

2 ×
𝜋 × 362

4

= 1225𝑚𝑚 > 300mm ∴ Ok. 

𝑙𝑑 = 1225 𝑚𝑚 ∎ ⟹∵ 𝑙𝑑 = 1225𝑚𝑚 > (500 − 50) = 450𝑚𝑚 ∴ 𝑁𝑜𝑡 𝑂𝑘. 
Therefore, hook should be adopted to anchor the rebar to the column. 
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c) Anchorage to the column using standard hook: 

The development length for hooked bars, measured from the critical section along the 

bar to the far side of the vertical hook, is given by: 

𝑙𝑑ℎ = (
0.24𝑓𝑦𝜓𝑒𝜓𝑐𝜓𝑟

𝜆√𝑓𝑐′
) 𝑑𝑏 

For uncoated or zinc-coated (galvanized): 
𝜓𝑒 = 1.0 

Confinement provided by increased cove: 

𝑆𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 = 40 +
450 − 275

2
= 127.5 𝑚𝑚 > 65𝑚𝑚  

In this case, side cover for the (No. 36) bars exceeds 65mm and cover beyond the bent 

bar is adequate, so: 
𝜓𝑐 = 0.7 

As there is no confinement reinforcement, therefore: 
𝜓𝑟 = 1.0 

With above parameters, the relation for 𝑙𝑑ℎ would be: 

𝑙𝑑ℎ = (
0.24 × 420 × 1.0 × 0.7 × 1.0

1.0 × √35
) 𝑑𝑏 = 11.9 𝑑𝑏 

Multiplication factor of 𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑: 

As 
𝐴𝑆 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑆 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
=  

1593

2 ×
𝜋 × 362

4

 

Then: 

𝑙𝑑ℎ =
1593

2 ×
𝜋 × 362

4

× 11.9 𝑑𝑏 = 9.31 𝑑𝑏 = 9.31 × 36 = 335 𝑚𝑚 

Code Minimum Limitations 
Check with code minimum limitations: 
𝑙𝑑ℎ =   335𝑚𝑚 ?  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (8 × 36, 150𝑚𝑚) ⟹ 𝑙𝑑ℎ =   335𝑚𝑚 ?  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (288, 150𝑚𝑚) 
𝑙𝑑ℎ =   335𝑚𝑚 >  288 ∴ 𝑂𝑘. 
Check with available room: 
𝑙𝑑ℎ =   335 𝑚𝑚 < 500 − 50 = 450 ∴ 𝑂𝑘. 
Transverse Confinement Steel at Discontinuous Ends: 

As side, or bottom or top coves are greater than 65mm, then no need for transverse 

confinement reinforcement. 
Final details for hooked bar: 

2No.36

75mm
525
mm

600
mm

2400 mm500
mm

50
mm

450
mm

275
mm

450 > 335mm

12
x3

6
= 

43
2

Ø= 8x36=288

 
 

 

  



Design of Concrete Structures Chapter 6: Bond, Anchorage, and Development Length 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 27  
 

6.5 ANCHORAGE REQUIREMENTS FOR WEB REINFORCEMENT 
This issue has been discussed thoroughly in Chapter 5. 

6.6 DEVELOPMENT OF BARS IN COMPRESSION 

6.6.1 BASIC CONCEPTS 

• Reinforcement may be required to develop its compressive strength by embedment 
under various circumstances, e.g., where bars transfer their share of column loads 

to a supporting footing or basement walls or where lap splices are made of 

compression bars in column.  

• In the case of bars in compression,  

o A part of the total force is transferred by bond along the embedded length,  

o And a part is transferred by end bearing of the bars on the concrete.  

• Main difference between development length in tension and in compression: 

o Because the surrounding concrete is relatively free of cracks  

o And because of the beneficial effect of end bearing,  

shorter basic development lengths are permissible for compression bars than for 

tension bars.  

• Transverse confinement steel: 

If transverse confinement steel is present, such as spiral column reinforcement or 

special spiral steel around an individual bar, the required development length is 

further reduced.  

6.6.2 ACI RELATIONS 

• Basic Relation 

According to ACI 25.4.9.2, development length for rebars in compression (𝑙𝑑𝑐) shall 

be computed based on following relation: 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24𝑓𝑦𝜓𝑟

𝜆√𝑓𝑐′
𝑑𝑏  𝑜𝑟 0.043𝑓𝑦𝜓𝑟𝑑𝑏)  Eq. 6.6-1 

• Modifications Factors 

o According to 25.4.9.3, for 
the calculation of ℓ𝑑𝑐 , 

modification factors shall 

be in accordance with 

Table 6.6-1 above, except 
𝜓𝑟  shall be permitted to 

be taken as 1.0. 

o According to ACI 
25.4.10.1, length 𝑙𝑑𝑐 shall 

be permitted to reduce by 

ratio of 
𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑⁄ . 

• 𝒍𝒅𝒄 Lower Bound 

According to ACI 25.4.9.1, 

𝑙𝑑𝑐 ≥ 200 𝑚𝑚 

 
 

  

Table 6.6-1: Modification factors for deformed bars 

and wires in compression, Table 25.4.9.3 of 
(ACI318M, 2014). 
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6.6.3 EXAMPLES 
Example 6.6-1 

The forces in the column bars of Figure 6.6-1 below are to be transferred into the 
footing with No. 29 dowels. 

Determine the development lengths needed for the dowels: 

• Down into the footing. 

• Up into the column. 

In your solution assume that, 𝑓𝑦 = 420 𝑀𝑃𝑎 and that column is under a compressive force. 

21 MPa

35 MPa

Note:
This compressive 
strength is suitable for 
foundations that are 
not subjected to 
sulfate attracts. 

This length should be 
modified for splice 
requirements that 
will be discussed 
later.

 
Figure 6.6-1: Foundation and column dowels for Example 6.6-1. 

Solution 

Down into the Footing 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24𝑓𝑦𝜓𝑟

𝜆√𝑓𝑐′
𝑑𝑏  𝑜𝑟 0.043𝑓𝑦𝜓𝑟𝑑𝑏) 

As no confining reinforcement are included, 
𝜓𝑟 = 1.0 

For normal weight concrete, 
𝜆 = 1.0 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24 × 420 × 1.0

1.0 × √21
𝑑𝑏  𝑜𝑟 0.043 × 420 × 1.0𝑑𝑏) 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(22𝑑𝑏  𝑜𝑟 18𝑑𝑏) = 22 𝑑𝑏 = 22 × 29 = 638𝑚𝑚 > 200 𝑚𝑚 ∴ 𝑂𝑘.  
Up into the Column 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24𝑓𝑦𝜓𝑟

𝜆√𝑓𝑐′
𝑑𝑏  𝑜𝑟 0.043𝑓𝑦𝜓𝑟𝑑𝑏) 

As no confining reinforcement are 

included, 
𝜓𝑟 = 1.0 

For normal weight concrete, 
𝜆 = 1.0 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24 × 420 × 1.0

1.0 × √35
𝑑𝑏  𝑜𝑟 0.043

× 420 × 1.0𝑑𝑏) 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(17𝑑𝑏  𝑜𝑟 18𝑑𝑏) = 18 𝑑𝑏

= 18 × 29 = 522𝑚𝑚 > 200𝑚𝑚
∴ 𝑂𝑘.  

 

Example 6.6-2 

To anchor an axially compressed column, that reinforced with 4𝜙25, to its foundation, a 

designer has proposed the detail shown in below.  
Assuming that 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ≈ 𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑓𝑐

′ = 28 𝑀𝑃𝑎, and 𝑓𝑦 = 420 𝑀𝑃𝑎. 

• Is the proposed down in to foundation anchorage adequate according to ACI code? 

• If proposed anchorage is inadequate, propose two different alternatives to solve 

the problem. 

21 MPa

35 MPa

    mm 

    mm 

Note:
According to ACI, this part is 
not effective in compression 
anchorage. In this case, it 
may be useful in 
construction process. 
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Figure 6.6-2: Column to foundation 
anchor of Example 6.6-2. 

Solution 

Adequacy Checking 

Down into the footing: 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24𝑓𝑦𝜓𝑟

𝜆√𝑓𝑐′
𝑑𝑏  𝑜𝑟 0.043𝑓𝑦𝜓𝑟𝑑𝑏) 

As no confining reinforcement are included, 
𝜓𝑟 = 1.0 

For normal weight concrete, 
𝜆 = 1.0 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (
0.24 × 420 × 1.0

1.0 × √28
𝑑𝑏  𝑜𝑟 0.043 × 420 × 1.0𝑑𝑏) 

𝑙𝑑𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(19𝑑𝑏  𝑜𝑟 18𝑑𝑏) = 19 𝑑𝑏 = 19 × 25 = 475𝑚𝑚 > 416 mm ∴ Not ok.  
Proposed Alternatives 

1st Alternative: 
First alternative is to use 𝜙16𝑚𝑚 instead of 𝜙25𝑚𝑚 for column longitudinal reinforcement 

and recalculate required number accordingly: 
𝑙𝑑𝑐 𝑓𝑜𝑟 𝜙16 = 19 × 16 = 304 𝑚𝑚 < 416 𝑚𝑚 ∴ 𝑂𝑘. 

𝑁𝑜. 𝑜𝑓 𝜙16 =
(4 ×

𝜋 × 252

4
)

𝜋 ×
162

4

= 9.76 

Used 10𝜙16𝑚𝑚. 
2nd Alternative: 
This alternative is based on using an area for longitudinal reinforcement greater than the 
required one to activate the reduction factor of 𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑  . 
𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
× 475 = 416 ⟹

𝐴𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑
= 0.876 

𝐴𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
(

𝜋 × 252

4
× 4)

0.876
= 2241 𝑚𝑚2 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑁𝑜. 𝑜𝑓 𝜙25 =
2241

𝜋 ×
252

4

= 4.56 

Then use 6𝜙25 instead of 4𝜙25. 
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6.7 DEVELOPMENT OF BUNDLED BARS 

6.7.1 GENERAL REQUIREMENTS 

• According to (ACI318M, 2014), 25.6.1.1, groups of parallel reinforcing bars 

bundled in contact to act as a unit shall be limited to four in any one bundle. 

• According to (ACI318M, 2014), 25.6.1.2, bundled bars in compression members 

shall be enclosed by transverse reinforcement at least No. 13 in size. This aspect 

has been discussed thoroughly in analysis and design of doubly reinforced beams 

in Chapter 3.  

• According to (ACI318M, 2014), 25.6.1.3, bars larger than a No. 36 shall not be 

bundled in beams. 

6.7.2 DEVELOPMENT LENGTH FOR BUNDLED BARS 

• According to (ACI318M, 2014), 25.6.1.5, development length of individual bars 

within a bundle, in tension or compression, shall be that for the individual bar,  

o Increased 20 percent for three-bar bundle, (  or )  

o Increased 33 percent for four-bar bundle ( ). 

• The extra extension is needed because the grouping makes it more difficult to 

mobilize bond resistance from the core between the bars. 

• According to (ACI318M, 2014), 25.6.1.6, a unit of bundled bars shall be treated as 

a single bar of a diameter derived from the equivalent total area and having a 

centroid that coincides with that of the bundled bars for determining the following: 

o Spacing limitations based on 𝑑𝑏, 

o Cover requirements based on 𝑑𝑏, 

o Spacing and cover values in Article 25.4.2.2, i.e. cover and spacing related to 
Table 6.3-1. For bundled bars, bar diameter db outside the brackets is that of a 

single bar. 

Table 6.3-1: Simplified ACI Relations for Development Length (Table 25.4.2.2 of 

(ACI318M, 2014)). Represented for convenience. 

 

o Confinement term in 25.4.2.3, i.e., the term 
(𝑐𝑏 + 𝐾𝑡𝑟)

𝑑𝑏
⁄  in the basic equation 

below. For bundled bars, bar diameter db outside the brackets is that of a single 

bar. 
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o 𝜓𝑒 factor in Article 25.4.2.4, i.e., 𝜓𝑒 in the Table 6.3-2, represented in below for 

convenience in below.  

Table 6.3-2: Modification factors for development of deformed bars and deformed wires 

in tension, Table 25.4.2.4 of (ACI318M, 2014). Represented for convenience. 

 

6.7.3 EXAMPLES 
Example 6.7-1 

Compute the development length 

required for the uncoated bundled 
bars shown in Figure 6.7-1 below if 
𝑓𝑦 = 420 𝑀𝑃𝑎  and 𝑓𝑐

′ = 28 𝑀𝑃𝑎  with 

normal weight concrete. Use ACI 
basic relation and assume that 𝐾𝑟𝑡 =
0. 

Solution 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝜓𝑡 = 𝜓𝑒 = 𝜓𝑠 = 𝜆 = 1.0 

In confinement term, 𝑐𝑏 and 𝑑𝑏 will be 

computed based on an equivalent 

single rebar: 

500
550

5050

350

250

50

3No.25

No. 10

 
Figure 6.7-1: Cross sectional area for a beam 
reinforced with bundled bars. 
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𝜋𝑑𝑏 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
2

4
= 3 ×

𝜋 × 252

4
 

𝑑𝑏 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = √3 × 252 =  43.3 𝑚𝑚 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟, 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐
) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (50 + 10 +
43.3

2
, 50 + 10 +

43.3

2
,

1

2
( 250 − 2 × 10 −

43.3

2
× 2))  

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(81.6, 81.6, 93.4) = 81.6 𝑚𝑚 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡
=

81.6 + 0.0

43.3
= 1.88 < 2.5 ∴ 𝑂𝑘 

𝑙𝑑 = (
420

1.1 × 1.0 × √28
 
1.0 × 1.0 × 1.0

1.88
) 𝑑𝑏 

𝑙𝑑 = 38.4𝑑𝑏 

This value should be increased 20% for a 3-bar bundle according to ACI Section 25.6.1.5. 
𝑙𝑑 = 1.2 × 38.4 × 25 = 1152 𝑚𝑚∎ 
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6.8 LAP SPLICES 
6.8.1 BASIC CONCEPTS 

• Need for Splices: 

In general, reinforcing bars are stocked by suppliers in lengths of 12m. For this 
reason, and because it is often more convenient to work with shorter bar lengths, 

it is frequently necessary to splice bars in the field. 

• Splice Types: 

Rebars are spliced to each other by: 

o Lap Splices: 

In this type, rebars are usually made 

simply by lapping the bars a sufficient 

distance to transfer stress by bond from 

one bar to the other. The lapped bars are 
usually placed in contact and lightly 

wired so that they stay in position as the 

concrete is placed. 

o Mechanical Splices: 

Sample of mechanical splice is presented 

in Figure 6.8-2. 

 
Figure 6.8-2: Mechanical Splice for Rebars. 

o Welding Splice: 

Splice with welding splice, with fillet weld, 

is presented in Figure 6.8-3. 

• Only lap splice is considered in this article. 

6.8.2 GENERAL NOTES ON LAP SPLICES 

• According to (ACI318M, 2014), Article 

25.5.1.1, Lap splices shall not be used for bars larger than No. 36 except as 

provided in 25.5.5.3 (compression lap splices of No. 43 and No. 57 bars with smaller 

bars). This because of lack of adequate experimental data on lap splices for larger 

diameters. 

• According to (ACI318M, 2014), Article 25.5.1.4, Lap splices of bars in a bundle 

shall be based on the lap splice length required for individual bars within the 

bundle, increased in accordance with Article 25.6.1.7 (increased by 20 percent 

and 33 percent for 3- and 4-bar bundles, respectively). 

• According to (ACI318M, 2014), Article 25.5.1.4, reduction of development length 

in accordance with 
As required

As provided
⁄  is not permitted in calculating lap splice 

lengths because the splice classifications already reflect any excess reinforcement 

at the splice location. 

 
Figure 6.8-1: Lap Splices. 

 
Figure 6.8-3: Welding Splice for 

Rebars. 
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6.8.3 LAP SPLICES IN TENSION 

• According to (ACI318M, 2014), Article 25.5.2.1, tension lap splice length 𝑙𝑠𝑡 for 

deformed bars and deformed wires in tension shall be in accordance with Table 

6.8-1 below, Table 25.5.2.1 of (ACI318M, 2014): 

Table 6.8-1: Lap splice lengths of deformed bars and deformed wires in tension, Table 
25.5.2.1 of (ACI318M, 2014). 

 
• The two-level lap splice requirements encourage splicing bars at points of minimum 

stress and staggering splices to improve behavior of critical details.  

• For calculating ℓ𝑑 for staggered splices, the clear spacing is taken as the minimum 

distance between adjacent splices, as illustrated in Figure 6.8-4 below. 

• According to (ACI318M, 2014), Article 25.5.2.2, if bars of different size are lap 
spliced in tension, ℓ𝑠𝑡 shall be the greater of ℓ𝑑 of the larger bar and ℓ𝑠𝑡 of the 

smaller bar. 

6.8.4 TENSION LAP SPLICE FOR COLUMNS 

• For tension lap splice in columns, see (ACI318M, 2014) Article 10.7.5.2. 

• Tension lap splice in columns is out of our scope in this article.  

 

Figure 6.8-4: 
Effective Clear 

Spacing of Spliced 
Bars for 

determination of 𝓵𝒅 

for staggered 
splices, adopted 

from (Kamara, 
2005). 
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Example 6.8-1 

Calculate the lap-splice length for six No. 25 tension bottom bars (in two rows) with clear 
spacing of 63.5 mm, clear cover of 40 mm and stirrups of 10mm for the following cases: 

• When three bars are spliced and (As provided)/(As required) > 2.  

• When four bars are spliced and (As provided)/(As required) < 2. 

• When all bars are spliced at the same location.  
In your solution assume 𝑓𝑐

′ = 35 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎 and use basic equation to compute 

𝑙𝑑 

Solution 
Compute the development length, 𝑙𝑑: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟, 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐
) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (40 + 10 +
25

2
, 40 + 10 +

25

2
,
1

2
× (63.5 + 25)) 

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(62.5, 62.5,44.3) = 44.3 𝑚𝑚  
For bottom rebars, 
𝜓𝑡 = 1.0 

For epoxy uncoated rebars, 
𝜓𝑒 = 1.0 

For bar with diameter of 25mm > 19mm, 
𝜓𝑠 = 1.0 

For normal weight concrete, 
𝜆 = 1.0 

As nothing has been mentioned about stirrups spacing, 
𝐾𝑡𝑟 = 0 

and the confinement factor would be: 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

44.3 + 0

25
= 1.77 < 2.5 ∴ 𝑂𝑘. 

𝑙𝑑 = (
420

1.1 × 1.0 × √35
 
1.0 × 1.0 × 1.0

44.3 + 0
25

) 𝑑𝑏 = 36.4 𝑑𝑏 = 910 𝑚𝑚 

Splice 

When three bars are spliced and (As provided)/(As required) > 2: 

As  
𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑

𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
> 2.0 

and only 50% of reinforcement to be spliced, therefore splice can be classified as Class 

A. 

𝑙𝑠𝑝𝑙𝑖𝑐𝑒 = 1.0 𝑙𝑑 = 910 𝑚𝑚 > 300𝑚𝑚 ∴ 𝑂𝑘. 

When four bars are spliced and (As provided)/(As required) < 2: 

Class B splice should be adopted. 

𝑙𝑠𝑝𝑙𝑖𝑐𝑒 = 1.3𝑙𝑑 = 1.3 × 910 = 1183 𝑚𝑚 > 300 𝑚𝑚 ∴ 𝑂𝑘. 

When all bars are spliced at the same location: 

Class B splice should be adopted. 

𝑙𝑠𝑝𝑙𝑖𝑐𝑒 = 1.3𝑙𝑑 = 1.3 × 910 = 1183 𝑚𝑚 > 300 𝑚𝑚 ∴ 𝑂𝑘. 
 

Example 6.8-2 

A beam at the perimeter of the structure has 7-No. 28 top bars over the support. 

Structural integrity provisions require that at least one-sixth of the tension reinforcement 

be made continuous, but not less than 2 bars (9.7.7.1). 

Bars are to be spliced with a Class A splice at mid-span. Determine required length of 
Class A lap splice for the following two cases: 
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Case I - Development length computed based on simplified equation. 

Case II - Development length computed based basic equation. 

In your solution assume: 

• Lightweight concrete 

• Epoxy-coated bars 

• 𝑓𝑐
′ = 28 𝑀𝑃𝑎 

• 𝑓𝑦 = 420 𝑀𝑃𝑎 

63.5 mm

28

28

750 mm

25

12

 
Solution 

Case I - Development computed from simplified equation: 

Check confinement: try Case 2: 

𝐶𝑙𝑒𝑎𝑟 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 =
(750 − 2 × 63.5 − 2 × 12 − 2 × 28)

28
= 19.4 ≫ 2  

𝑆𝑖𝑑𝑒 𝐶𝑜𝑣𝑒𝑟 =  
63.5 + 12

28
= 2.7 > 2 

Then rebar is confined according to 

requirement of Case 2. As rebar diameter is 

greater than No. 19, therefore development 

length would be: 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑏 

Case 1

Case 2
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For top rebars, assuming concrete below rebar is greater than 300 as it is clear from 

Figure above assuming it has been drawn to scale. 
𝜓𝑡 = 1.3 

For epoxy coated with clear cover less than 3d, 
𝜓𝑒 = 1.5 
𝜓𝑡𝜓𝑒 = 1.3 × 1.5 = 1.95 > 1.7 ∴ 𝑁𝑜𝑡 𝑜𝑘 

Let  
𝜓𝑡𝜓𝑒 = 1.7 

For lightweight concrete: 
𝜆 = 0.75 

𝑙𝑑 = (
𝑓𝑦𝜓𝑡𝜓𝑒

1.7𝜆√𝑓𝑐′
) 𝑑𝑏 = (

420 × 1.7

1.7 × 0.75 × √28
) 𝑑𝑏 = 106 𝑑𝑏 = 106 × 28 =  2968 𝑚𝑚 

For Case A splice: 
𝑙𝑠𝑝𝑙𝑖𝑐𝑒 = 1.0 𝑙𝑑 = 2968 𝑚𝑚 > 300 𝑚𝑚 ∎ 

Case II - Development computed from basic equation. 

According to basic equation below: 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

As discussed above, 
𝜓𝑡𝜓𝑒 = 1.7 
𝜆 = 0.75 
∵ 𝑑𝑏 = 28𝑚𝑚 > 19𝑚𝑚 ∴ 𝜓𝑠 = 1.0 

For rebars in the second layer, only side cover and center to center rebar spacing to be 

considered:  

𝑐𝑏 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (63.5 + 12 +
28

2
,
1

2
× (750 − 2 × 63.5 − 2 × 12 − 28)) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (89.5 𝑜𝑟 286)

= 89.5 𝑚𝑚  
Without computing 𝐾𝑡𝑟, one can conclude that: 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=

89.5

28
= 3.2 > 2.5 

Therefore, 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
= 2.5 

𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) = (
420

1.1 × 0.75 × √28
 
1.7 × 1.0

2.5
) 𝑑𝑏 = 65.4 𝑑𝑏 

𝑙𝑑 = 65.4 × 28 = 1831 𝑚𝑚 

For Case A splice: 
𝑙𝑠𝑝𝑙𝑖𝑐𝑒 = 1.0 𝑙𝑑 = 1831 𝑚𝑚 > 300𝑚𝑚 ∎ 

 

Example 6.8-3 

Based on structural analysis and design, a 

designer has adopted bottom reinforcement 

of No. 12@200mm  for the slab indicated in 

Figure 6.8-5. Using ACI basic equation, 
determine the development length, 𝑙𝑑, for the 

adopted positive slab reinforcement and then 

compute the corresponding lap splice length. 
Solution 
Computing of the development length, 𝒍𝒅: 

According to basic equation of the ACI code, 

the development length for tension rebars, 
𝑙𝑑, would be: 

 

Figure 6.8-5: Slab 
reinforcement for 

Example 6.8-3 
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𝑙𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐′
 

𝜓𝑡𝜓𝑒𝜓𝑠

𝑐𝑏 + 𝐾𝑡𝑟
𝑑𝑏

) 𝑑𝑏 

𝑐𝑏 = minimum (

𝑠𝑖𝑑𝑒 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,

 𝑡𝑜𝑝 𝑐𝑜𝑣𝑒𝑟 𝑡𝑜 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟,
1

2
𝑆𝑐

𝑐

) ⟹ 𝑐𝑏 = min (
(20 +

12

2
) ,

 (20 +
12

2
) , (

1

2
× 200)

) 

cb = min(26,26,100) = 26 mm 

As there is no shear reinforcement in the cantilever slab, therefore: 
𝐾𝑡𝑟 = 0 

As the concrete is normal weight concrete, λ = 1.0. For uncoated rebars, ψe = 1.0.  

As the rebars are bottom rebars from bond point of view.  
𝜓𝑡 = 1.0 

Finally, for rebars with size less than 19mm, ψs = 0.8. 

𝑙𝑑 = ((
420

1.1 × 1.0 × √28
) × (

1.0 × 1.0 × 0.8

26 + 0
12

)) 𝑑𝑏 = 26.6db 

As nothing is mentioned about As required As provided⁄ , therefore it can be conservatively 

assumed 1.0. 
𝑙𝑑 = 26.6db = 26.6 × 12 = 319 mm > 300 mm ∴ Ok. ⟹ 𝑙𝑑 = 319 𝑚𝑚 ∎ 

Splice Length: 
As nothing has been mentioned about 𝐴𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑⁄ , therefore the splice would 

conservatively be classified as Class B. 
𝑙𝑠𝑡 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(1.3𝑙𝑑 , 300) = 1.3 × 319 = 415 𝑚𝑚 ∎  
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6.8.5 LAP SPLICE LENGTHS OF DEFORMED BARS IN COMPRESSION 

6.8.5.1 General Requirements 

According to (ACI318M, 2014), 25.5.5.2, compression lap splices shall not be used for 

bars larger than No. 36, except to No. 36 or smaller bars. 

6.8.5.2 Compression Lap Splice Length 𝓵𝐬𝐜 

• According to (ACI318M, 2014), 25.5.5.1, compression lap splice length ℓ𝑠𝑐 of No. 

36 or smaller deformed bars in compression shall be calculated in accordance with 

(a) or (b): 

(a) For 𝑓𝑦 ≤  420 𝑀𝑃𝑎:  

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (0.071𝑓𝑦𝑑𝑏𝑎𝑛𝑑 300 𝑚𝑚) 

(b) For 𝑓𝑦 >  420 𝑀𝑃𝑎: 

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((0.13𝑓𝑦–  24)𝑑𝑏𝑎𝑛𝑑 300 𝑚𝑚) 

• For 𝑓𝑐′ <  21 𝑀𝑃𝑎, the length of lap shall be increased by one-third. 

6.8.5.3 Reducing in Compression Lap Splice Length 𝓵𝒔𝒄 

According to (ACI318M, 2014), 10.7.5.2.1, it shall be permitted to decrease the 

compression lap splice length in accordance with (a) or (b), but the lap splice length shall 

be at least 300 mm. 

(a) For tied columns, where ties throughout the lap splice length have an effective 
area not less than 𝟎. 𝟎𝟎𝟏𝟓𝒉𝒔 in both directions, lap splice length shall be permitted to 

be multiplied by 0.83. Tie legs perpendicular to dimension h shall be considered in 
calculating effective area. 

(b) For spiral columns, where spirals throughout the lap splice length satisfy 25.7.3, 

this will be discussed thoroughly in column design, lap splice length shall be 

permitted to be multiplied by 0.75. 

6.8.5.4 Lap Splice for Bars with Different Size 

• According to (ACI318M, 2014), 25.5.5.3, compression lap splices of No. 43 or No. 
57 bars to No. 36 or smaller bars shall be permitted and shall be in accordance 

with (ACI318M, 2014), 25.5.5.4, presented in below. 

• According to (ACI318M, 2014), 25.5.5.4, where bars of different size are lap spliced 
in compression, ℓ𝑠𝑐 shall be: 

𝑙𝑠𝑐 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝑙𝑑𝑐 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒𝑟 𝑏𝑎𝑟 𝑜𝑟 𝒍𝒔𝒄 of smaller bar) 

6.8.5.5 Common Details for Columns Splices 

• The most common method of splicing column steel is the simple lapped bar splice, 

with the bars in contact throughout the lapped length.  

• It is standard practice to offset the lower bars, as shown in Figure 6.8-6 below  
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Figure 6.8-6: Splice details at 
typical interior column. Beams 

frame into joint from four 
directions. 
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6.8.5.6 Examples 
Example 6.8-4 

Calculate the lap-splice length for a tied column. The column 

has eight No. 32 longitudinal bars and No. 10 ties with spacing 
of 450mm. Given 𝑓𝑐

′ = 35 𝑀𝑃𝑎, 𝑓𝑦 = 420 𝑀𝑃𝑎, 𝑓𝑦 = 560 𝑀𝑃𝑎 and 

all rebars under compression. 

Solution 
For 𝑓𝑦 ≤  420 𝑀𝑃𝑎:  

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (0.071𝑓𝑦𝑑𝑏𝑎𝑛𝑑 300 𝑚𝑚) 

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (0.071 × 420 × 32 𝑎𝑛𝑑 300 𝑚𝑚) 
ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (954  𝑎𝑛𝑑 300 𝑚𝑚) = 954 𝑚𝑚 

Reduction in 𝑙𝑠𝑐: 

Determine column tie requirements to allow 0.83 reduce lap-splice length according to 

ACI Code, Section 10.7.5.2.1. 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑖𝑒𝑠 ≥ 0.0015 ℎ𝑠 

3 ×
𝜋 × 102

4
= 236 𝑚𝑚2 < 0.0015 × 500 × 450 = 338 𝑚𝑚2  

Modifier 0.83 will not apply. Lap-splice length is 954 𝑚𝑚. 

For 𝑓𝑦 >  420 𝑀𝑃𝑎: 

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((0.13𝑓𝑦–  24)𝑑𝑏𝑎𝑛𝑑 300 𝑚𝑚) 

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ((0.13 × 560 −  24) × 32 𝑎𝑛𝑑 300 𝑚𝑚)  

ℓ𝑠𝑐 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (1562 𝑎𝑛𝑑 300 𝑚𝑚) = 1562 𝑚𝑚 

Modifier 0.83 will not apply as previously calculated. 
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0 

m
m

500 mm



Design of Concrete Structures Chapter 6: Bond, Anchorage, and Development Length 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 56  
 

6.11 CONTENTS 
Chapter 6 ..................................................................................................... 1 
Bond, Anchorage, .......................................................................................... 1 
and ............................................................................................................. 1 
Development Length ...................................................................................... 1 

6.1 Fundamentals of Flexural Bond ................................................................. 1 

6.1.1 Bond Role ........................................................................................ 1 
6.1.2 Plain and Deformed Rebars ................................................................. 1 
6.1.3 Bond Force Based on Simple Cracked Section Analysis............................ 2 
6.1.4 Actual Distribution of Flexural Bond Force: ............................................ 3 
6.1.5 Main Conclusion About Bond Stresses .................................................. 4 
6.1.6 Bond Strength .................................................................................. 4 
6.1.7 Concept of Development Length .......................................................... 5 

6.2 ACI Provisions for Development of Reinforcement ....................................... 6 

6.2.1 Strength Reduction Factor, 𝝓 .............................................................. 6 
6.2.2 Maximum Value for 𝒇𝒄′ ....................................................................... 6 

6.3 ACI Code Provisions for Development of Tension Reinforcement .................... 6 

6.3.1 Basic Equation for Development of Tension Bars .................................... 6 
6.3.2 Simplified Equations for Development Length ........................................ 7 
6.3.3 Summary of ACI Modification Factors of Deformed Bars in Tension ........... 8 
6.3.4 Further Simplified Tabular Values for Development Length ...................... 8 
6.3.5 Notes on the Three Different Methods .................................................. 9 
6.3.6 ACI Lower Bound Limitation on 𝒍𝒅 for Tension Rebars ............................. 9 
6.3.7 Design Examples for Rebars in Tension................................................. 9 

6.4 Anchorage of Tension Bars by Hooks ....................................................... 18 

6.4.1 Basic Concepts ................................................................................ 18 
6.4.2 Standard Hook Dimensions ............................................................... 19 
6.4.3 Design of Hooked Anchorages ........................................................... 19 
6.4.4 Design Examples for Tension Anchorage with Hook .............................. 21 

6.5 Anchorage Requirements for Web Reinforcement ...................................... 27 
6.6 Development of Bars in Compression ....................................................... 27 

6.6.1 Basic Concepts ................................................................................ 27 
6.6.2 ACI Relations .................................................................................. 27 
6.6.3 Examples ....................................................................................... 28 

6.7 Development of Bundled Bars ................................................................. 30 

6.7.1 General Requirements ..................................................................... 30 
6.7.2 Development Length for Bundled Bars ................................................ 30 
6.7.3 Examples ....................................................................................... 31 

6.8 Lap Splices .......................................................................................... 33 

6.8.1 Basic Concepts ................................................................................ 33 
6.8.2 General Notes on Lap Splices ............................................................ 33 
6.8.3 Lap Splices in Tension ...................................................................... 34 
6.8.4 Tension Lap Splice for Columns ......................................................... 34 
6.8.5 Lap Splice Lengths of Deformed Bars in Compression ........................... 39 

6.9 Development of Flexural Reinforcement ................................................... 41 

6.9.1 General.......................................................................................... 41 
6.9.2 Development of positive moment reinforcement (ACI 12.11): ................ 45 
6.9.3 Development of Negative Moment Reinforcement: ............................... 47 
6.9.4 Standard Cutoff and Bent Points in Beams: ......................................... 54 

6.10 Integrated Beam Design Examples ....................................................... 55 
6.11 Contents ........................................................................................... 56 



CHAPTER 7 
SERVICEABILITY  

7.1 INTRODUCTION 
• What have been achieved in Chapters 4, 5, and 6? 

o Chapters 4, 5, and 6 have dealt mainly with the strength design of reinforced 

concrete beams.  

o Methods have been developed to ensure that beams will have a proper safety 
margin against failure in flexure or shear, or due to inadequate bond and anchorage of 

the reinforcement.  

o The member has been assumed to be at a hypothetical overload state for this 

purpose. 
• Performance in normal service: 

o It is also important that member performance in normal service be satisfactory. 
o Normal service conditions are when loads are those actually expected to act, that is, when 

load factors are 1.0.  
• Member adequacy in strength is not necessarily adequate in service conditions. 

o Normal service conditions are not guaranteed simply by providing adequate strength.  

• Aspects that such be checked under normal conditions: 

o Deflection: 
It may be: 

▪ Excessively large under full-service,  

▪ Long-term due to sustained loads, 

such that may cause damage.  
o Tension cracks: 

They in beams may be wide enough to: 

▪ Be visually disturbing,  

▪ reduce the durability of the structure.  

o Vibration or Fatigue: 
Vibration or Fatigue are other questions that require consideration under service 

conditions. These aspects are out the scope of this course. 

• The theory adopted to study the elastic conditions: 

o Serviceability studies are carried out based on elastic theory. 
o Assumptions of the elastic theory: 

The elastic theory for analysis assumes that: 

▪ Stresses in both concrete and steel are proportional to strain.  

▪ The concrete on the tension side of the neutral axis may be uncracked, partially 
cracked, or fully cracked, depending on the loads and material strengths. 

• Past versus current design philosophies: 

o In early reinforced concrete designs, questions of serviceability were dealt with 

indirectly, by limiting the stresses in concrete and steel at service loads to the rather 

conservative values that had resulted in satisfactory performance. 

o The current design methods: 
▪ It permits more slender members through: 

1. More accurate assessment of capacity,  
2. Higher-strength materials. 

▪ It contributs to the trend toward smaller member sizes, such that the old indirect 

methods no longer work.  

▪ The current approach is to investigate service load cracking and deflections 
specifically, after proportioning members based on strength requirements. 

• Scope of this Chapter: 

According to the text book: 

o Tension cracks 
▪ This chapter develops methods to ensure that the cracks associated with 

flexure of reinforced concrete beams are narrow and well distributed.  

▪ For structures other than liquid retaining structures, the concept of 𝑠𝑚𝑎𝑥𝑖𝑚𝑢𝑚 that 

has been discussed in Chapter 4 is adequate to ensure narrow and well 
distributed cracks. 
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▪ Therefore, due to limited time, the explicit checking of cracks may be skipped 

in buildings-oriented design courses. 

o Deflection control: 
After reviewing the deflection determinations from the mechanics of material 

and theory of structures, this chapter aims to: 

▪ Modify deflections determined based on assumptions of the uncracked section 

and short-term effect to be more accurate and representative for actual 

structures where the sections are fully or partially cracked, and the loads are 

sustained in nature. 
▪ Give permissible limits for the deflections.  
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7.2 CONTROL OF DEFLECTIONS 

7.2.1 BASIC CONCEPTS 

• Main Concerns of Excessive Deflection: 

Excessive deflections can lead to: 

o Cracking of supported walls and partitions, 

o Ill-fitting doors and windows,  
o Poor roof drainage,  

o Misalignment of sensitive machinery and equipment,  

o Visually offensive sag.  

It is important, therefore, to maintain control of deflections, in one way or another. 

So that members designed mainly for strength at prescribed overloads will also checked in normal 
service. 

• Approaches for Deflection Control: 
There are presently two approaches to deflection control:  

o Indirect Approach. 

o Direct Approach. 

These approaches are discussed in some details in following articles, and different 

illustrated examples are presented. 

7.2.2 INDIRECT APPROACH 

• The approach consists of setting proper upper limits on the span-depth ratio. These 
limits are as follows: 

o For one-way slabs: 

According to the code 7.3.1.1, for solid nonprestressed slabs not supporting or attached 
to partitions or other construction likely to be damaged by large deflections, overall slab 

thickness ℎ shall not be less than the limits in Table 7.2-1, unless the calculated 
deflection limits are satisfied. 

o For beams: 

According to the code 9.3.1.1, for nonprestressed beams not supporting or attached to 
partitions or other construction likely to be damaged by large deflections, overall beam 

depth ℎ shall satisfy the limits in Table 7.2-2, unless the calculated deflection limits are 
satisfied. 

Table 7.2-1: Minimum thickness of solid nonprestressed one-way slabs, Table 7.3.1.1 

of the code. 

 
Table 7.2-2: Minimum depth of nonprestressed beams, Table 9.3.1.1 of the code. 
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• This approach is simple, and it is satisfactory in many cases where spans, loads and 

load distributions, and member sizes and proportions fall in the usual ranges.  
• The condition of "Members not supporting or attached to partitions or other construction likely 

to be damaged by large deflections" has been left for designer judgment. 

7.2.3 DIRECT APPROACH 

• In this approach, deflection has to be calculated and to be compared with specific 

limitations that may be imposed by codes or by special requirements. 

• Methods for predicating deflection in RC beams and ACI limitations on deflection 

are discussed in articles below. 

7.2.4 DEFLECTION TYPES IN RC BEAMS 

Two types of deflections are usually noted in RC beams: 

• Immediate Deflection: 
As its name implies, this type of deflection occurs immediately when the load is 

applied. 

• Long-term Deflection (Time Dependent Deflections): 

o These time-dependent deformations take place gradually over an extended 

time.  

o They are chiefly due to concrete creep and shrinkage.  
o Because of these influences, reinforced concrete members continue to deflect 

with the passage of time. Long-term deflections continue over a period of several 

years. 

o They may eventually be 2 or more times the initial elastic deflections. 

  



Design of Concrete Structures Chapter 7: Serviceability 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 5 
 

7.3 IMMEDIATE DEFLECTION 

• Safety provisions of the ACI Code and similar design specifications ensure that, 

under loads up to the full-service load, stresses in both steel and concrete remain within 
the elastic ranges. 

• Consequently, deflections that occur at once upon application of load, can be calculated based 
on the properties of the uncracked elastic member, the cracked elastic member, or some 
combination of these. 

• From the mechanics of materials, it is well known that elastic deflections can be 

expressed in the general form: 

Δ𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑟 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 =
𝑓(𝐿𝑜𝑎𝑑𝑠, 𝑆𝑝𝑎𝑛𝑠, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠)

𝐸𝐼
 Eq. 7.3-1 

• Deflection relations can easily be computed and tabulated for many loadings and 

spans arrangements as shown in Table 7.3-1, Table 7.3-2, and Table 7.3-3. 
• With the tabulated relations, the deflection computing in reinforced concrete 

structures are reduced into: 
o What should load values be in deflection computing? 

o What is the appropriate flexural rigidity EI for the member? 

These two issues are discussed below. 

7.3.1 LOADS USED IN DEFLECTION CALCULATIONS 

• The deflections of concern are generally those that occur during the normal service 
life of the member.  

• In service, a member sustains the full dead load, plus some fraction or all of the 

specified service live load. 
Table 7.3-1: Deflection of Simply Supported Beams. 
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Table 7.3-2: Deflection for Cantilever Beams. 

 

Table 7.3-3: Deflection of Statically Indeterminate Single Span Beams. 

 

                                               

7.3.2 MEMBER FLEXURAL RIGIDITY EI 
7.3.2.1 MODULUS OF ELASTICITY E 

• According to ACI 24.2.3.4, immediate deflection shall be computed with the modulus of 
elasticity for concrete, Ec. 
𝐸𝑓𝑜𝑟 𝑖𝑚𝑚𝑑𝑑𝑖𝑎𝑡𝑒 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 𝐸𝑐 Eq. 7.3-2 

• According to ACI 19.2.2, modulus of elasticity, Ec for normal weight concrete could be 

computed based on following relation. 

𝐸𝑐 = 4700√𝑓𝑐′ Eq. 7.3-3 

7.3.2.2 EFFECTIVE MOMENT OF INERTIA 𝑰𝒆 

7.3.2.2.1 Uncracked Elastic Range 

• If the maximum moment in a flexural member is so small that the tensile stress in 

the concrete does not exceed the modulus of rupture 𝑓𝑟, no flexural tension cracks 

will occur. The full, uncracked section is then available for resisting stress and 

providing rigidity, see Figure 7.3-1. 
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• Then for applied moment 𝑀𝑎 less than cracking moment 𝑀𝑐𝑟, effective moment of 

inertia 𝐼𝑒 that could be used for composite RC beams is: 
∵ 𝑀𝑎 ≤ 𝑀𝑐𝑟 ⇒∴ 𝐼𝑒 ≈ 𝐼𝑔 Eq. 7.3-4 

where: 
𝐼𝑒 is effective moment of inertia for computation of deflection, mm4. 

𝐼𝑔 is moment of inertia of gross concrete section about centroidal axis, neglecting 

reinforcement, mm4. 
𝑀𝑐𝑟  is cracking moment, according to ACI 24.2.3.5, it could be computed as 

follows: 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑔

𝑦𝑡
 Eq. 7.3-5 

and 
𝑓𝑟 is modulus of rupture of concrete, MPa: 

𝑓𝑟 = 0.62𝜆√𝑓𝑐′ Eq. 7.3-6 

𝑦𝑡 is distance from centroidal axis of gross section, neglecting reinforcement, to 

tension face, mm. Above terms are more clarified with referring to Figure 7.3-2. 

 

Figure 7.3-1: Uncracked 

elastic section. 

 

 

Figure 7.3-2: Gross moment 
of inertia for a RC beam with 

general symmetrical shape. 

 

Example 7.3-1 

For the rectangular concrete section that shown in Figure 7.3-3, calculate  

• Modulus of rupture, 𝑓𝑟,  

• Gross moment of inertia, 𝐼𝑔,  

• Cracking moment, 𝑀𝑐𝑟.  

Use 𝑓𝑐
′ = 28 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎. 
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Figure 7.3-3: Beam 

for Example 7.3-1. 

Solution 

Modulus of rupture:  

𝑓𝑟 = 0.62𝜆√𝑓𝑐′ 

With normal weight concrete, 
𝜆 = 1.0 

𝑓𝑟 = 0.62 × 1.0 × √28 = 3.28 𝑀𝑃𝑎 ∎ 
Gross Moment of Inertia: 

With neglecting of reinforcement, gross section is a rectangular one: 

𝐼𝑔 =
𝑏ℎ3

12
=

300 × 6253

12
= 6104 × 106 𝑚𝑚4∎ 

𝑦𝑡 =
625

2
= 313 𝑚𝑚 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑔

𝑦𝑡
=

3.28 × 6104 × 106

313
= 64.0 𝑘𝑁. 𝑚 ∎ 
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7.3.2.2.2 Partially to Fully Cracked Range 

• According to ACI 24.2.3.5, when applied bending moment, 𝑀𝑎, greater than section 

cracking moment, 𝑀𝑐𝑟 , section would be in partially to fully cracked stage and its 

effective moment of inertia could be estimated based on following relation (Eq. 
24.2.3.5a of ACI Code). 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) 𝐼𝑐𝑟 Eq. 7.3-7 

• Trends of Eq. 7.3-7 are presented in Figure 7.3-4. Graphically it is presented in Figure 
7.3-5. 

 

Figure 7.3-4: Trends of 

Eq. 7.3-7. 

 

Figure 7.3-5: Variation of 

𝑰𝒆 with Moment Ratio. 

• Variation of 𝐼𝑒 along Beam Span: 

As 𝐼𝑒 depends on 
𝑀𝑐𝑟

𝑀𝑎
, then it inversely varies with 𝑀𝑎 along beam span as indicated 

in Figure 7.3-6.  
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Figure 7.3-6: Variation of 

𝑰𝒆  along the Length of a 

Continuous Beam. 

• According to ACI 24.2.3, above variation of 𝐼𝑒  along beam span could be 

approximated as follows for different support conditions: 

o Simply Supported Beam: 

Ie @ mid-span

 
𝐼𝑒 𝑓𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑  𝑏𝑒𝑎𝑚 = 𝐼𝑒 @ 𝑚𝑖𝑑−𝑠𝑝𝑎𝑛 

o Both-end Continuous Beam: 

Ie @ mid-span

Ie @ right support
Ie @ left support

 

𝐼𝑒 𝑓𝑜𝑟 𝐵𝑜𝑡ℎ 𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑏𝑒𝑎𝑚 = 0.5𝐼𝑒 @ 𝑚𝑖𝑑−𝑠𝑝𝑎𝑛 + 0.25(𝐼𝑒 @ 𝑙𝑒𝑓𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 + 𝐼𝑒 @ 𝑟𝑖𝑔ℎ𝑡 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

or: 
𝐼𝑒 𝑓𝑜𝑟 𝐵𝑜𝑡ℎ 𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑏𝑒𝑎𝑚 ≈ 𝐼𝑒 @ 𝑚𝑖𝑑−𝑠𝑝𝑎𝑛 

o One-end Continuous Beam (Nilson, Design of Concrete Structures, 14th Edition, 

2010): 

Ie @ mid-span

Ie @ continuous support

 
𝐼𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑏𝑒𝑎𝑚 = 0.85𝐼𝑒 @ 𝑚𝑖𝑑−𝑠𝑝𝑎𝑛 + 0.15𝐼𝑒 @ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

o Cantilever Beam: 

Ie @ supported end

 
𝐼𝑒 𝑓𝑜𝑟 𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝑏𝑒𝑎𝑚 = 𝐼𝑒 @ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑒𝑛𝑑 
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7.4 DEFLECTIONS DUE TO LONG-TERM LOADS 

• Initial deflections are increased significantly if loads are sustained over a long period of time, 

due to the effects of shrinkage and creep.  

• Creep or shrinkage, which one is more dominant? 

o These two effects are usually combined in deflection calculations.  

o Creep generally dominates,  
o But for some types of members, shrinkage deflections are large and should be considered 

separately. 
• On the basis of empirical studies, ACI Code 24.2.4.1 specifies that additional long-term 

deflections 𝛥𝑡  due to the combined effects of creep and shrinkage be calculated by 

multiplying the immediate deflection 𝛥𝑖 by a factor 𝜆Δ: 

𝜆Δ =
𝜉

1 + 50𝜌′
 Eq. 7.4-1 

where 

𝜌′ =
𝐴𝑠

′

𝑏𝑑
 

and 𝜉 is a time-dependent coefficient. It is a material property depending on creep and 

shrinkage characteristics and it can be estimated from Figure 7.4-1 or from Table 7.4-1. 

 

Figure 7.4-1: Time variation of 𝝃 for 

long-term deflections. 

Table 7.4-1: Time-dependent factor, 𝝃, for sustained loads, Table 24.2.4.1.3 of the code. 

 

• In Eq. 7.4-1, the quantity 
1

1 + 50𝜌′
 

is a reduction factor that is essentially a section property, reflecting the beneficial effect 
of compression reinforcement 𝐴𝑠′ in reducing long-term deflections. 

• When should 𝜌′ be determined along the beam span: 

According to the ACI Code the value of 𝜌′ used in Eq. 7.4-1 should be: 

o For simple and continuous spans that at the midspan section, 

o For cantilevers that at the support. 
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7.5 PERMISSIBLE DEFLECTIONS  

• To ensure satisfactory performance in service, ACI Code 24.2.2 imposes certain limits 
on deflections calculated according to the procedures just described.  

• These limits are given in Table 7.5-1.  

• Limits depend on: 
o Whether or not the member supports or is attached to other nonstructural 

elements,  

o Whether or not those nonstructural elements are likely to be damaged by large 

deflections.  
• Span length ℓ: 

o According notations and terminology in Chapter 2 of the code, the length ℓ has 

been defined as span length of beam or one-way slab; clear projection of cantilever.   
o According the textbook, this statement has been understood as that center to center 

span should be used for ℓ for spans other than cantilever where clear span should be used. 

 

Table 7.5-1: Maximum permissible calculated deflections, Table 24.2.2 of the code. 

 
 

• When long-term deflections are computed, that part of the deflection that occurs before 
attachment of the nonstructural elements may be deducted; information from Figure 7.4-1 or 

from Table 7.4-1 may be useful for this purpose.  

• As indicated in footnotes (3) and (4), the last two limits of Table 7.5-1 may be exceeded 
under certain conditions, according to the ACI Code. 
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7.6 A STEP BY STEP PROCEDURE TO CHECK THE DEFLECTION 
The aforementioned discussions of Sections 7.2 through 7.5 have been put in a step by 

step procedure for to be used in the practical checking of deflection problem.  

1. Determination of the deflections due to dead and live loads: 

• Use the mechanics of materials relations presented in Table 7.3-1, Table 7.3-2, and 

Table 7.3-3 to determine the deflections due to the dead load, Δ𝑑, and the live load, 

Δℓ.  

• Other analytical methods such as moment-area method can be used to determine 

these deflections. 

• Almost in all of current practical problems, these deflections are determined by the software. 
• If the computations give the total defection due to dead and live load together, 

Δ𝑑+ℓ, the deflection due to each part can be determined based on the following 

linear interpolations: 

Δ𝑑 =
𝑊𝑑

𝑊𝑑 + 𝑊ℓ
× Δ𝑑+ℓ Eq. 7.6-1 

Δℓ =
𝑊ℓ

𝑊𝑑 + 𝑊ℓ
× Δ𝑑+ℓ Eq. 7.6-2 

As traditional structural analysis in civil engineering applications are based on linear 
behavior assumptions1, the above linear proportionalities seem justifiable.  

• Irrespective of the computation approach, these deflections are usually 

instantaneous in nature and determined based on gross moment of inertia, 𝐼𝑔. Therefore, 

they should be modified for the cracking effect and the long-term effect. 
2. Modification for the crack effect if necessary: 

• Determine the service moment, 𝑀𝑎, due to the dead and live loads.  

• Determine the cracking moment, 𝑀𝑐𝑟, based on Eq. 7.3-5. 
• If 𝑀𝑎 < 𝑀𝑐𝑟 then the section is uncracked, and the deflections determined based on 𝐼𝑔 

are correct and no modification is required. 

• If 𝑀𝑎 > 𝑀𝑐𝑟, the section is partially to fully cracked stage, and the deflections should 

be modified as follows: 

i. Determine the effective moment of inertia, 𝐼𝑒, based on Eq. 7.3-7. 
ii. Modified the deflection based on the following relation: 

Δ𝑤𝑖𝑡ℎ 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 = Δ𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡 ×
𝐼𝑔

𝐼𝑒
 Eq. 7.6-3 

3. Modification for the log-term effect: 

The deflection due to sustained loads including selfweight, superimposed dead load, and 

a permanent part of the live load should be modified with the factor 𝜆Δ of Eq. 7.4-1. 
4. Determine the final deflections and compare with code permissible values: 

As indicated in Table 7.5-1, the code offers two deflection checking, one for the 

immediate live loads and the second for the total loads. 

• Checking for immediate live load deflection: 

i. Classify the structural system into a flat roof system or into a floor system. 

ii. Determine the immediate live load deflection with modification for the crack 

effect if necessary and compare with the permissible value of the code: 

Δimmediate ℓ = Δℓ × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

≶ {
𝑖𝑓 𝑓𝑙𝑎𝑡 𝑟𝑜𝑜𝑓 

ℓ

180

𝑖𝑓 𝑓𝑙𝑜𝑜𝑟
ℓ

360

} 

  

 

 
1 Analytically, this assumption is valid only when the materials are linearly elastic, and the 

deformations are small. 
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