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• Checking for the total deflection: 

i. Classify the structural system into a floor system supports nonstructural elements 
likely to be damaged by large deflections elements or not. 

ii. Compute the total deflection occurring after attachment of nonstructural elements, which 

is the sum of the time-dependent deflection due to all sustained loads and the immediate 
deflection due to any additional live load. 

Δtotal = ((Δ𝑑 + Δℓ (
𝐿𝑖𝑣𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑

𝐿𝑖𝑣𝑒 𝑡𝑜𝑡𝑎𝑙
)) × (

𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

× (𝜆Δ)𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚

+ (Δℓ) × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

)

≶ {
𝑖𝑓 nonstructural elements likely to be damaged  

ℓ

480

𝑖𝑓 nonstructural elements not likely to be damaged
ℓ

240

} 
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7.7 EXAMPLES FOR DEFLECTION CONTROL 
Example 7.7-1 

Check adequacy for the simply supported beam indicated in Figure 7.7-1 for the deflection 

control requirements of the code. In your checking assume that: 

• The selfweight of the beam is already included in the indicated dead loads, 
• Sixty percent of the live load is sustained, 

• The beam is part from a flooring system, and it supports non-structural element 

likely to be damaged by the deflection, 
• Material strengths are 𝑓𝑐

′ = 28 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎. 

  
Figure 7.7-1: Simply supported beam for Example 7.7-1. 

Solution 

1. Determination of the deflections due to dead and live loads: 

Based on the mechanics of materials, see Table 7.3-1, the immediate deflection in 

terms of 𝐼𝑔 would be: 

Δ =
5

384
(

𝑤ℓ4

𝐸𝑐𝐼𝑔
) 

𝐸𝑐 = 4700√𝑓𝑐′ = 4700 × √28 = 24870 𝑀𝑃𝑎, 𝐸𝑠 = 200000 𝑀𝑃𝑎 ⟹ 𝑛 =
𝐸𝑠

𝐸𝑐
=

200000

24870
≈ 8 

𝐼𝑔 =
𝑏ℎ3

12
=

300 × 5303

12
= 3.72 × 109 𝑚𝑚4 

Before substitution in the above relation, it is useful to note that: 
𝑘𝑁

𝑚
=

𝑁

𝑚𝑚
 

Therefore, no unit transformation is required for the distributed loads. 

Δd =
5

384
× (

24 × 60004

24870 × 3.72 × 109
) = 4.38 𝑚𝑚 

Δℓ =
5

384
× (

16 × 60004

24870 × 3.72 × 109
) = 2.92 𝑚𝑚 

2. Modification for the crack effect if necessary: 

𝑀𝑎 =
𝑤𝑑+ℓℓ2

8
=

(24 + 16) × 62

8
= 180 𝑘𝑁. 𝑚 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑔

𝑦𝑡
= (

((0.62 × 1.0 × √28) × 3.72 × 109)

(
530

2
)

) × (
1

106
) = 46.1 𝑘𝑁. 𝑚 < 𝑀𝑎 

Therefore, the section is a partially or full cracked one. 

The centroid for the cracked section measured from the top face is: 

(�̅� × 𝑏) ×
y̅

2
= 𝑛𝐴𝑠 × (𝑑 − y̅) 

𝑛𝐴𝑠 = 8 × (4 ×
π × 222

4
) = 12164 𝑚𝑚4 

(�̅� × 300) ×
�̅�

2
= (12164) × (460 − �̅�) ⟹ �̅� = 157 𝑚𝑚 

𝐼𝑐𝑟 =
300 × 1573

3
+ 12164 × (460 − 157)2 = 1.5 × 109 𝑚𝑚4 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) 𝐼𝑐𝑟 
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𝐼𝑒 = ((
46.1

180
)

3

× 3.72 + (1 − (
46.1

180
)

3

) × 1.50) × 109 ⟹ 𝐼𝑒 = 1.54 × 109𝑚𝑚4 

Therefore, the modification factor for crack would be: 
𝐼𝑔

𝐼𝑒
=

3.72

1.54
= 2.42 ∎ 

3. Modification for the log-term effect: 

It is next necessary to find the sustained-load deflection multiplier, 𝜆Δ given by Eq. 
7.4-1: 

𝜆Δ =
𝜉

1 + 50𝜌′
 

The time-dependent coefficient, 𝜉, can be taken as 2.0 based on Figure 7.4-1 or Table 
7.4-1. As the beam is singly reinforced, therefore 𝜌′ = 0, then 𝜆Δ would be: 

𝜆Δ =
2

1 + 50𝜌′
= 2∎ 

4. Determine the final deflections and compare with the code permissible values: 

• Checking for immediate live load deflection: 

i. Classify the structural system into a flat roof system or into a floor system: 

In the examples statement, the structural system is a floor system. 

ii. Determine the immediate live load deflection with modification for the crack 
effect if necessary and compare with the permissible value of the code: 

Δimmediate ℓ = Δℓ × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

≶
ℓ

360
 

Δimmediate ℓ = 2.92 × 2.42 = 7.05 𝑚𝑚 <
ℓ

360
=

6000

360
= 16.7 𝑚𝑚 ∴ 𝑂𝑘. 

• Checking for the total deflection: 

i. Classify the structural system into a floor system supports nonstructural elements 
likely to be damaged by large deflections elements or not. 
Example statements mentions that the beam supports nonstructural partitions that 
would be damaged if large deflections were to occur. 

ii. Compute the total deflection occurring after attachment of nonstructural elements, 

which is the sum of the time-dependent deflection due to all sustained loads and the 
immediate deflection due to any additional live load. 

Δtotal = ((Δ𝑑 + Δℓ (
𝐿𝑖𝑣𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑

𝐿𝑖𝑣𝑒 𝑡𝑜𝑡𝑎𝑙
)) × (

𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

× (𝜆Δ)𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚

+ (Δℓ) × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

) ≶
ℓ

480
 

Δtotal = ((4.38 + 2.92 × (
60

100
)) × (2.42) × (2) + (2.92) × (2.42)) = 36.7 𝑚𝑚 <

ℓ

480
=

6000

480

= 12.5 𝑚𝑚 ∴ 𝑁𝑜𝑡 𝑂𝑘. 

Aforementioned computations and comparisons indicating that the stiffness of the 
proposed member is insufficient. 
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Example 7.7-2 

The beam shown in Figure 7.7-2 is a part of the floor system of an apartment house and is 

designed to carry calculated dead load wd of 24 kN/m and a service live load wℓ of 48 kN/m. Of 

the total live load, 20 percent is sustained in nature, while 80 percent will be applied only 
intermittently over the life of the structure. Under full dead and live load, the moment diagram is 

as shown in Figure 7.7-2c and the total deflection is Δd+ℓ = 2.82 mm.  

The beam will support nonstructural partitions that would be damaged if large deflections were to occur. 
They will be installed shortly after construction shoring is removed and dead loads take 

effect, but before significant creep occurs.  
Check beam adequacy for deflection requirements of the ACI code. Material strengths 
are 𝑓𝑐

′ = 28 𝑀𝑃𝑎 and 𝑓𝑦 = 420 𝑀𝑃𝑎. 

 

 
Figure 7.7-2: Continuous T beam for deflection calculations in Example 7.7-2. The 
uncracked section is shown in (b), the cracked transformed section in the positive 

moment region is shown in (d), and the cracked transformed section in the negative 

moment region is shown in (e). 
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Solution 

1. Determination of the deflections due to dead and live loads: 
As the deflection due to dead and live loads, Δ𝑑+ℓ, is already given in the example 

statement, therefore what is necessary at this step is to determine the deflection 
due to dead load alone, Δ𝑑 , and the live load alone, Δℓ  based on linear 

proportionalities of Eq. 7.6-1 and Eq. 7.6-2: 

Δ𝑑 =
𝑊𝑑

𝑊𝑑 + 𝑊ℓ
× Δ𝑑+ℓ =

24

24 + 48
× 2.82 = 0.94 𝑚𝑚  

Δℓ =
𝑊ℓ

𝑊𝑑 + 𝑊ℓ
× Δ𝑑+ℓ =

48

24 + 48
× 2.82 = 1.88 𝑚𝑚 

2. Modification for the crack effect if necessary: 

For the specified materials: 

𝐸𝑐 = 4700√𝑓𝑐′ = 4700 × √28 = 24870 𝑀𝑃𝑎, 𝐸𝑠 = 200000 𝑀𝑃𝑎 ⟹ 𝑛 =
𝐸𝑠

𝐸𝑐
=

200000

24870
≈ 8 

The modulus of rupture, 𝑓𝑟, is: 

𝑓𝑟 = 0.62𝜆√𝑓𝑐′ = 0.62 × 1 × √28 = 3.28 𝑀𝑃𝑎 

The effective moment of inertia will be calculated for the moment diagram shown 

in Figure 7.7-2c corresponding to the full-service load, on the basis that the 
extent of cracking will be governed by the full-service load, even though 

that load is intermittent.  

Determine the instantaneous deflection due to dead and live loads: 

As the structure is assumed linear in traditional structural analysis, therefore the 
instantaneous deflection due to deal load, Δ𝑑, and due to live load, Δℓ, can be 

determined from Δ𝑑+ℓ based on the following linear proportionalty  

The positive region: 

In the positive-moment region, the centroidal axis of the uncracked T section of 
Figure 7.7-2b is found by taking moments about the top surface, to be; 

�̅�𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑟𝑜𝑠𝑠 𝑝𝑜𝑠𝑖𝑡𝑣𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
Σ𝐴𝑖𝑦𝑖

Σ𝐴𝑖

=

(1900 × 125 ×
125

2
+ 350 × (620 − 125) × (

(620 − 125)
2

+ 125))

(1900 × 125 + 350 × (620 − 125))

= 193 𝑚𝑚 < 310𝑚𝑚 ∴ 𝑂𝑘. 
The moment of inertia, 𝐼𝑔, for the gross section is: 

𝐼𝑔 = (
350 × 6203

12
+ 350 × 620 × (310 − 193)2) +

(1900 − 350) × 1253

12

+ (1900 − 350) × 125 × (193 −
125

2
)

2

= 1.347 × 1010𝑚𝑚4 

The cracking moment, 𝑀𝑐𝑟, is then found by means of Eq. 7.3-5: 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑔

𝑦𝑡
= (

3.28 × 1.347 × 1010

620 − 193
) ×

1

1000000
= 104 𝑘𝑁. 𝑚 

With 
𝑀𝑐𝑟

𝑀𝑎
=

104

218
= 0.477 < 1.0  

Therefore, the section is cracked and 𝐼𝑐𝑟  and 𝐼𝑒  should be determined and the 

deflection should be modified accordingly. 
The centroidal axis of the cracked transformed T section shown in Figure 7.7-2d 
is determined as follows, assume that �̅� ≤ 125𝑚𝑚 to be checked later: 

(�̅� × 𝑏) ×
�̅�

2
= 𝑛𝐴𝑠 × (𝑑 − �̅�) ⟹ (�̅� × 1900) ×

�̅�

2
= 18480 × (560 − �̅�) 

⟹ �̅� = 95.7 𝑚𝑚 < 125𝑚𝑚 ∴ 𝑂𝑘. 
below the top of the slab and 𝐼𝑐𝑟 would be: 

𝐼𝑐𝑟 =
1900 × 95.73

3
+ 18480 × (560 − 95.7)2 = 0.4539 × 1010 𝑚𝑚4 

The effective moment of inertia in the positive bending region is found from Eq. 

7.3-7 to be: 
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𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) 𝐼𝑐𝑟 ⟹ 𝐼𝑒

= (
104

218
)

3

× 1.347 × 1010 + (1 − (
104

218
)

3

) × 0.4539 × 1010 

𝐼𝑒 = 0.551 × 1010 𝑚𝑚4 

The negative region: 

In the negative bending region, the gross moment of inertia will be based on the 

rectangular section shown in Figure 7.7-2b. For this area, the centroid is: 

�̅� =
620

2
= 310𝑚𝑚 

from the top surface and 𝐼𝑔 would be: 

𝐼𝑔 =
𝑏ℎ3

12
=

350 × 6203

12
= 0.695 × 1010𝑚𝑚4 

Therefore, the crack moment, 𝑀𝑐𝑟, would be: 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑔

𝑦𝑡
= (

3.28 × 0.695 × 1010

310
) ×

1

1000000
= 73.5 𝑘𝑁. 𝑚 

𝑀𝑐𝑟

𝑀𝑎
=

73.5 

302
= 0.243 < 1.0  

Therefore, the section is cracked and 𝐼𝑐𝑟  and 𝐼𝑒  should be determined and the 

deflection should be modified accordingly. 

For the cracked transformed section shown in Figure 7.7-2e, the centroidal axis 

is found, taking moments about the bottom surface, to be: 

(�̅� × 350) ×
�̅�

2
+ 7140 × (�̅� − 65) = 28688 × (560 − �̅�) ⟹ �̅� = 222𝑚𝑚 

from that level, and 𝐼𝑐𝑟 would be: 

𝐼𝑐𝑟 =
350 × 2223

3
+ 7140 × (222 − 65)2 + 28688 × (560 − 222)2 = 0.473 × 1010𝑚𝑚4 

Thus, for the negative-moment regions, 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)

3

𝐼𝑔 + (1 − (
𝑀𝑐𝑟

𝑀𝑎
)

3

) 𝐼𝑐𝑟 ⟹ 𝐼𝑒

= (
73.5 

302
)

3

× 0.695 × 1010 + (1 − (
73.5 

302
)

3

) × 0.473 × 1010 

𝐼𝑒 = 0.476 × 1010𝑚𝑚4 

The average effective moment of inertia: 
The average value of 𝐼𝑒 to be used in calculation of deflection is: 

𝐼𝑒 𝑎𝑣𝑔. =
1

2
(0.551 + 0.476) × 1010 = 0.514 × 1010 𝑚𝑚4 

The modification factor for the crack: 

Based on Eq. 7.6-2, the deflection should be modified for the crack based on the 

following relation: 

Δ𝑤𝑖𝑡ℎ 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 = Δ𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡 ×
𝐼𝑔

𝐼𝑒
⟹ 

Δ𝑤𝑖𝑡ℎ 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 =
1.347 × 1010

0.514 × 1010
Δ𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡 = 2.62Δ𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑎𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡∎ 

3. Modification for the log-term effect: 
It is next necessary to find the sustained-load deflection multiplier, 𝜆Δ given by 

Eq. 7.4-1: 

𝜆Δ =
𝜉

1 + 50𝜌′
 

The time-dependent coefficient, 𝜉, can be taken as 2.0 based on Figure 7.4-1 or 

Table 7.4-1. For the positive bending zone, with no compression reinforcement, 
𝜌′ = 0, then 𝜆Δ would be: 

𝜆Δ =
2

1 + 50𝜌′
= 2∎ 
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4. Determine the final deflections and compare with the code permissible values: 

• Checking for immediate live load deflection: 

i. Classify the structural system into a flat roof system or into a floor system: 
In the examples statement, the structural system is a floor system. 

ii. Determine the immediate live load deflection with modification for the crack 

effect if necessary and compare with the permissible value of the code: 

Δimmediate ℓ = Δℓ × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

≶
ℓ

360
 

Δimmediate ℓ = 1.88 × 2.62 = 4.92 𝑚𝑚 <
ℓ

360
=

7900

360
= 21.9 𝑚𝑚 ∴ 𝑂𝑘. 

• Checking for the total deflection: 

i. Classify the structural system into a floor system supports nonstructural elements 
likely to be damaged by large deflections elements or not. 
Example statements mentions that the beam will support nonstructural partitions 
that would be damaged if large deflections were to occur. 

ii. Compute the total deflection occurring after attachment of nonstructural elements, 

which is the sum of the time-dependent deflection due to all sustained loads and the 
immediate deflection due to any additional live load. 

Δtotal = ((Δ𝑑 + Δℓ (
𝐿𝑖𝑣𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑

𝐿𝑖𝑣𝑒 𝑡𝑜𝑡𝑎𝑙
)) × (

𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

× (𝜆Δ)𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚

+ (Δℓ) × (
𝐼𝑔

𝐼𝑒
)

𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑟𝑎𝑐𝑘

) ≶
ℓ

480
 

Δtotal = ((0.94 + 1.88 × (
20

100
)) × 2.62 × (2) + (1.88) × 2.62) = 11.8 𝑚𝑚 <

ℓ

480
=

7900

480
= 16.5𝑚𝑚

∴ 𝑂𝑘. 

Aforementioned computations and comparisons indicating that the stiffness of the 
proposed member is sufficient. 
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CHAPTER  
8 

ANALYSIS AND DESIGN FOR TORSION 

8.1 INTRODUCTION 
• Torsional forces may act, tending to twist a member about its longitudinal axis. 

• Torsional forces seldom act alone and are usually concurrent with bending 
moment and transverse shear, and sometimes with axial force.  

8.1.1 Torsion in Old Design Philosophy  
For many years, torsion was regarded as a secondary effect and was not 

considered explicitly in design, its influence being absorbed in the overall factor of 

safety of rather conservatively designed structures. 

8.1.2 Torsion in Current Design Philosophy  
• Current methods of analysis and design have resulted in less conservatism, 

leading to somewhat smaller members that, in many cases, must be 

reinforced to increase torsional strength. 

• Torsion should be included explicitly especially with the increasing use of structural 

members for which torsion is a central feature of behavior; examples include 

curved beam, curved bridge girders, and helical stairway slabs. 

  
(a) (b) 

 

 

(c)  
Figure 8.1-1: Members subjected to significant torsion: (a) curved beams; (b) bridge 

girders; (c) helical stairway slabs. 

  



Design of Concrete Structures Chapter 8: Analysis and Design for Torsion 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Page 2 
 

8.1.3 Primary versus Secondary Torsions 
It is useful in considering torsion to distinguish between primary and secondary torsion 

in reinforced concrete structures.  

8.1.3.1 Primary Torsion  

• Sometimes called equilibrium torsion or statically determinate torsion, exists 
when the external load has no alternative load path but must be supported by 

torsion.  

• For such cases, the torsion required to maintain static equilibrium could be uniquely 

determined.  

• An example is the cantilevered slab of Figure 8.1-2 below. Loads applied to the 
slab surface cause twisting moments 𝑚𝑡 to act along the length of the supporting 

beam. These are equilibrated by the resisting torque 𝑇 provided at the columns. 

Without the torsional moments, the structure will collapse. 

 

 
Figure 8.1-2: Primary or equilibrium torsion at a cantilevered slab. 

8.1.3.2 Secondary Torsion,  

• Also called compatibility torsion or statically indeterminate torsion, arises 

from the requirements of continuity, that is, compatibility of deformation between 

adjacent parts of a structure.  
• For this case, the torsional moments cannot be found based on static equilibrium 

alone. Disregard of continuity in the design will often lead to extensive 

cracking, but generally will not cause collapse. An internal readjustment 

of forces is usually possible and an alternative equilibrium of forces found.  

• An example of secondary torsion is found in the spandrel or edge beam supporting 
a monolithic concrete slab, shown in Figure 8.1-3a.  

o First Load Path: 

If the spandrel beam is torsionally stiff and suitably reinforced, and if the 

columns can provide the necessary resisting torque T, then the slab moments 

will approximate those for a rigid exterior support as shown in Figure 8.1-3b.  
o Second Load Path: 

However, if the beam has little torsional stiffness and inadequate torsional 

reinforcement, cracking will occur to further reduce its torsional stiffness, and 

the slab moments will approximate those for a hinged edge, as shown in 

Figure 8.1-3c.  

If the slab is designed to resist the altered moment diagram, collapse will not occur. 
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(a) Secondary or compatibility torsion at an edge beam. 

  
(b) slab moments if edge beam is stiff 

torsionally  

(c) Slab moments if edge beam is flexible 

torsionally. 
Figure 8.1-3: Secondary or compatibility torsion. 

8.1.4 Torsion in Uncracked Plain Concrete Members 
If the material is elastic, St. Venant’s torsion theory indicates that torsional shear 

stresses are distributed over the cross section, as shown in Figure 8.1-4 below. 

• Stress Distribution in Elastic Martial: 
The largest shear stresses occur at the middle of the wide faces.  

• Stress Distribution in Inelastic Martial: 

If the material deforms inelastically, as expected for concrete, the stress 

distribution is closer to that shown by the dashed line.  

• Diagonal Stresses Associated with Torsional Shear Stresses: 

o Shear stresses in pairs act on an element at or near the wide surface, as shown 
in Figure 8.1-4a.  

o As explained in strength of materials texts, this state of stress corresponds to 

equal tension and compression stresses on the faces of an element at 45° to the 

direction of shear.  

o These inclined tension stresses are of the same kind as those caused by 
transverse shear, discussed in Chapter 5.  

o However, in the case of torsion, since the torsional shear stresses are of opposite 

sign on opposing sides of the member (Figure 8.1-4b), the corresponding 

diagonal tension stresses are at right angles to each other (Figure 8.1-4a). 

 
Figure 8.1-4: Stresses caused by torsion. 
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8.1.5 Cracking Torque 𝑻𝒄𝒓 
• Definition of Cracking Torque 𝑇𝑐𝑟 

o When the diagonal tension stresses exceed the tensile resistance of the 

concrete, a crack forms at some accidentally weaker location and spreads 

immediately across the beam.  

o The value of torque corresponding to the formation of this diagonal crack is 
known as the cracking torque 𝑇𝑐𝑟. 

• Using Thin-walled Tube, Space Truss Analogy to Compute 𝑇𝑐𝑟: 

o The nonlinear stress distribution shown by the dotted lines in Figure 8.1-4b 

lends itself to the use of the thin-walled tube, space truss analogy. 

o Using this analogy, the shear stresses are treated as constant over a finite 

thickness t around the periphery of the member, allowing the beam to be 

represented by an equivalent tube, as shown in Figure 8.1-5 below.  
• Shear Flow According to Thin-walled Tube Model: 

In the analogy, shear flow 𝑞 is treated as a constant around the perimeter of the 

tube and related to applied torque, 𝑇, as follows: 
𝑇 = 𝑞(𝑥0𝑡)𝐴𝑟𝑒𝑎 × 𝑦0 𝐴𝑟𝑚 + 𝑞(𝑦0𝑡)𝐴𝑟𝑒𝑎 × 𝑥0 𝐴𝑟𝑚 ⟹ 𝑇 = 2𝑞 𝑥0𝑦0𝑡 
The product 𝑥0𝑦0 represents the area enclosed by the shear flow path 𝐴0 , giving 

∵ 𝑥0𝑦0 = 𝐴0 ⟹∴ 𝑇 = 2𝑞𝐴0 ⟹ 𝑞 =
𝑇

2𝐴0
   ∎ 

• Shear Stress 𝜏 According to Thin-walled Tube Model: 

∵ 𝜏 =
𝑞

𝑡
⟹∴ 𝜏 =

𝑇

2𝐴0𝑡
  

• Corresponding Diagonal Tension: 

From Figure 8.1-4a above 
𝜎 = 𝜏 
Let tensile strength of concrete approximated with 

𝜎 = 0.33𝜆√𝑓𝑐′ 

Therefore, the cracking torque would be: 

𝑇𝑐𝑟 = 0.33𝜆√𝑓𝑐′(2𝐴0𝑡) 

Let  

𝐴0 ≈
2

3
𝐴𝑐𝑝, 𝑡 =

3

4

𝐴𝑐𝑝

𝑝𝑐𝑝
 

The cracking moment would be: 

𝑇𝑐𝑟 = 0.33𝜆√𝑓𝑐′ (2 ×
2

3
𝐴𝑐𝑝 ×

3

4

𝐴𝑐𝑝

𝑝𝑐𝑝
) 

𝑇𝑐𝑟 = 0.33𝜆√𝑓𝑐′ (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
)     ∎ 

where  
𝐴𝑐𝑝 is area enclosed by outside perimeter of concrete cross section, in 𝑚𝑚2, 

𝑝𝑐𝑝   is outside perimeter of concrete cross section, in mm. 

  
Figure 8.1-5: Thin-walled tube under torsion. 
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8.1.6 Torsion in Reinforced Concrete Members 

8.1.6.1 Reinforcement for Torsion 

• To resist torsion for values of T above 𝑇𝑐𝑟 , reinforcement must consist of closely 

spaced stirrups and longitudinal bars,  

• Reinforcement for torsion with cracking pattern are presented in Figure 8.1-6 
below. 

 Figure 8.1-6: Reinforcement for torsion. 

8.1.6.2 Shear Path after Cracking 

• Tests show that, after cracking, the area enclosed by 
the shear path is defined by the dimensions 𝑥0 and 𝑦0 

measured to the centerline of the outermost 

closed transverse reinforcement.  

• These dimensions define the gross area 
𝐴𝑜ℎ  =  𝑥𝑜 𝑦𝑜  
and the shear perimeter  
𝑝ℎ =  2( 𝑥𝑜 +  𝑦𝑜) 
measured at the steel centerline, see Figure 8.1-7 

above 

8.1.6.3 Basic Relation for Stirrups Torsional 

Reinforcement 

• With referring to Figure 8.1-8 below, the relation for 

stirrups torsional reinforcement can be formulated based on basic principles of 

equilibrium as presented in below: 

𝑇4 =
𝑉4𝑥0

2
 

• With referring to Figure 8.1-9 below, the vertical shear force, 𝑉4, can be related 

to the provided stirrups as follows: 
𝑉4 = 𝐴𝑡𝑓𝑦𝑡𝑛 

where  
𝐴𝑡 is area of one leg of a closed stirrup, 

𝑓𝑦𝑡 is yield strength of transverse reinforcement, 

n is number of stirrups intercepted by torsional crack. 

∵ 𝑛 = 𝑦0

cot 𝜃

𝑠
⟹∴ 𝑉4 =  

𝐴𝑡𝑓𝑦𝑡𝑦0

𝑠
cot 𝜃 

and the pertained torsion, 𝑇4, would be: 

𝑇4 =  
𝐴𝑡𝑓𝑦𝑡𝑦0𝑥0

2𝑠
cot 𝜃 

• The contributions of the horizontal walls 𝑇1, 𝑇2, and T 3 can be determined in the 

same way. Summing over all four sides, the nominal capacity of the section is: 

𝑇𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 = 𝑇𝑛 = ∑ Ti

4

𝑖=1

=  
2𝐴𝑡𝑓𝑦𝑡𝑦0𝑥0

𝑠
cot 𝜃      ∎ 

• Noting that 𝑦𝑜𝑥𝑜 =  𝐴𝑜ℎ and rearranging slightly give 

𝑇𝑛 =
2𝐴0ℎ𝐴𝑡𝑓𝑦𝑡

𝑠
cot 𝜃 

 
Figure 8.1-7: Notations 

for shear flow path after 

cracking of a reinforced 
concrete beam.  
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Figure 8.1-8: Space truss analogy. Figure 8.1-9: Vertical tension in 

stirrups. 

8.1.6.4 Basic Relation for Longitudinal Reinforcement 

• As shown in Figure 8.1-10 a and b, the horizontal component of compression in 
the struts in the vertical wall must be equilibrated by an axial tensile force 𝛥𝑁4.  

 
(a) (b) 

Figure 8.1-10: Basis for contribution of longitudinal reinforcement for torsional 

strength: (a) diagonal compression in vertical wall of beam; and (b) equilibrium 
diagram of forces due to shear in vertical wall. 

• Based on the assumed uniform distribution of shear flow around the 

perimeter of the member, the diagonal stresses in the struts must be 

uniformly distributed, resulting in a line of action of the resultant axial force 
that coincides with the mid-height of the wall.  

• Referring to Figure 8.1-10b , the total contribution of the right-hand vertical wall 

to the change in axial force of the member due to the presence of torsion is: 

Δ𝑁4 = 𝑉4 cot 𝜃 =  
𝐴𝑡𝑓𝑦𝑡𝑦0

𝑠
cot2 𝜃 

• Summing over all four sides, the total increase in axial force for the member is: 

Δ𝑁 = ∑ ΔNi

4

𝑖=1

=
𝐴𝑡𝑓𝑦𝑡

𝑠
2(𝑥0 + 𝑦0) cot2 𝜃 ⟹ Δ𝑁 =

𝐴𝑡𝑓𝑦𝑡𝑝ℎ

𝑠
cot2 𝜃 

where 𝑝ℎ is the perimeter of the centerline of the closed stirrups. 

• Longitudinal reinforcement must be provided to carry the added axial force Δ N. 

If that steel is designed to yield, then: 

𝐴𝑙𝑓𝑦 =  
𝐴𝑡𝑓𝑦𝑡𝑝ℎ

𝑠
cot2 𝜃 

Solve for 𝐴𝑙 to obtain: 

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
 cot2 𝜃 

where 𝐴ℓ is total area of longitudinal reinforcement to resist torsion,  

• Finally, as 

𝑇𝑛 =
2𝐴0ℎ𝐴𝑡𝑓𝑦𝑡

𝑠
cot 𝜃 

therefore, 
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𝐴𝑡𝑓𝑦𝑡 =
𝑇𝑛𝑠

2𝐴0ℎ𝐴𝑡𝑓𝑦𝑡 cot 𝜃
 

Substitute 𝐴𝑡𝑓𝑦𝑡 into equation above for 𝐴𝑙 

𝐴𝑙 = (
1

𝑠
𝑝ℎ

1

𝑓𝑦
 cot2 𝜃) (

𝑇𝑛𝑠

2𝐴0ℎ𝐴𝑡𝑓𝑦𝑡 cot 𝜃
) 

and for 𝑇𝑛 to obtain: 

𝑇𝑛 =  
2𝐴𝑜ℎ𝐴𝑙𝑓𝑦

𝑝ℎ
tan 𝜃 

8.1.7 Torsion plus Shear 
• Members are rarely subjected to torsion alone. The prevalent situation is that of a 

beam subject to the usual flexural moments and shear forces, which, in addition, 

must resist torsional moments. 

• Basic Shear and Torsion Stresses in Reinforced Concrete Members: 

Using the usual representation for reinforced concrete, the nominal shear stress 
caused by an applied shear force V is: 

𝜏𝑣 =
𝑉

𝑏𝑤𝑑
 

While using the concept of thin-walled tube, the shear 

stress caused by torsion would be: 

𝜏𝑡 =
𝑇

2𝐴0𝑡
 

• Superposition of Shear and Torsion Stresses in a 

Hollow Section: 

• As shown in Figure 8.1-11 for hollow sections, these 
stresses are directly additive on one side of the 

member. Thus, for a cracked concrete cross section 

with  

𝐴𝑜 =  0.85 𝐴𝑜ℎ and 𝑡 =
𝐴𝑜ℎ

𝑝ℎ
 

the maximum shear stress can be expressed as: 

𝜏 = 𝜏𝑣 + 𝜏𝑡 =
𝑉

𝑏𝑤𝑑
+

𝑇𝑝ℎ

1.7𝐴𝑜ℎ
2  

• For a member with a solid section, Figure 8.1-12, 𝜏𝑡 

is predominately distributed around the perimeter, as 
represented by the hollow tube analogy, but the full 
cross section contributes to carrying 𝜏𝑣.  

• Comparisons with experimental results show 

that equation above for a hollow section is 

somewhat overconservative for solid sections 

and that a better representation for maximum shear 

stress is provided by the square root of the sum of the 
squares, SRSS1, of the nominal shear stresses: 

𝜏 = √(
𝑉

𝑏𝑤𝑑
)

2

+ (
𝑇𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

  

 

 

 

 

 
1 SRSS summation is usually adopted to superimpose two quantities that their maximum values occurs 

at different positions or at different times.  

 
Figure 8.1-11: Addition of 

torsional and shear 
stresses in a hollow 

section. 

 
Figure 8.1-12: Addition of 
torsional and shear 

stresses in a solid section. 
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8.2 ACI CODE PROVISIONS FOR TORSION DESIGN 

8.2.1 Basic Design Principle 
The basic principles upon which ACI Code design provisions are based have been 

presented in the preceding chapters for flexure and shear. ACI Code 9.5.1.1 safety 
provisions require that: 
𝑇𝑢 ≤ 𝜙𝑇𝑛 

where  
𝑇𝑛 = nominal torsional strength of member, 

𝑇𝑢 = required torsional strength at factored loads. The strength reduction factor 𝜙 =  0.75 

applies for torsion. 

8.2.2 Computing of 𝑻𝒖 
• In accordance with ACI Code 9.4.4.3, sections located less than a distance d 

from the face of a support may be designed for the same torsional moment 𝑇𝑢 as 

that computed at a distance d, recognizing the beneficial effects of support 

compression. 

• However, if a concentrated torque is applied within this distance, the critical 
section must be taken at the face of the support. 

• These provisions parallel those used in shear design. 

8.2.3 Effective Section  

8.2.3.1 Before Cracking 

• For T beams, a portion of the overhanging flange contributes to the cracking 

torsional capacity and, if reinforced with closed stirrups, to the torsional 

strength.  
• According to ACI Code 9.2.4.4, the contributing width of the overhanging flange 

on either side of the web would be as indicated in Figure 8.2-1 below. 

 

Figure 8.2-1: Portion 

of slab to be included 
with beam for 

torsional design. 

• The overhanging flanges shall be neglected in cases where the parameter 
𝐴𝑐𝑝

2 /𝑝𝑐𝑝  for solid sections or 𝐴𝑔
2/𝑝𝑐𝑝  for hollow sections calculated for a 

beam with flanges is less than that calculated for the same beam ignoring 

the flanges. 

8.2.3.2 After Cracking 

After torsional cracking, the applied torque is resisted by the portion of the section 
represented by 𝐴𝑜ℎ , the area enclosed by the centerline of the outermost closed 

transverse torsional reinforcement. For rectangular, box, and T sections, 𝐴𝑜ℎ  is 

illustrated in Figure 8.2-2 below.  

 
 

Figure 8.2-2: Definition of 𝑨𝒐𝒉. 
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8.2.3.3 Sections before and after Cracking 

For sections with flanges, the Code does not require that the section used to establish 
𝐴𝑐𝑝 coincide with that used to establish 𝐴𝑜ℎ. 

8.2.4 Threshold Torsion 
• If the value of factored torsional moment 𝑇𝑢 is low enough, the effects of torsion 

may be neglected, according to ACI Code 22.7.1.1.  
• This lower limit is 𝜙 times the threshold torsion 𝑇𝑡ℎ, which equals 25 percent of 

the cracking torque, given by: 

𝑇𝑡ℎ =
1

4
𝑇𝑐𝑟 

∵ 𝑇𝑐𝑟 = 0.33𝜆√𝑓𝑐′ (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) 

∴ 𝑇𝑡ℎ 𝑓𝑜𝑟 𝑠𝑜𝑙𝑖𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0.083𝜆√𝑓𝑐
′ (

𝐴𝑐𝑝
2

𝑝𝑐𝑝
) 

• For hollow cross sections, the threshold torsion is: 

𝑇𝑡ℎ 𝑓𝑜𝑟 ℎ𝑜𝑙𝑙𝑜𝑤 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 0.083𝜆√𝑓𝑐
′ (

𝐴𝑔
2

𝑝𝑐𝑝
) 

• The value of λ is as specified in ACI Code 19.2.4.2 and previously described with 
λ = 0.85, 0.75, and 1.0 for sand-lightweight, all-lightweight, and 

normalweight concrete, respectively. 

8.2.5 Equilibrium vs. Compatibility Torsion 
• As discussed in Article 8.1.3, a distinction is made in the ACI Code between 

equilibrium (primary) torsion and compatibility (secondary) torsion. 

• For the equilibrium (primary) torsion, the supporting member must be 

designed to provide the torsional resistance required by static 

equilibrium. 
• For secondary torsion resulting from compatibility requirements, it is assumed 

that cracking will result in a redistribution of internal forces; and according to ACI 
Code 22.7.3.2, the maximum torsional moment 𝑇𝑢 may be reduced to: 
𝑇𝑢 = 𝜙𝑇𝑐𝑟 

or 

𝑇𝑢 = 𝜙 (0.33𝜆√𝑓𝑐′ (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
)) 

8.2.6 Limitations on Shear Stress 
• Based largely on empirical observations, the width of diagonal cracks caused 

by combined shear and torsion under service loads can be limited by limiting the 
calculated shear stress under factored shear and torsion. 

• In accordance with ACI Code 22.7.7.1, shear stresses should be limited to the 

following values: 

o For hollow sections: 

(
𝑉𝑢

𝑏𝑤𝑑
) + (

𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 ) ≤ 𝜙 (

𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

o For solid sections: 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

≤ 𝜙 (
𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

8.2.7 Reinforcement for Torsion 

8.2.7.1 Stirrups for Torsion 

• As discussed in Article 8.1.6 above, stirrups for torsion can be determined from 

following relation: 

 
• According to ACI Code 22.7.6.1, the angle θ may assume any value between 30 
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and 60°, with a value of θ = 45° suggested. 
• The Code limits fyt to a maximum of 420 MPa for reasons of crack control. 

• The reinforcement provided for torsion must be combined with that required for 

shear. Based on the typical two-leg stirrup, this may be expressed as 

 
• Anchorage of torsional stirrups is presented in Figure 8.2-3 below. 

 
Figure 8.2-3: Stirrup-ties and longitudinal reinforcement for torsion: (a) spandrel beam 
with flanges on one side; (b) interior beam; (c) isolated rectangular beam; (d) wide 

spandrel beam; and (e) T beam with torsional reinforcement in flanges. 

• Maximum Spacing for Torsional Stirrups 

According to ACI Code 9.6.4.2, to control spiral cracking, the maximum 
spacing of torsional stirrups should be: 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑝ℎ

8
 𝑜𝑟 300𝑚𝑚) 

• Minimum Area of Closed Stirrups 

In addition, for members requiring both shear and torsion reinforcement, the 

minimum area of closed stirrups is equal to: 

𝐴𝑣 + 2𝐴𝑡 = 0.062√𝑓𝑐′  
𝑏𝑤𝑠

𝑓𝑦𝑡
≥ 0.35 

𝑏𝑤𝑠

𝑓𝑦𝑡
 

8.2.7.2 Longitudinal Reinforcement 

• Based on discussion of Article 8.1.6 above, the area of longitudinal bar 
reinforcement 𝐴ℓ required to resist 𝑇𝑛 is given by: 

𝐴ℓ = (
𝐴𝑡

𝑠
) 𝑝ℎ (

𝑓𝑦𝑡

𝑓𝑦
) cot2 𝜃 

where 𝜃 must have the same value used to calculate 𝐴𝑡. 

• The term 𝐴𝑡/ 𝑠 should be taken as the value calculated, not modified based on 

minimum transverse steel requirements. 

• Based on an evaluation of the performance of reinforced concrete beam torsional 
test specimens, ACI Code 9.6.4.3 requires a minimum value of 𝐴ℓ equal to the 

lesser: 

𝑎.   0.42√𝑓𝑐′ (
𝐴𝑐𝑝

𝑓𝑦𝑡
) − (

𝐴𝑡

𝑠
) 𝑝ℎ (

𝑓𝑦𝑡

𝑓𝑦
) 

𝑏.   0.42√𝑓𝑐′ (
𝐴𝑐𝑝

𝑓𝑦𝑡
) − (

0.175𝑏𝑤

𝑓𝑦𝑡
) 𝑝ℎ (

𝑓𝑦𝑡

𝑓𝑦
) 
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8.3 DESIGN PROCEDURES AND EXAMPLES 
Designing a reinforced concrete flexural member for torsion involves a series of steps. 

The following sequence ensures that each is covered: 

• Compute 𝑉𝑢  and 𝑇𝑢 . When pertinent conditions are satisfied, 𝑉𝑢  and 𝑇𝑢  can be 

determined at distance 𝑑 from face of support.    

• Determine if the factored torque is less than:  

𝜙𝑇𝑇ℎ = 𝜙0.083𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) 

If so, torsion may be neglected. If not, proceed with the design. Note that in this 

step, portions of over-hanging flanges, as defined in Figure 8.2-1 above, must 
be included in the calculation of 𝐴𝑐𝑝 and 𝑝𝑐𝑝. 

 
Figure 8.2-1: Portion of slab to be included with beam for torsional design. Reproduce 
for convenience. 

• If the torsion is compatibility torsion, rather than equilibrium torsion, as 

described in Section 8.1.3 above, the maximum factored torque may be reduced 

to: 

𝜙0.33𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) 

Equilibrium torsion cannot be adjusted. 
• Check the shear stresses in the section under combined torsion and shear, using 

the following criteria: 

o For hollow sections: 

(
𝑉𝑢

𝑏𝑤𝑑
) + (

𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 ) ≤ 𝜙 (

𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

o For solid sections: 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

≤ 𝜙 (
𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

• Calculate the required transverse reinforcement for torsion using following 

relation: 

𝐴𝑡 =
𝑇𝑢𝑠

2𝜙𝐴𝑜𝑓𝑦𝑡 cot 𝜃
 

Combine 𝐴𝑡 and 𝐴𝑣 using following relation: 
𝐴𝑣+𝑡

𝑠
=

𝐴𝑣

𝑠
+ 2

𝐴𝑡

𝑆
 

• Check that the minimum transverse reinforcement requirements are met for both 

torsion and shear. These include: 

o The maximum spacing: 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑝ℎ

8
 𝑜𝑟 300𝑚𝑚) 

o The minimum area: 

𝐴𝑣 + 2𝐴𝑡 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (0.062√𝑓𝑐′  
𝑏𝑤𝑠

𝑓𝑦𝑡
, 0.35 

𝑏𝑤𝑠

𝑓𝑦𝑡
) 

As in Chapter 5, solve for sFor minimum value of Av+2At
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sFor minimum value of Av+2At
= minimum (

(Av + 2At)fyt

0.062√fc’bw

,
(Av + 2At)fyt

0.35bw
) 

• Calculate the required longitudinal torsional reinforcement 𝐴ℓ, using the following 

relation: 

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
cot2 𝜃 

then comparing with 𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 given by: 

𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (0.42√𝑓𝑐′
𝐴𝑐𝑝

𝑓𝑦𝑡
− (

𝐴𝑡

𝑠
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
, 0.42√𝑓𝑐′

𝐴𝑐𝑝

𝑓𝑦𝑡
− (

0.175𝑏𝑤

𝑓𝑦𝑡
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
) 

• Details for Torsional Longitudinal Bars: 
According to ACI Code 9.7.5, 

o The spacing of the longitudinal bars should not exceed 300mm,  

o They should be distributed around the perimeter of the cross section to control 

cracking and to ensure that the centroid of the additional longitudinal 

reinforcement for torsion should approximately coincide with the centroid of 
the section. 

o The bars shall have a diameter at least 0.042 times the transverse 

reinforcement spacing, but not less than 10 mm.  

o At least one longitudinal bar must be placed at each corner of the stirrups.  

o Careful attention must be paid to the anchorage of longitudinal torsional 

reinforcement so that it is able to develop its yield strength at the face of the 
supporting columns, where torsional moments are often maximum. 

 

Example 8.3-1 

The 8.5m span beam shown in Figure 8.3-1 below carries a monolithic slab 

cantilevering 1.8m past the beam centerline. The resulting L beam supports a live load 

of 11.5 kN/m along the beam centerline plus 2.4 kPa uniformly distributed over the 
upper slab surface. The effective depth to the flexural steel centroid is 546mm, and the 

distance from the beam surfaces to the centroid of stirrup steel is 45mm. Material 
strengths are 𝑓𝑐

′ = 35 𝑀𝑃𝑎 and 𝑓𝑦 = 𝑓𝑦𝑡 = 420 𝑀𝑃𝑎. Using same stirrup spacing along beam 

span, design the torsional and shear reinforcement for the beam.  

It is useful to note that based on flexure requirement a longitudinal reinforcement of 
1191 𝑚𝑚2 should be provided for negative region and about 900𝑚𝑚2 should be provided 

for positive region. 

 3D view 

Figure 8.3-1: Structure for Example 8.3-1. 
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Elevation View. 

   Sectional View. 
Figure 8.3-1: Structure for Example 8.3-1. Continue. 

Solution 

Factored Loads 

Factored uniformly distributed load: 
𝑊𝑢 = 1.2 × (0.15 × 24) + 1.6 × 2.4 = 8.16 𝑘𝑃𝑎 

The resultant for this UDL would be: 

𝑅𝑢 𝑜𝑓 𝑈𝐷𝐿 = 8.16 × 1.65 = 13.47
𝑘𝑁

𝑚
 

Located at eccentricity of: 

𝑒 =
1.65

2
+

0.30

2
= 0.975 𝑚 

Factored live load: 
𝑞𝑢 = 1.2 × (0.3 × 0.6 × 24) + 1.6 × 11.5 ≈ 24 𝑘𝑁/𝑚 

Factored Shear Force and Torsion 

As all related conditions are satisfied, therefore shear force and torsion can be 

determined at distance  
𝑉𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

=
1

2
((24 + 13.47) × (8.50 − 0.546 × 2))

≈ 139 𝑘𝑁  
𝑇𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

=
1

2
((13.47 × 0.975) × (8.50 − 0.546 × 2))

= 48.6 𝑘𝑁. 𝑚 

Comparing with 𝜙𝑇𝑡ℎ 

𝜙𝑇𝑇ℎ = 𝜙0.083𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) 

The effective section would be as indicated in below: 
𝐴𝑐𝑝 = (300 × 600 + 150 × 450) = 247500 𝑚𝑚2 0.3m

hb= 0.45m

hf= 0.15m

hb= 0.45m <4hf= 4x0.15m
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𝑝𝑐ℎ = (300 + 600) × 2 + 450 × 2 = 2700 𝑚𝑚  

𝜙𝑇𝑇ℎ = 𝜙0.083𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) =

0.75 × 0.083 × 1.0 × √35 (
2475002

2700
)

106
= 8.36 𝑘𝑁. 𝑚 < 𝑇𝑢  

Clearly, torsion must be considered in the present case.  

Primary versus compatibility torsion: 
Since the torsional resistance of the beam is required for equilibrium, no reduction in 𝑇𝑢 

may be made. 

Checking for shear stresses: 

Check the shear stresses in the section under combined torsion and shear. As the section 
is a solid one, therefore shear stresses would be checked using the following criteria: 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

≤ 𝜙 (
𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

Proposed the stirrups indicated in below, with 45𝑚𝑚 cover to the 

center of the stirrup bars from all faces, 
𝑥0 = 300 − 90 = 210 𝑚𝑚, 𝑦0 = 600 − 90 = 510 𝑚𝑚 
𝐴𝑜ℎ = 210 × 510 =  107100 𝑚𝑚2, 𝑝ℎ = 2 × (210 + 510) =  1440 𝑚𝑚 

Substitute in the criterion to obtain 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

=  √(
139 × 103

300 × 546
)

2

+ (
48.6 × 106 × 1440

1.7 × 1071002
)

2

≤ 0.75 × (0.17√35 + 0.66√35) 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

=  √(
139 × 103

300 × 546
)

2

+ (
48.6 × 106 × 1440

1.7 × 1071002
)

2

= 0.75 × (0.17√35 + 0.66√35)

= 3.68𝑀𝑃𝑎 = 3.68 𝑀𝑃𝑎 ∴ 𝑂𝑘. 
Therefore, the cross section is of adequate size for the given concrete strength. 

Design of Transverse Reinforcement 
The values of 𝐴𝑡 and 𝐴𝑣 will now be calculated at the distance 𝑑  from column face. With 

choosing 𝜃 =  45°, 

𝐴𝑡 =
𝑇𝑢𝑠

2𝜙𝐴𝑜𝑓𝑦𝑡 cot 𝜃
 

𝐴𝑜 = 0.85𝐴𝑜ℎ = 0.85 × 210 × 510 =  91035 𝑚𝑚2 

𝐴𝑡 =  
48.6 × 106

2 × 0.75 × 91035 × 420 × 1.0
𝑠 = 0.847𝑠 

𝜙𝑉𝑐 =
0.75 × 0.17 × √35 × 546 × 300

1000
= 124 𝑘𝑁 

𝑉𝑠 =
𝑉𝑢 − 𝜙𝑉𝑐

𝜙
=

139 − 124

0.75
= 20 𝑘𝑁 

From Chapter 5, 

𝑉𝑠 = (𝐴𝑣𝑓𝑦𝑡) ×
𝑑

𝑠
⇒ 𝐴𝑣 =

𝑉𝑠

𝑓𝑦𝑡𝑑
𝑠 =  

20000

420 × 546
𝑠 = 0.0872𝑠 

Combine 𝐴𝑡 and 𝐴𝑣 using following relation: 
2𝐴𝑡 + 𝐴𝑣 = 2 × 0.847𝑠 + 0.0872𝑠 = 1.78𝑠 
Try stirrups of 𝑁𝑜. 13 

2𝐴𝑡 + 𝐴𝑣 = 2 ×
𝜋 × 132

4
= 1.78𝑠 

Solve for spacing 𝑠: 
𝑠 = 149 𝑚𝑚  
Try 𝑁𝑜. 13 @ 125 𝑚𝑚 

Check with maximum spacing for shear and torsion: 

∵ 𝑉𝑠 < 0.33𝜆√𝑓𝑐′𝑏𝑤𝑑 

Therefore, 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟 𝑠ℎ𝑒𝑎𝑟 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑑

2
, 600) 

While the maximum spacing for torsion is: 
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𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑝ℎ

8
 𝑜𝑟 300𝑚𝑚) 

Therefore, 𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 for both aspects would be: 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑑

2
,
𝑝ℎ

8
, 300) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (

546

2
,
1440

8
, 300) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(273,180, 300)

= 180𝑚𝑚 > 𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∴ 𝑂𝑘. 
Finally, checking the limitation on minimum area of transverse reinforcement: 

sFor minimum value of Av+2At
= minimum (

(Av + 2At)fyt

0.062√fc’bw

,
(Av + 2At)fyt

0.35bw
) 

sFor minimum value of Av+2At
= minimum (

2 ×
𝜋 × 132

4
× 420

0.062 × √35 × 300
,
2 ×

𝜋 × 132

4
× 420

0.35 × 300
)

= minimum (1013,1061) = 1013 𝑚𝑚 ≫ 𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∴ 𝑂𝑘. 
Therefore use 𝑁𝑜. 13 @ 125𝑚𝑚 along whole span of the beam.  

Design for Longitudinal Reinforcement for Torsion: 
Calculate the required longitudinal torsional reinforcement 𝐴𝑙 , using the following 

relation: 

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
cot2 𝜃 

The longitudinal steel required for torsion at a distance 𝑑 from the column face is: 

∵ 𝐴𝑡 =  0.847𝑠 ⇒
𝐴𝑡

𝑠
= 0.847 

Then  

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
cot2 𝜃 = 0.847 × 1440 × 1.0 × 1.02 = 1219 𝑚𝑚2  

Comparing with 𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 given by: 

𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (0.42√𝑓𝑐′
𝐴𝑐𝑝

𝑓𝑦𝑡
− (

𝐴𝑡

𝑠
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
, 0.42√𝑓𝑐′

𝐴𝑐𝑝

𝑓𝑦𝑡
− (

0.175𝑏𝑤

𝑓𝑦𝑡
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
) 

𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (0.42 × √35 ×
247500

420
− (0.847) × 1440 × 1.0,

0.42 × √35 ×
247500

420
− (

0.175 × 300

420
) × 1440 × 1.0) = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(225, 1284)

= 225 𝑚𝑚2 < 𝐴𝑙 ∴ 𝑂𝑘. 
Reinforcement will be placed at the top, mid-depth, and bottom of the member each 
level to provide not less than 1219/3 = 406 . Try rebar with No.20: 

𝑁𝑜. 𝑜𝑓 𝑟𝑒𝑏𝑎𝑟𝑠 𝑎𝑡 𝑚𝑖𝑑 𝑑𝑒𝑝𝑡ℎ =
406

𝜋 × 202

4

= 1.29  

Use 2𝑁𝑜. 20 @ 𝑚𝑖𝑑 𝑑𝑒𝑝𝑡ℎ 

𝑁𝑜. 𝑜𝑓 𝑡𝑜𝑝 𝑟𝑒𝑏𝑎𝑟𝑠 =  
1191 + 406

𝜋 × 202

4

≈ 5.0 

Use 5𝑁𝑜. 20 @ 𝑡𝑜𝑝 

𝑁𝑜. 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑏𝑎𝑟𝑠 =  
900 + 406

𝜋 × 202

4

= 4.15 

Use 5𝑁𝑜. 20 @ 𝐵𝑜𝑡𝑡𝑜𝑚.  

Proposed beam reinforcement are presented in Figure 8.3-2 below. To be a final 
decision, proposed reinforcement should be checked for ACI requirements for details of 

torsional longitudinal bars, ACI Code 9.7.5, 

• The spacing of the longitudinal bars should not exceed 300mm, Ok.  

• They should be distributed around the perimeter of the cross section to control 

cracking, Ok. 

• The bars shall have a diameter at least 0.042 times the transverse 

reinforcement spacing, but not less than 10 mm., Ok. 
• At least one longitudinal bar must be placed at each corner of the stirrups, Ok.  
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• Careful attention must be paid to the anchorage of longitudinal torsional 

reinforcement so that it is able to develop its yield strength at the face of the 

supporting columns, where torsional moments are often maximum. This 
should be as discussed in Chapter 7. 

 
Longitudinal section view. 

Figure 8.3-2: Beam reinforcement for Example 8.3-1. 

  
Section @ supports Section @ mid-span 

Figure 8.3-2: Beam reinforcement for Example 8.3-1. Continue.  
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Example 8.3-2 

For a maintenance shop indicated in Figure 8.3-3 below, design a floor supporting 

spandrel beam for torsion and shear. The floor slab is subjected to a live load of 2.5 

kPa and a superimposed dead load of 2.0 kPa in addition of its own weight. In your 

design, assume that: 

• 𝑓𝑐
′ = 28 𝑀𝑃𝑎, and 𝑓𝑦 = 𝑓𝑦𝑡 = 420 𝑀𝑃𝑎, 

• Based on flexural design, 𝐴𝑡𝑜𝑝 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≈ 700 𝑚𝑚2 and 𝐴𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≈ 610 𝑚𝑚2, 

• Try two layers with 𝑁𝑜. 20 for longitudinal reinforcement and 𝑁𝑜. 10 for stirrups.  

 3D View. 

 3D Sectional View. 
Figure 8.3-3: Maintenance shop for Example 8.3-2. 
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 Sectional View. 

 Plan View. 

 

Callout View for the 

Spandrel Beam. 
Figure 8.3-3: Maintenance shop for Example 8.3-2. Continue. 
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Solution 

Factored Loads 
Factored uniformly distributed, 𝑊𝑢, that acting on the slab would be: 
𝑊𝐷 = 0.2 × 24 + 2.0 = 6.8 𝑘𝑃𝑎 
𝑊𝑢 = max( 1.4 × 6.8, 1.2 × 6.8 + 1.6 × 2.5) = 12.2 𝑘𝑃𝑎 

With considering brick cladding as a dead load and with assuming 𝛾𝐵𝑟𝑖𝑐𝑘 = 19 𝑘𝑁/𝑚3, the 

factored line load, 𝑞𝑢, would be: 

𝑞𝑢 = 1.2 × ((0.25 × 2.40 × 19)𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘 𝑤𝑎𝑙𝑙 + (0.3 × 0.6 × 24)𝑠𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚) = 18.9
𝑘𝑁

𝑚
 

Factored Shear Force, 𝑉𝑢, and Torsion, 𝑇𝑢, Acting on Beam 

As would be discussed in Chapter 12, Analysis and Design of One-way Slabs, an 

edge supported slab is classified as one-way slab when its length to width ratio is more 

than 2. 
𝑙

𝑠
=

8.00

3.50
= 2.28 > 2 

Therefore, floor system is classified as one-way slab system.  
In Chapter 12, it is shown that shear force and torsion transferred from the slab to the 

supporting beam can be estimated from following relations, see Figure 8.3-4 below:  

𝑀𝑢 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟−𝑣𝑒 𝑜𝑓 𝑠𝑙𝑎𝑏 = 𝑇𝑢 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑏𝑒𝑎𝑚 =
𝑊𝑢𝑙𝑛

2

24
  

𝑉𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑙𝑎𝑏 = 𝐿𝑜𝑎𝑑 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑏𝑒𝑎𝑚 =
𝑊𝑢𝑙𝑛

2
 

where: 
𝑊𝑢 = 𝐹𝑎𝑐𝑡𝑜𝑟𝑒𝑑 𝑈𝐷𝐿 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑙𝑎𝑏 = 12.2 𝑘𝑃𝑎 

𝑙𝑛 = 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑛 𝑜𝑓 𝑠𝑙𝑎𝑏 = 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑏𝑒𝑎𝑚 = 3.5 −
0.3

2
× 2 = 3.2 𝑚 

𝑀𝑢 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟−𝑣𝑒 𝑜𝑓 𝑠𝑙𝑎𝑏 = 𝑇𝑢 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑏𝑒𝑎𝑚 =
12.2 × 3.22

24
= 5.21 𝑘𝑁. 𝑚 𝑝𝑒𝑟 𝑚 ∎ 

𝑉𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑠𝑙𝑎𝑏 = 𝐿𝑜𝑎𝑑 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑏𝑒𝑎𝑚 =
12.2 × 3.2

2
= 19.5

𝑘𝑁

𝑚
 

Including the factored loads that acting directly on beam, the total factored line load 

acting on the beam would be: 

𝑞𝑢 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒 𝑙𝑜𝑎𝑑 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚 = 19.5 + 18.9 = 38.4
𝑘𝑁

𝑚
 ∎ 

 

Figure 8.3-4: Forces 
transformed from 

supported slab to the 
supporting beam. 

As all pertinent conditions are satisfied, therefore, design force can be determined at 
distance 𝑑 from face of support. With two layers of reinforcement and with adopting of 

𝑁𝑜. 20 for longitudinal reinforcement and 𝑁𝑜. 10 for stirrups, the effective depth would be: 

𝑑 = 600 − 40 − 10 − 20 −
25

2
= 517 𝑚𝑚 
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𝑉𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  
38.4 × (8.0 −

0.6
2

× 2 − 0.517 × 2)

2
= 122 𝑘𝑁 

𝑇𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
5.21 × (8.0 −

0.6
2

× 2 − 0.517 × 2)

2
= 16.6 𝑘𝑁. 𝑚 𝑝𝑒𝑟 𝑚 

A more accurate torque can be determined with considering of offset between transferred 
shear force, 𝑉𝑢, and the center line of the spandrel beam: 

𝑇𝑢 @ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
(5.21 + 19.5 ×

0.3
2

) × (8.0 −
0.6
2

× 2 − 0.517 × 2)

2
= 25.9 𝑘𝑁. 𝑚 𝑝𝑒𝑟 𝑚 

Comparing with 𝜙𝑇𝑡ℎ 

𝜙𝑇𝑇ℎ = 𝜙0.083𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) 

The effective section would be as indicated in below: 
𝐴𝑐𝑝 = (300 × 600 + 200 × 400) = 260000 𝑚𝑚2 

𝑝𝑐ℎ = (300 + 600) × 2 + 400 × 2 = 2600 𝑚𝑚  

𝜙𝑇𝑇ℎ = 𝜙0.083𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
) =

(0.75 × 0.083 × 1.0 × √28 × (
2600002

2600
))

106
= 8.56 𝑘𝑁. 𝑚 < 𝑇𝑢  

Clearly, torsion must be considered in the present 
case.  

Primary versus compatibility torsion: 

Since the torsional resistance of the beam is 
required for computability, therefore 𝑇𝑢 .can be 

reduced to the value indicated in below: 

𝑇𝑢 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝜙0.33𝜆√𝑓𝑐′  (
𝐴𝑐𝑝

2

𝑝𝑐𝑝
)

=
0.75 × 0.33 × 1.0 × √28 × (

2600002

2600
)

106

= 34.1 𝑘𝑁. 𝑚 > 𝑇𝑢 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

Therefore, no benefit can be obtained for torque reduction and the design should be 
based on 𝑇𝑢 of 16.6  𝑘𝑁. 𝑚. 

Checking for shear stresses: 

Check the shear stresses in the section under combined torsion and shear. As the section 

is a solid one, therefore shear stresses would be checked using the following criteria: 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

≤ 𝜙 (
𝑉𝑐

𝑏𝑤𝑑
+ 0.66√𝑓𝑐′) 

Proposed the stirrups indicated in below, with 45𝑚𝑚 cover to the 

center of the stirrup bars from all faces, 

𝑥0 = 300 − 40 × 2 −
10

2
× 2 = 210 𝑚𝑚 

𝑦0 = 600 − 40 × 2 −
10

2
× 2 = 510 𝑚𝑚 

𝐴𝑜ℎ = 210 × 510 =  107100 𝑚𝑚2 
𝑝ℎ = 2 × (210 + 510) =  1440 𝑚𝑚 

Substitute in the criterion to obtain 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

=  √(
122 × 103

300 × 517
)

2

+ (
25.9 × 106 × 1440

1.7 × 1071002
)

2

≤ 0.75 × (0.17√28 + 0.66√28) 

√(
𝑉𝑢

𝑏𝑤𝑑
)

2

+ (
𝑇𝑢𝑝ℎ

1.7𝐴𝑜ℎ
2 )

2

=  2.06 𝑀𝑃𝑎 ≤ 3.29 𝑀𝑃𝑎 ∴ 𝑂𝑘. 

Therefore, the cross section is of adequate size for the given concrete strength. 
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Design of Transverse Reinforcement 
The values of 𝐴𝑡 and 𝐴𝑣 will now be calculated at the distance 𝑑  from column face. With 

choosing 𝜃 =  45°, 

𝐴𝑡 =
𝑇𝑢𝑠

2𝜙𝐴𝑜𝑓𝑦𝑡 cot 𝜃
 

𝐴𝑜 = 0.85𝐴𝑜ℎ = 0.85 × 210 × 510 =  91035 𝑚𝑚2 

𝐴𝑡 =  
25.9 × 106

2 × 0.75 × 91035 × 420 × 1.0
𝑠 = 0.452𝑠 

𝜙𝑉𝑐 =
0.75 × 0.17 × √28 × 517 × 300

1000
= 105 𝑘𝑁 

𝑉𝑠 =
𝑉𝑢 − 𝜙𝑉𝑐

𝜙
=

122 − 105

0.75
= 22.6 𝑘𝑁 

From Chapter 5, 

𝑉𝑠 = (𝐴𝑣𝑓𝑦𝑡) ×
𝑑

𝑠
⇒ 𝐴𝑣 =

𝑉𝑠

𝑓𝑦𝑡𝑑
𝑠 =  

22.6 × 103

420 × 517
𝑠 = 0.104𝑠 

Combine 𝐴𝑡 and 𝐴𝑣 using following relation: 
2𝐴𝑡 + 𝐴𝑣 = 2 × 0.452𝑠 + 0.104𝑠 = 1.00𝑠 
Try stirrups of 𝑁𝑜. 10 

2𝐴𝑡 + 𝐴𝑣 = 2 ×
𝜋 × 102

4
= 1.00𝑠 

Solve for spacing 𝑠: 
𝑠 = 157 𝑚𝑚  
Try 𝑁𝑜. 10 @ 150 𝑚𝑚 

Check with maximum spacing for shear and torsion: 

∵ 𝑉𝑠 < 0.33𝜆√𝑓𝑐′𝑏𝑤𝑑 

Therefore, 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟 𝑠ℎ𝑒𝑎𝑟 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑑

2
, 600) 

While the maximum spacing for torsion is: 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑜𝑟 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (
𝑝ℎ

8
 𝑜𝑟 300𝑚𝑚) 

Therefore, 𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 for both aspects would be: 

𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = min (
𝑑

2
,
𝑝ℎ

8
, 300) = min (

517

2
,
1440

8
, 300) = 180𝑚𝑚 > 𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ∴ 𝑂𝑘. 

Try 𝑁𝑜. 10 @ 150 𝑚𝑚 

Finally, checking the limitation on minimum area of transverse reinforcement: 

sFor minimum value of Av+2At
= min (

(Av + 2At)fyt

0.062√fc’bw

,
(Av + 2At)fyt

0.35bw
)  

sFor minimum value of Av+2At
= min (

2 ×
𝜋 × 102

4
× 420

0.062 × √28 × 300
,
2 ×

𝜋 × 102

4
× 420

0.35 × 300
)  = 628 mm > 𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑

∴ 𝑂𝑘. 
Therefore use No. 10 @ 150mm along whole span of the beam.  

Design for Longitudinal Reinforcement for Torsion: 
Calculate the required longitudinal torsional reinforcement 𝐴𝑙 , using the following 

relation: 

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
cot2 𝜃 

The longitudinal steel required for torsion at a distance 𝑑 from the column face is: 

∵ 𝐴𝑡 =  0.452𝑠 ⇒
𝐴𝑡

𝑠
= 0.452 

Then  

𝐴𝑙 =
𝐴𝑡

𝑠
𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
cot2 𝜃 = 0.452 × 1440 × 1.0 × 1.02 = 650 𝑚𝑚2  

Comparing with 𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 given by: 
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𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min (0.42√𝑓𝑐′
𝐴𝑐𝑝

𝑓𝑦𝑡
− (

𝐴𝑡

𝑠
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
, 0.42√𝑓𝑐′

𝐴𝑐𝑝

𝑓𝑦𝑡
− (

0.175𝑏𝑤

𝑓𝑦𝑡
) 𝑝ℎ

𝑓𝑦𝑡

𝑓𝑦
) 

𝐴𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min (0.42 × √28 ×
260000

420
− (0.452) × 1440 × 1.0,

0.42 × √28 ×
260000

420
− (

0.175 × 300

420
) × 1440 × 1.0) = 724 𝑚𝑚2 > 𝐴𝑙 ∴ 𝑁𝑜𝑡 𝑂𝑘. 

∴ 𝐴𝑙 = 724 𝑚𝑚2 

Reinforcement will be placed at the top, mid-depth, and bottom of the member. Each 
level to provide not less than 724/3 = 241 . Try No.20 rebar: 

𝑁𝑜. 𝑜𝑓 𝑟𝑒𝑏𝑎𝑟𝑠 𝑎𝑡 𝑚𝑖𝑑 𝑑𝑒𝑝𝑡ℎ =
241

𝜋 × 202

4

≈ 0.767  

Therefore, using 2𝑁𝑜. 16 @ 𝑚𝑖𝑑 − 𝑑𝑒𝑝𝑡ℎ seems more suitable and economical. 

𝑁𝑜. 𝑜𝑓 𝑡𝑜𝑝 𝑟𝑒𝑏𝑎𝑟𝑠 =  
700 + 241

𝜋 × 202

4

= 2.99 

Use 3𝑁𝑜. 20 @ 𝑡𝑜𝑝 

𝑁𝑜. 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑒𝑏𝑎𝑟𝑠 =  
610 + 241

𝜋 × 202

4

= 2.7 

Use 3𝑁𝑜. 20 @ 𝐵𝑜𝑡𝑡𝑜𝑚.  

 
Longitudinal section. 

  
Beam Section at Supports Section at Mid-span 
Figure 8.3-5: Reinforcement for Example 8.3-2. 

Proposed beam reinforcement are presented in Figure 8.3-5 above. To be a final 

decision, proposed reinforcement should be checked for ACI requirements for details of 

torsional longitudinal bars, ACI Code 9.7.5, 

• The spacing of the longitudinal bars should not exceed 300mm, Ok.  
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• They should be distributed around the perimeter of the cross section to control 

cracking, Ok. 

• The bars shall have a diameter at least 0.042 times the transverse reinforcement 
spacing, but not less than 10 mm, Ok. 

• At least one longitudinal bar must be placed at each corner of the stirrups, Ok.  

• Careful attention must be paid to the anchorage of longitudinal torsional 

reinforcement so that it is able to develop its yield strength at the face of the 

supporting columns, where torsional moments are often maximum. This should 

be as discussed in Chapter 6. 
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CHAPTER 9 
SHORT COLUMNS 

9.1 INTRODUCTION 

9.1.1 Definition of Column 
• Columns are defined as members that carry loads chiefly in compression 

with a ratio of height to least lateral dimension exceeding 3  

• According to Article 14.3.3 of the code, vertical member with ratio of 

unsupported height to average least lateral dimension not exceed 3, is 

classified as pedestal and can be designed as a plain concrete member. 

• Pedestals are usually used in steel structures to protect steel against corrosion 
due to soil contact, see Figure 9.1-1 and Figure 9.1-2 shown below. 

• Usually columns carry bending moments as well, about one or both axes of 

the cross section, and the bending action may produce tensile forces over 

a part of the cross section. Even in such cases, columns are generally referred 

to as compression members, because the compression forces dominate their 

behavior. 

9.1.2 Other Compression Members 
• In addition to the most common type of compression member, i.e., vertical 

elements in structures, other member can be classified as compression members 
and design on same basis adopted for column.  

• These compression members include arches, inclined members in gable 

frame, and compression elements in trusses. It is interested to know that 

truss can be constructed with reinforced concrete, for more information 

Advanced Reinforced Concrete Design by N. K. Raju Page 281. 

 

Figure 9.1-1: Pedestal used in a pipe supporting structure. 
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Figure 9.1-2: Pedestal used in a gable steel structure.  

Arch
Inclined Member in Gable 
Frame

 

Figure 9.1-3: Other compression members. 
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9.1.3 Columns Classification According to Their Reinforcement  

According to details of their reinforcement, reinforced concrete columns can be 
classified into: 

• Tied Columns: 
Members reinforced with longitudinal bars and lateral ties, see Figure 9.1-4 

below. 

• Spiral Columns 
Members reinforced with longitudinal bars and continuous spirals, Figure 9.1-5 

below. 

 
Figure 9.1-4: Tied 

columns.  
Figure 9.1-5: Spiral 

columns. 

• Composite columns: 

Composite compression members 

reinforced longitudinally with 
structural steel shapes, pipe, or 

tubing, with or without additional 

longitudinal bars, and various 

types of lateral reinforcement, 
Figure 9.1-6 above. 

• Types 1 and 2 are by far the 
most common, and the 

discussion of this chapter will 

refer to them. 

9.1.4 Columns Classification 
According to Their 
Slenderness 

• According to their length or 

slenderness, columns may be divided into two broad categories:  

o Short columns, for which the strength is governed by the strength of the 

materials and the geometry of the cross section.  
o Slender columns, for which the strength may be significantly reduced by 

lateral deflections.  

• Only short columns will be discussed in this Chapter; the effects of the 

slenderness in reducing column strength will be covered in Chapter 10. 

 

Figure 9.1-6: 

Composite 

columns. 
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9.1.5 Columns Classification According to Nature of 
Applied Forces 

According to the nature of applied loads, columns can be 
calcified into following types. 

9.1.5.1 Axially Loads Columns 

• Sometimes columns are almost subjected to concentric 
forces with negligible moments, Figure 9.1-7 above. 

• Interior columns in building with equal spans are with 
in this category when subjected to gravity loads, see 
columns B2, C2 of Figure 9.1-10 below. 

• Analysis of columns under axial loads, i.e., checking 

the adequacy of proposed longitudinal and lateral 

reinforcements for given axial loads has been 
presented in Article 9.2. While design of columns under axial loads, i.e., select 

the required longitudinal and lateral reinforcements for the axial loads has been 
presented in Article 9.3 below. 

9.1.5.2 Columns Subjected to Axial Force 

and Uniaxial Moment 

• In buildings with equal spans, edge columns 
are mainly subjected to axial force and 
uniaxial moment, see Figure 9.1-8 and see 

columns B1, C1, A2, D2, B2, and D2 of 
Figure 9.1-10 below. 

• Analysis and design of columns that 

subjected to axial force and uniaxial moment 
are presented in Article 0 and Article 9.6 

respectively.  

9.1.5.3 Columns Subjected to Axial Force and Biaxial Moments 

• Columns at corner of buildings, columns A1, A2, D1, and D2 of Figure 9.1-10, 

are usually subjected to axial force and biaxial moments as indicated in Figure 
9.1-9 below. 

• As the design of these columns is iterative in nature, only their analysis is 
presented in Article 9.8.  

  
Figure 9.1-9: Columns subjected 

to axial force and biaxial 
moments. 

Figure 9.1-10: Columns layout for a building with 

equal spans. 

  

 
Figure 9.1-7: Axially 

loaded columns. 

 
Figure 9.1-8: Columns subjected 
to axial force and uniaxial 

moment. 
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9.2 ACI ANALYSIS PROCEDURE FOR A SHORT COLUMN UNDER AN AXIAL LOAD (SMALL 

ECCENTRICITY) 
• Earlier ACI versions have defined small eccentricity as follows: 

o For spirally reinforced columns: 𝑒/ℎ ≤ 0.05. 

o For tied reinforced columns: 𝑒/ℎ ≤ 0.10. 

• For short columns, definition of minimum eccentricity is implicitly included as will 
be discussed in Articles 9.5 and 9.6. 

• ACI procedures for the analysis of short columns under axial loads can be 

summarized as follows: 

9.2.1 Checking of Longitudinal Reinforcement for Nominal Requirements 

Reinforcement Limits 

• Check 𝜌𝑔  within acceptable limits. 

0.01 ≤ 𝜌𝑔 =
𝐴𝑆𝑡

𝐴𝑔
≤ 0.08 

• According to AC1 Code (10.6.1.1), the ratio of longitudinal steel area Ast, to 

gross concrete cross section Ag should be in the range from 0.01 to 0.08. 
• The lower limit is necessary: 

o To ensure resistance to bending moments not accounted for in the analysis. 

o To reduce the effects of creep and shrinkage of the concrete under sustained 

compression. 

• Ratios higher than 0.08 not only are uneconomical, but also would cause 

difficulty owing to congestion of the reinforcement, particularly where the steel 
must be spliced.  

• Most columns are designed with ratios below 0.04. Larger-diameter bars are 

used to reduce placement costs and to avoid unnecessary congestion.  

• The special large-diameter, No. 43 and No. 37 bars are produced mainly for use 

in columns. 

Number of Rebars 

• Check the rebar number with the minimum number of longitudinal bars: 
o Four bars for tied columns. 

o Six bars for spiral columns. 

• According to ACI Code 10.7.3.1, a minimum of four longitudinal bars is required 

when the bars are enclosed by spaced rectangular or circular ties, and a 

minimum of six bars must be used when the longitudinal bars are enclosed by a 
continuous spiral. 

Minimum Spacing between Longitudinal Bras 

• According to (ACI318M, 2014), article 25.2.3, for longitudinal reinforcement in 

columns, pedestals, struts, and boundary elements in walls, clear spacing 

between bars shall be 

SMinimum = Maximum (1.5dBar , 40mm,
4

3
× maximum size of aggregate) 

• As the student in his course on concrete technology how to select the maximum 

size of aggregate as a function of rebar spacing, the third condition related to 

maximum size of aggregate is assumed satisfied in this course. 

9.2.2 Design Strength of Axially Loaded Columns 
• According to (ACI318M, 2014), article 22.4, design strength of axially loaded 

column, can be determined as follows: 
o For spiral column the design strength is: 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.85∅[0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦] 

with ∅ = 0.75.  

o For tied columns: 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.80∅[0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦] 

with ∅ = 0.65. 
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• In articles 0 and 9.6, it will be shown that a column has its maximum strength 

when it is subjected to concentrically loaded with a compression force. 

• Nominal strength of axially loaded column can be derived as follows: 

Nominal Strength of an Axially Loaded Column can be found recognizing the 

nonlinear response of both materials (steel and concrete) by: 
𝑃𝑛 = 0.85𝑓𝑐

′𝐴𝑐 + 𝐴𝑠𝑡𝑓𝑦 

or  
𝑃𝑛 = 0.85𝑓𝑐

′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦 

i.e., by summing the strength contributions of the two components of the 

column. 

• Strength Reduction Factor for Columns: 
The ACI strength reduction factors, 𝜙, are lower for columns than for beams, see 

article 21.2.1. of the (ACI318M, 2014),  

o Reflecting their greater importance in a structure,  

o A beam failure would normally affect only a local region whereas a column 
failure could result in the collapse of the entire structure, 

In addition, these factors reflect differences in the behavior of tied columns and 

spirally reinforced columns that shown in Figure 9.2-1 below. 
∅𝑇𝑖𝑒𝑑 𝐶𝑜𝑙𝑢𝑚𝑛 = 0.65  
∅𝑆𝑝𝑖𝑟𝑎𝑙 𝐶𝑜𝑙𝑢𝑚𝑛 = 0.75 

 

Figure 9.2-1: Behavior 
of spirally reinforced 

and tied columns. 

• Provisions for Small Eccentricity: 

o A farther limitation on column strength is imposed by ACI Code 22.4 to allow 

for accidental eccentricities of loading not considered in the analysis.  

o This is done by imposing an upper limit on the axial load that is less than the 
calculated design strength:  
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠𝑇𝑖𝑒𝑑 𝐶𝑜𝑙𝑢𝑚𝑛 = 0.8 
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠𝑆𝑝𝑖𝑟𝑎𝑙 𝐶𝑜𝑙𝑢𝑚𝑛 = 0.85 

• Based on above discussion, design strength of axially loaded columns would be: 

o For spiral column the design strength is: 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.85∅[0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦] 

with ∅ = 0.75.  

o For tied columns: 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.80∅[0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦] 

with ∅ = 0.65. 

9.2.3 Checking of Lateral Reinforcement (Ties), (ACI318M, 2014), Article 25.7.2 
• All bars of tied columns shall be enclosed by lateral ties at least No 10 in size for 

longitudinal bars up to No. 32 and at least No. 13 in size for Nos. 36, 43, and 57 

and bundled longitudinal bars.  
• The spacing of the ties shall not exceed:  

𝑆𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = min [16𝑑𝑏𝑎𝑟 , 48𝑑𝑡𝑖𝑒𝑠 , 𝐿𝑒𝑎𝑠𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛]  
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• Arrangement of Rectilinear Ties 

o The ties shall be so arranged that every corner and alternate longitudinal bar 

shall have lateral support provided by the corner of a tie having an included 

angle of not more than 135, and no bar shall be farther than 150mm clear on 

either side from such a laterally supported bar.  
o Rectilinear ties arrangement according to ACI Code requirements can be 

summarized as follows, Figure 9.2-2 below. 

  

Figure 9.2-2: Tie arrangements for square and rectangular columns. 

• Anchorage of Circular Ties 

o Circular ties shall be permitted where 

longitudinal bars are located around 

the perimeter of a circle. 
o Anchorage of individual circular ties 

shall be in accordance with: 

i. Ends shall overlap by at least 150 

mm 

ii. Ends shall terminate with 
standard hooks,  

iii. Overlaps at ends of adjacent 

circular ties shall be staggered 

around the perimeter enclosing 

the longitudinal bars. 
o Above anchorage requirements have 

been summarized in Figure 9.2-3 

above.  

Figure 9.2-3: 
Circular tie 

anchorage. 
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9.2.4 Checking of Lateral Reinforcement (Spiral) 
• For spirally reinforced columns, ACI Code requirements 

(25.7.3) for lateral reinforcement may be summarized as 

follows: 

• Spirals shall consist of a continuous bar or wire not less 

than 10mm. in diameter. 
• Compare the spiral ratio provided by the designer 

(𝜌𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑) with the minimum recommended spiral ratio by 

the ACI Code (𝜌𝑠 𝑀𝑖𝑛𝑖𝑚𝑢𝑚): 

𝜌𝑠 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑖𝑟𝑎𝑙 𝑠𝑡𝑒𝑒𝑙 𝑖𝑛 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑐𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑡𝑖𝑜𝑛

=  
4𝐴𝑠𝑝

𝐷𝑐 𝑆
 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 (
𝐴𝑔

𝐴𝑐
− 1)

𝑓𝑐
′

𝑓𝑠𝑦
 

• The provided clear spacing (𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐶𝐿𝑒𝑎𝑟) between turns of 

the spiral must be: 
𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐶𝐿𝑒𝑎𝑟   ≤ 80𝑚𝑚   and  𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐶𝑙𝑒𝑎𝑟   ≥ 25𝑚𝑚  

 
  

 
Figure 9.2-4: 

Notations adopted 
in analysis and 

design of spiral 

reinforcements. 
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Example 9.2-1 

For a column that has the cross section 
area shown in Figure 9.2-5, check the 

column adequacy with ACI Code 
requirements and compute the design 
axial load. Use fc

′ = 27.5 MPa , and fy =

420MPa.  

Solution 
Longitudinal reinforcement 

Check ρg  within acceptable limits: 

𝐴𝑔 = 4002 = 160  000 𝑚𝑚2 

𝐴𝑠𝑡 =
𝜋 × 302

4
 × 8 = 5  652 𝑚𝑚2 

0.01 < 𝜌𝑔 =
5 652

160 000
 = 3.53% < 0.08 

Check minimum number of longitudinal bars: 
8 > 4   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars: 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5 × 30𝑚𝑚 , 40𝑚𝑚] = 45𝑚𝑚 < 110𝑚𝑚  ∴ 𝑂𝑘. 
Design Axial Strength, 𝜙𝑃𝑛 

Calculate the maximum design axial load strength ∅𝑃𝑛(𝑚𝑎𝑥): 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.80 × 0.65[0.85 × 27.5(160 000 − 5 652) + 5 652 × 420] = 
∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 3  110 𝑘𝑁 

Lateral reinforcement (Ties) 

Checking of Lateral Reinforcement (Ties): 

Ties diameter: 
∵  ∅ = 30mm < 32mm, ∴ we can use ∅ = 10mm for ties 
Ties spacing: 
SMaximum = min[16 × 30mm, 48 × 10mm, 400mm] = 400mm = SProvided  ∴ Ok. 
Ties arrangement: 
∵ SSpacing between longitudinal bars < 150mm 

Then, alternate longitudinal bars will be supported by corner bars. 
 

Example 9.2-2 

Check the column shown in Figure 9.2-6 

with general requirements of the ACI Code, 

then determine whether this column is 
adequate to carry a factored load of Pu= 

2250 kN or not.  
In your analysis: 

• Assume small eccentricity.  
• Use fc

′ = 27.5 MPa , and fy = 420MPa.  

Solution 

Longitudinal reinforcement 

Check ρg  within acceptable limits: 

𝐴𝑔 =
𝜋 × 3802

4
= 113  354 𝑚𝑚2 

𝐴𝑠𝑡 =
𝜋 × 252

4
 × 7 = 3 434 𝑚𝑚2 ⟹ 𝜌𝑔 =

3  434

113  354
 = 3.0% ⟹ 0.01 < 𝜌𝑔 < 0.08 ∴ 𝑂𝑘.  

Check minimum number of longitudinal bars 
7 > 6   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5 × 25𝑚𝑚 , 40𝑚𝑚] = 40.0𝑚𝑚 < 80𝑚𝑚  ∴ 𝑂𝑘. 
Design Axial Strength 
Calculate the maximum design axial load strength ∅Pn(max): 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 0.85 × 0.75[0.85 × 27.5(113 354 − 3 434) + 3 434 × 420] = 2  557 𝑘𝑁 > 𝑃𝑢   ∴ 𝑂𝑘.   
 

 
Figure 9.2-5: Proposed tied column for 

Example 9.2-1. 

 
Figure 9.2-6: Spiral column of 

Example 9.2-2. 
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Lateral reinforcement (Ties) 

Check the lateral reinforcement (Spiral): 

Check Spiral Diameter: 
∅𝑆𝑝𝑖𝑟𝑎𝑙 = 10𝑚𝑚 𝑂𝑘. 

Check Spiral Steel Ratio: 

𝐴𝑠𝑝 =
𝜋 × 102

4
= 78.5𝑚𝑚2

⟹ 𝜌𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
4 × 78.5𝑚𝑚2

(380 − 2 × 40)𝑚𝑚 × 50𝑚𝑚
= 0.0209 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 × (
113  354

𝜋 × 3002

4

− 1) ×
27.5

420
= 0.0178 < 0.0209 ∴ 𝑂𝑘. 

Check the Clear Spacing: 
25𝑚𝑚 < [𝑆𝐶𝑙𝑒𝑎𝑟 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 50𝑚𝑚 − 10𝑚𝑚 = 40𝑚𝑚] < 80𝑚𝑚  ∴ 𝑂𝑘. 

 

  



Design of Concrete Structures Chapter 9: Short Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 9: Page 11  
 

9.3 ACI DESIGN PROCEDURE FOR A SHORT COLUMN UNDER AN AXIAL LOAD (SMALL 

ECCENTRICITY) 

ACI Code procedure for design of a short column under an axial compression force can 
be summarized as follows: 

• Determine the applied factored axial load 𝑃𝑢: 

• Establish a desired 𝜌𝑔. 

• Determine the required gross column area 𝐴𝑔: 

For tied column: 

𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑃𝑈

0.80 × ∅[0.85𝑓𝑐
′(1 − 𝜌𝑔) + 𝑓𝑦𝜌𝑔]

 

For spiral column: 

𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑃𝑈

0.85 × ∅[0.85𝑓𝑐
′(1 − 𝜌𝑔) + 𝑓𝑦𝜌𝑔]

 

• Select the column dimensions. Round the answer to the nearest 25𝑚𝑚. 

• Find the load that carried by the concrete: 

For tied column: 
∅Pn Carried by Concrete = 0.80 × ∅[0.85fc

′Ag(1 − ρg)] 

For spiral column: 
∅Pn Carried by Concrete = 0.85 × ∅[0.85fc

′Ag(1 − ρg)] 

• Determine the load required to be carried by the longitudinal steel: 
∅PnCarried by Steel = Pu − ∅Pn Carried by Concrete 

• Determine the required steel area of longitudinal bars: 
For tied column: 
∅PnCarried by Steel = 0.80∅[AstRequiredfy] 

For spiral column: 
∅PnCarried by Steel = 0.85∅[AstRequiredfy] 

• Determine the required number of bars: 

 𝑁𝑜. 𝑜𝑓 𝐵𝑎𝑟𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝐴𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝐵𝑎𝑟
 

Round required number to the nearest integer and check with requirement of the 

ACI for the minimum number of longitudinal bars: 
No. of BarsProvided ≥ 4for tied columns 
No. of BarsProvided ≥ 6for spiral columns 

• Check the spacing between the longitudinal bars: 
𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 ≥ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 [1.5𝑑𝐵𝑎𝑟 , 40𝑚𝑚] 

• Design the lateral reinforcement: 

Ties: 

Select ties diameter: 
If 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 ≤ 32𝑚𝑚 then: 

𝜑𝑇𝑖𝑒𝑠 = 10𝑚𝑚 

Else 
𝜑𝑇𝑖𝑒𝑠 = 13𝑚𝑚 

Select ties spacing: 
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≤ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚[16𝜑𝐵𝑎𝑟  , 48𝜑𝑡𝑖𝑒𝑠, 𝐿𝑒𝑎𝑠𝑡 𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠]  

Arrange the ties according to requirements of the ACI for maximum spacing 

between longitudinal bars (use the standard arrangements of Figure 9.2-2 

above). 
Spiral:  
𝜑𝑆𝑝𝑖𝑟𝑎𝑙 ≥ 10𝑚𝑚 

Compute 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 (
𝐴𝑔

𝐴𝑐
− 1)

𝑓𝑐
′

𝑓𝑠𝑦
  

Let 𝜌𝑠 = 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 to compute the required 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑: 
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𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
4𝐴𝑠𝑝

𝐷𝑐 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚
 

The clear spacing 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐶𝑙𝑒𝑎𝑟 between turns of the spiral must be: 

25 ≤ 𝑆𝐶𝑙𝑒𝑎𝑟  ≤ 80𝑚𝑚   
 

Example 9.3-1 

Design a tied column to carry a factored axial load of Pu=3 184 kN. 

• Assume that there is no identified applied moment.  

• Assume that the column is short.  
• Assume ρPreferable = 0.03. 

• Assume fc
′ = 27.5MPa, fy = 420MPa.  

• Try square section.  

• Try φLongitudinal Bar = 29mm, ABar = 645mm2 

• Try φLateral Reiforcement = 10mm. 

Solution 

Compute AgRequired: 

AgRequired =
3184 × 103N

0.80 × 0.65[0.85 × 27.5(1 − 0.03) + 420 × 0.03]
= 173 587mm2 

Try square section: 

B = √173 587mm2 = 416.6mm 

Try B = 425mm, ∴ Ag = 180  625mm2. 

Compute ∅Pn Carried by Concrete: 

∅Pn Carried by Concrete = 0.8 × 0.65[0.85 × 27.5 × 180 625(1 − 0.03)] = 2  130kN 

Compute ∅Pn Carried by Steel: 

∅Pn Carried by Steel = 3 184 − 2  130 = 1 054 kN 

Compute 𝐴𝑠𝑡𝑅𝑒𝑞𝑖𝑟𝑒𝑑: 

1 054 × 103 = 0.8 × 0.65 × [420 × AstReqired] ⟹ AstReqired = 4 826 mm2 

Compute Number of longitudinal bars: 

Try φLongitudinal = 29mm: 

No. =
4 826

645
= 7.48 

Try 8φ29mm: 
∵ 8 ≥ 4 ∴ Ok. 
Check spacing between longitudinal bars: 
SProvided = [425mm − 2 × 40mm

− 2 × 10mm

− 3 × 29mm]
1

2
= 119mm 

SMinimum = Maximum[1.5dbar, 40mm]
= 43.5mm < 119mm   
∴ Ok. 

Design of Ties: 

Ties diameter: 
∵ 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝐵𝑎𝑟𝑠 < 32𝑚𝑚 ,

∴ 𝑈𝑠𝑒 𝜑𝑇𝑖𝑒𝑠 = 10𝑚𝑚 

Tie spacing: 
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚[16 × 29𝑚𝑚 , 48

× 10𝑚𝑚 , 425𝑚𝑚]
= 425𝑚𝑚 

Try 𝜑10𝑚𝑚@425𝑚𝑚 

Ties arrangement: 

As we intend to use eight rebars and spacing between rebars is less than 150mm, then 
the ties reinforcement is presented in Figure 9.3-1. 

 

 

 
Figure 9.3-1: Final design section for the column of 

Example 9.3-1. 
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Example 9.3-2 

Redesign the column of Example 9.3-1 as a circular spirally reinforced column with Pu 

= 3 429 kN. 

Solution 

Compute AgRequired: 

𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
3429 × 103𝑁

0.85 × 0.75[0.85 × 27.5(1 − 0.03) + 420 × 0.03]
= 152 488 𝑚𝑚2 

𝜋𝐷2

4
= 152 488 𝑚𝑚2, ∴ 𝐷𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 441𝑚𝑚 , 𝑇𝑟𝑦 𝐷𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 450𝑚𝑚 

Compute ∅Pn Carried by Concrete: 

∅Pn Carried by Concrete = 0.85 × 0.75 × [0.85 × 27.5 ×
𝜋 × 4502

4
(1 − 0.03)] = 2 298𝑘𝑁 

Compute ∅Pn Carried by Steel 

∅Pn Carried by Steel = 3 429𝑘𝑁 − 2 298𝑘𝑁 = 1 131 𝑘𝑁 

Compute 𝐴𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

0.85 × 0.75 × [𝐴𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 × 420] = 1 131 000 𝑁 

𝐴𝑠𝑡𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 4 224𝑚𝑚2 

Compute number of longitudinal bars: 
Try 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = 29𝑚𝑚, 𝐴𝐵𝑎𝑟 = 645𝑚𝑚2. 

𝑁𝑜. =
4 224

645
= 6.55 

Try 7𝜑29𝑚𝑚. 
∵ 7 ≥ 6 ∴ 𝑂𝑘. 
Check spacing between longitudinal bars: 
𝐷𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝐵𝑎𝑟𝑠 = 450𝑚𝑚 − 2 × 40𝑚𝑚 − 2 × 10𝑚𝑚 − 29𝑚𝑚 = 321𝑚𝑚 

𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
[𝜋 × 321𝑚𝑚 − 7 × 29𝑚𝑚]

7
= 115𝑚𝑚 

𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 [1.5𝑑𝐵𝑎𝑟  , 40𝑚𝑚] = 43.5𝑚𝑚 < 115𝑚𝑚  ∴ 𝑂𝑘. 
Spiral Design: 
Spiral diameter: 
∵ 𝜑𝑆𝑝𝑖𝑟𝑎𝑙 = 10𝑚𝑚  ∴ 𝑂𝑘. 

Compute 𝜌𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚: 
𝐷𝑐 = 450𝑚𝑚 − 2 × 40𝑚𝑚 = 370𝑚𝑚 

𝐴𝑐 =
𝜋 × 3702

4
= 107 467 𝑚𝑚2 

𝐴𝑔 =
𝜋 × 4502

4
= 158 962 𝑚𝑚2 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 (
158 962

107 467
− 1) ×

27.5

420
= 14.2 × 10−3 

𝐴𝑠𝑝 =
𝜋 × 102

4
= 78.5𝑚𝑚2

 

∴ 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
4 × 78.5𝑚𝑚2

370𝑚𝑚 × 14.2 × 10−3

= 59.8𝑚𝑚 

Try 𝜑10𝑚𝑚 @ 60𝑚𝑚 
∵ 𝑆𝐶𝑙𝑒𝑎𝑟 = 50𝑚𝑚 < 80𝑚𝑚   ∴ 𝑂𝑘. 
∵ 𝑆𝐶𝑙𝑒𝑎𝑟 = 50𝑚𝑚 > 25𝑚𝑚   ∴ 𝑂𝑘. 
Use   𝜑10𝑚𝑚 @ 60𝑚𝑚  
The final section of the column is shown in Figure 9.3-2. 

 

  

 
Figure 9.3-2: Final design section for the 
column of  

Example 9.3-2. 
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9.4 HOMEWORK: ANALYSIS AND DESIGN OF AXIALLY LOADED COLUMNS 
Problem 9.4-1 

Check the adequacy of the column that shown 

below according to the requirement of the ACI 
Code and compute its design strength. 
Assume: 

• Short column 
• fc

′ = 27.5 MPa 
• fy = 420 MPa 

• 𝐴𝐵𝑎𝑟 =  637.5 𝑚𝑚2 

Answers 

Longitudinal reinforcement: 
Check 𝜌𝑔  within acceptable limits: 

𝐴𝑔 = 90  000 𝑚𝑚2, 𝐴𝑠𝑡 = 2  550 𝑚𝑚2 

0.01 < 𝜌𝑔 = 2.83% < 0.08 

Check minimum number of longitudinal bars: 
𝑁𝑜. 𝑜𝑓 𝐵𝑎𝑟𝑠 = 4   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars: 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 43𝑚𝑚 < 143𝑚𝑚  ∴ 𝑂𝑘. 
Calculate the maximum design axial load strength ∅𝑃𝑛(𝑚𝑎𝑥): 

∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 1 620 𝑘𝑁 

Lateral reinforcement (Ties):  
Ties diameter: 
∵  ∅ = 29𝑚𝑚 < 32𝑚𝑚 , ∴ 𝑤𝑒 𝑐𝑎𝑛 𝑢𝑠𝑒 ∅ = 10𝑚𝑚 𝑓𝑜𝑟 𝑡𝑖𝑒𝑠 
Ties spacing: 
𝑆𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 300𝑚𝑚 = 𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑  ∴ 𝑂𝑘. 
Ties arrangement: 

For a column with four rebars only, no interior ties are required. 
 

Problem 9.4-2 

Design a square tied column to support an axial load of Pu = 4  078 𝑘𝑁. Design the 

necessary ties also. 

Assume: 
• Short column 
• fc

′ = 34.5 MPa 
• fy = 420 MPa 

• ρg = 0.05 

• φLongitudinal Bars = 32mm 

• φTies = 10mm 

Answers 
Compute 𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑: 

𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 160 510𝑚𝑚2 

Try square section: 
𝐵 ≈ 400𝑚𝑚 

Try 𝐵 = 400𝑚𝑚 , ∴ 𝐴𝑔 = 160  000𝑚𝑚2. 

Compute ∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒: 

∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 2  318𝑘𝑁 

Compute ∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝑆𝑡𝑒𝑒𝑙: 

∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝑆𝑡𝑒𝑒𝑙 = 1 760𝑘𝑁 

Compute 𝐴𝑠𝑡𝑅𝑒𝑞𝑖𝑟𝑒𝑑: 

𝐴𝑠𝑡𝑅𝑒𝑞𝑖𝑟𝑒𝑑 = 8 059 𝑚𝑚2 

Compute Number of longitudinal bars: 
𝑁𝑜. ≈ 10 
∵ 10 > 4 ∴ 𝑂𝑘. 
Check spacing between longitudinal bars: 

 
Figure 9.4-1: Proposed tied column 

for Problem 9.4-1. 
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𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 57.3𝑚𝑚, 𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5𝑑𝑏𝑎𝑟 , 40𝑚𝑚] = 48𝑚𝑚 < 57.3𝑚𝑚   ∴ 𝑂𝑘. 
Design of Ties: 

Ties diameter: 
∵ 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝐵𝑎𝑟𝑠 = 32𝑚𝑚, ∴ 𝑈𝑠𝑒 𝜑𝑇𝑖𝑒𝑠 = 10𝑚𝑚 

Tie spacing  
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 400𝑚𝑚 

Try 𝜑10𝑚𝑚@400𝑚𝑚 

Ties arrangement: 

Sketch for details of longitudinal and lateral reinforcements are shown in Figure 
9.4-2. 

 

Figure 9.4-2: Final design 

section Problem 9.4-2. 

 

Problem 9.4-3 

Repeat Problem 9.4-2, using a rectangular section that has width b = 350mm. 

Answers 
Compute 𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑: 

𝐴𝑔𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 160 510𝑚𝑚2 

Try rectangular section with 𝑏 = 350𝑚𝑚, therefore ℎ = 459 𝑚𝑚 

Try 𝑏 = 350𝑚𝑚 , ℎ = 460𝑚𝑚  ∴ 𝐴𝑔 = 161 000 𝑚𝑚2. 

Compute ∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒: 

∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 2  332𝑘𝑁 

Compute ∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝑆𝑡𝑒𝑒𝑙: 

∅𝑃𝑛 𝐶𝑎𝑟𝑟𝑖𝑒𝑑 𝑏𝑦 𝑆𝑡𝑒𝑒𝑙 = 1 746𝑘𝑁 

Compute 𝐴𝑠𝑡𝑅𝑒𝑞𝑖𝑟𝑒𝑑: 

𝐴𝑠𝑡𝑅𝑒𝑞𝑖𝑟𝑒𝑑 = 7 994 𝑚𝑚2 

Compute Number of longitudinal bars: 

𝑁𝑜. =
7 994

804
= 9.94, Try 10𝜑32𝑚𝑚. ∵ 10 > 4 ∴ 𝑂𝑘. 

Check spacing between longitudinal bars: 
𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 77.3𝑚𝑚, 𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5𝑑𝑏𝑎𝑟 , 40𝑚𝑚] = 48𝑚𝑚 < 74𝑚𝑚   ∴ 𝑂𝑘. 
Design of Ties: 
Ties diameter: 
∵ 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝐵𝑎𝑟𝑠 = 32𝑚𝑚, ∴ 𝑈𝑠𝑒 𝜑𝑇𝑖𝑒𝑠 = 10𝑚𝑚 

Tie spacing  
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 350𝑚𝑚 

Try 𝜑10𝑚𝑚@350𝑚𝑚 

Ties arrangement: 

Sketch for details of longitudinal and lateral 
reinforcements are shown in Fig. below.  
𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 77𝑚𝑚 < 150𝑚𝑚 

No additional interior ties are required. 

 

 

 
 

 
Figure 9.4-3: Final design section for 

Problem 9.4-3. 
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Problem 9.4-4 

Design the spiral column that supports four girders of bridge shown in Figure 9.4-4 

below. In your design, assume that. 

• Each girder has a dead load reaction of 150 kN and has a live load reaction of 100 

kN. 

• fc' = 28 MPa and fy = 420 MPa. 
• Rebar No. 25 for longitudinal reinforcement and No. 10 for spiral reinforcement.  

• Column has a height of 4m, and it is assumed short. 

• Column and cap selfweight should be included in your solution. 

 

Figure 9.4-4: Four girders 
that supported on the 

column of Problem 9.4-4. 

Hint for Solution: According to ACI Code, 

version 2011, Article (10.8.3) "As an 

alternative to using the full gross area for 

design of a compression member with a 
square, octagonal, or other shaped cross 

section, it shall be permitted to use a circular 

section with a diameter equal to the least 

lateral dimension of the actual shape. Gross 

area considered, required percentage of 
reinforcement, and design strength shall be 

based on that circular section". Then this 

column can be transformed from hexagonal 

shape to the following circular shape. 

 
 

 
 

 

  

 
Figure 9.4-5: Transformation of an 
octagonal column into the equivalent 

circular section.  
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9.5 ANALYSIS OF A COLUMN WITH COMPRESSION LOAD PLUS UNIAXIAL MOMENT 

9.5.1 Introduction 
• Members that are axially loaded, i.e., concentrically compressed, occur rarely, if 

ever in buildings and other structures. Components such as columns chiefly carry 

loads in compression but simultaneous bending is usually present.  
• Bending moments are caused by: 

o Continuity, i.e., by the fact that building columns are parts of monolithic 

frames in which the support moments of the girders are partly resisted by the 

abutting columns. 

 
Figure 9.5-1: Moments in columns due to frame continuity.  

o Transverse loads such as wind forces.  

 
Figure 9.5-2: Moments in columns 

due to lateral forces. 

o Loads carried eccentrically on column brackets when the column axis does not 

coincide with the pressure line.  

o Imperfections of construction. 
For these reasons, members that should be designed for simultaneous 

compression and bending are very frequent in almost all types of concrete 

structures. 

• When a member is subjected to combined axial compression P and moment M, it 

is usually convenient to replace the axial load and moment with an equal load P 
applied at eccentricity 𝑒 = 𝑀/𝑃. The two loadings are statically equivalent. 
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Figure 9.5-3: Equivalent eccentricity of 

column load. 

• Two approaches for analysis of a column with axial 
force and uniaxial moment will be discussed in Articles 9.5.2 and 9.5.3 below. 

9.5.2 Column Analysis by Direct Application of Basic Principles 
• Figure 9.5-5 “a” shows a member loaded parallel to its axis by a compressive 

force P, at an eccentricity e measured from the centerline.  

   
(a) (b) (c) 
Figure 9.5-5: Column subject to eccentric compression: (a) loaded column; (b) strain 

distribution at section a-a; (c) stresses and forces at nominal strength. 

• Above column can be analyzed based on direct application of basic principles of 

applied mechanics and as follows: 

9.5.2.1 Compatibility 

• With plane sections assumed to remain plane, concrete strains vary linearly with 
distance from the neutral axis which is located a distance "c" from the more 

heavily loaded side of the member.  

• With full compatibility of deformations, the steel strains at any location are the 

same as the strains in the adjacent concrete; thus if the ultimate concrete strain 
is ϵu, the strain in the bars nearest the load is ϵs

′  while that in the tension bars at 

the far side is ϵs.  

 
Figure 9.5-4: Moments in 

columns in precast frames. 
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