- Checking for the total deflection:
i. Classify the structural system into a floor system supports nonstructural elements likely to be damaged by large deflections elements or not.
ii. Compute the total deflection occurring after attachment of nonstructural elements, which is the sum of the time-dependent deflection due to all sustained loads and the immediate deflection due to any additional live load.

$$
\left.\begin{array}{rl}
\Delta_{\text {total }}=\left(\left(\Delta_{d}\right.\right. & \left.+\Delta_{\ell}\left(\frac{\text { Live sustained }}{\text { Live total }}\right)\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }} \times\left(\lambda_{\Delta}\right)_{\text {modification for long-term }} \\
& +\left(\Delta_{\ell}\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }}
\end{array}\right) .
$$

7.7 EXAMPLES FOR DEFLECTION CONTROL

Example 7.7-1

Check adequacy for the simply supported beam indicated in Figure 7.7-1 for the deflection control requirements of the code. In your checking assume that:

- The selfweight of the beam is already included in the indicated dead loads,
- Sixty percent of the live load is sustained,
- The beam is part from a flooring system, and it supports non-structural element likely to be damaged by the deflection,
- Material strengths are $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.

Figure 7.7-1: Simply supported beam for Example 7.7-1. Solution

1. Determination of the deflections due to dead and live loads:

Based on the mechanics of materials, see Table 7.3-1, the immediate deflection in terms of I_{g} would be:
$\Delta=\frac{5}{384}\left(\frac{w \ell^{4}}{E_{c} I_{g}}\right)$
$E_{c}=4700 \sqrt{f_{c}{ }^{\prime}}=4700 \times \sqrt{28}=24870 \mathrm{MPa}, E_{s}=200000 \mathrm{MPa} \Rightarrow n=\frac{E_{S}}{E_{c}}=\frac{200000}{24870} \approx 8$
$I_{g}=\frac{b h^{3}}{12}=\frac{300 \times 530^{3}}{12}=3.72 \times 10^{9} \mathrm{~mm}^{4}$
Before substitution in the above relation, it is useful to note that:
$\frac{k N}{m}=\frac{N}{m m}$
Therefore, no unit transformation is required for the distributed loads.
$\Delta_{\mathrm{d}}=\frac{5}{384} \times\left(\frac{24 \times 6000^{4}}{24870 \times 3.72 \times 10^{9}}\right)=4.38 \mathrm{~mm}$
$\Delta_{\ell}=\frac{5}{384} \times\left(\frac{16 \times 6000^{4}}{24870 \times 3.72 \times 10^{9}}\right)=2.92 \mathrm{~mm}$
2. Modification for the crack effect if necessary:
$M_{a}=\frac{w_{d+\ell} \ell^{2}}{8}=\frac{(24+16) \times 6^{2}}{8}=180 \mathrm{kN} . \mathrm{m}$
$M_{c r}=\frac{f_{r} I_{g}}{y_{t}}=\left(\frac{\left((0.62 \times 1.0 \times \sqrt{28}) \times 3.72 \times 10^{9}\right)}{\left(\frac{530}{2}\right)}\right) \times\left(\frac{1}{10^{6}}\right)=46.1 \mathrm{kN} . \mathrm{m}<M_{a}$
Therefore, the section is a partially or full cracked one.
The centroid for the cracked section measured from the top face is:
$(\bar{y} \times b) \times \frac{\overline{\mathrm{y}}}{2}=n A_{s} \times(d-\bar{y})$
$n A_{s}=8 \times\left(4 \times \frac{\pi \times 22^{2}}{4}\right)=12164 \mathrm{~mm}^{4}$
$(\bar{y} \times 300) \times \frac{\bar{y}}{2}=(12164) \times(460-\bar{y}) \Longrightarrow \bar{y}=157 \mathrm{~mm}$
$I_{c r}=\frac{300 \times 157^{3}}{3}+12164 \times(460-157)^{2}=1.5 \times 10^{9} \mathrm{~mm}^{4}$
$I_{e}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} I_{g}+\left(1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right) I_{c r}$
$I_{e}=\left(\left(\frac{46.1}{180}\right)^{3} \times 3.72+\left(1-\left(\frac{46.1}{180}\right)^{3}\right) \times 1.50\right) \times 10^{9} \Rightarrow I_{e}=1.54 \times 10^{9} \mathrm{~mm}^{4}$
Therefore, the modification factor for crack would be:
$\frac{I_{g}}{I_{e}}=\frac{3.72}{1.54}=2.42$
3. Modification for the log-term effect:

It is next necessary to find the sustained-load deflection multiplier, λ_{Δ} given by Eq. 7.4-1:
$\lambda_{\Delta}=\frac{\xi}{1+50 \rho^{\prime}}$
The time-dependent coefficient, ξ, can be taken as 2.0 based on Figure 7.4-1 or Table 7.4-1. As the beam is singly reinforced, therefore $\rho^{\prime}=0$, then λ_{Δ} would be:
$\lambda_{\Delta}=\frac{2}{1+50 \rho^{\prime}}=2$ ■
4. Determine the final deflections and compare with the code permissible values:

- Checking for immediate live load deflection:
i. Classify the structural system into a flat roof system or into a floor system: In the examples statement, the structural system is a floor system.
ii. Determine the immediate live load deflection with modification for the crack effect if necessary and compare with the permissible value of the code:

$$
\begin{aligned}
& \Delta_{\text {immediate } \ell}=\Delta_{\ell} \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }} \lessgtr \frac{\ell}{360} \\
& \Delta_{\text {immediate } \ell}=2.92 \times 2.42=7.05 \mathrm{~mm}<\frac{\ell}{360}=\frac{6000}{360}=16.7 \mathrm{~mm} \therefore \mathrm{Ok} .
\end{aligned}
$$

- Checking for the total deflection:
i. Classify the structural system into a floor system supports nonstructural elements likely to be damaged by large deflections elements or not.
Example statements mentions that the beam supports nonstructural partitions that would be damaged if large deflections were to occur.
ii. Compute the total deflection occurring after attachment of nonstructural elements, which is the sum of the time-dependent deflection due to all sustained loads and the immediate deflection due to any additional live load.

$$
\begin{aligned}
& \Delta_{\text {total }}=\left(\left(\Delta_{d}\right.\right.\left.+\Delta_{\ell}\left(\frac{\text { Live sustained }}{\text { Live total }}\right)\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }} \times\left(\lambda_{\Delta}\right)_{\text {modification for long-term }} \\
&\left.+\left(\Delta_{\ell}\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }}\right) \lessgtr \frac{\ell}{480} \\
& \begin{aligned}
\Delta_{\text {total }}=((4.38 & \left.\left.+2.92 \times\left(\frac{60}{100}\right)\right) \times(2.42) \times(2)+(2.92) \times(2.42)\right)=36.7 \mathrm{~mm}<\frac{\ell}{480}=\frac{6000}{480} \\
= & 12.5 \mathrm{~mm} \therefore \text { Not Ok. }
\end{aligned}
\end{aligned}
$$

Aforementioned computations and comparisons indicating that the stiffness of the proposed member is insufficient.

Example 7.7-2

The beam shown in Figure 7.7-2 is a part of the floor system of an apartment house and is designed to carry calculated dead load w_{d} of $24 \mathrm{kN} / \mathrm{m}$ and a service live load w_{ℓ} of $48 \mathrm{kN} / \mathrm{m}$. Of the total live load, 20 percent is sustained in nature, while 80 percent will be applied only intermittently over the life of the structure. Under full dead and live load, the moment diagram is as shown in Figure 7.7-2c and the total deflection is $\Delta_{d+\ell}=2.82 \mathrm{~mm}$.
The beam will support nonstructural partitions that would be damaged if large deflections were to occur. They will be installed shortly after construction shoring is removed and dead loads take effect, but before significant creep occurs.
Check beam adequacy for deflection requirements of the ACI code. Material strengths are $f_{c}^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.

Figure 7.7-2: Continuous \mathbf{T} beam for deflection calculations in Example 7.7-2. The uncracked section is shown in (b), the cracked transformed section in the positive moment region is shown in (d), and the cracked transformed section in the negative moment region is shown in (e).

Solution

1. Determination of the deflections due to dead and live loads:

As the deflection due to dead and live loads, $\Delta_{d+\ell}$, is already given in the example statement, therefore what is necessary at this step is to determine the deflection due to dead load alone, Δ_{d}, and the live load alone, Δ_{ℓ} based on linear proportionalities of Eq. 7.6-1 and Eq. 7.6-2:
$\Delta_{d}=\frac{W_{d}}{W_{d}+W_{\ell}} \times \Delta_{d+\ell}=\frac{24}{24+48} \times 2.82=0.94 \mathrm{~mm}$
$\Delta_{\ell}=\frac{W_{\ell}}{W_{d}+W_{\ell}} \times \Delta_{d+\ell}=\frac{48}{24+48} \times 2.82=1.88 \mathrm{~mm}$
2. Modification for the crack effect if necessary:

For the specified materials:
$E_{c}=4700 \sqrt{f_{c}^{\prime}}=4700 \times \sqrt{28}=24870 \mathrm{MPa}, E_{S}=200000 \mathrm{MPa} \Rightarrow n=\frac{E_{s}}{E_{c}}=\frac{200000}{24870} \approx 8$
The modulus of rupture, f_{r}, is:
$f_{r}=0.62 \lambda \sqrt{f_{c}{ }^{\prime}}=0.62 \times 1 \times \sqrt{28}=3.28 \mathrm{MPa}$
The effective moment of inertia will be calculated for the moment diagram shown in Figure 7.7-2c corresponding to the full-service load, on the basis that the extent of cracking will be governed by the full-service load, even though that load is intermittent.
Determine the instantaneous deflection due to dead and live loads:
As the structure is assumed linear in traditional structural analysis, therefore the instantaneous deflection due to deal load, Δ_{d}, and due to live load, Δ_{ℓ}, can be determined from $\Delta_{d+\ell}$ based on the following linear proportionalty
The positive region:
In the positive-moment region, the centroidal axis of the uncracked T section of Figure $\mathbf{7 . 7 - 2 b}$ is found by taking moments about the top surface, to be;
$\bar{y}_{\text {for the gross positve section }}=\frac{\Sigma A_{i} y_{i}}{\Sigma A_{i}}$

$$
\begin{aligned}
& =\frac{\left(1900 \times 125 \times \frac{125}{2}+350 \times(620-125) \times\left(\frac{(620-125)}{2}+125\right)\right)}{(1900 \times 125+350 \times(620-125))} \\
& =193 \mathrm{~mm}<310 \mathrm{~mm} \therefore \mathrm{Ok} .
\end{aligned}
$$

The moment of inertia, I_{g}, for the gross section is:

$$
\begin{array}{r}
I_{g}=\left(\frac{350 \times 620^{3}}{12}+350 \times 620 \times(310-193)^{2}\right)+\frac{(1900-350) \times 125^{3}}{12} \\
\quad+(1900-350) \times 125 \times\left(193-\frac{125}{2}\right)^{2}=1.347 \times 10^{10} \mathrm{~mm}^{4}
\end{array}
$$

The cracking moment, $M_{c r}$, is then found by means of Eq. 7.3-5:
$M_{c r}=\frac{f_{r} I_{g}}{y_{t}}=\left(\frac{3.28 \times 1.347 \times 10^{10}}{620-193}\right) \times \frac{1}{1000000}=104 \mathrm{kN} . \mathrm{m}$
With
$\frac{M_{c r}}{M_{a}}=\frac{104}{218}=0.477<1.0$
Therefore, the section is cracked and $I_{c r}$ and I_{e} should be determined and the deflection should be modified accordingly.
The centroidal axis of the cracked transformed T section shown in Figure 7.7-2d is determined as follows, assume that $\bar{y} \leq 125 \mathrm{~mm}$ to be checked later:
$(\bar{y} \times b) \times \frac{\bar{y}}{2}=n A_{s} \times(d-\bar{y}) \Rightarrow(\bar{y} \times 1900) \times \frac{\bar{y}}{2}=18480 \times(560-\bar{y})$
$\Rightarrow \bar{y}=95.7 \mathrm{~mm}<125 \mathrm{~mm} \therefore$ Ok.
below the top of the slab and $I_{c r}$ would be:
$I_{c r}=\frac{1900 \times 95.7^{3}}{3}+18480 \times(560-95.7)^{2}=0.4539 \times 10^{10} \mathrm{~mm}^{4}$
The effective moment of inertia in the positive bending region is found from Eq. 7.3-7 to be:

$$
\begin{aligned}
I_{e}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} I_{g}+ & \left(1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right) I_{c r} \Rightarrow I_{e} \\
& =\left(\frac{104}{218}\right)^{3} \times 1.347 \times 10^{10}+\left(1-\left(\frac{104}{218}\right)^{3}\right) \times 0.4539 \times 10^{10} \\
I_{e}= & 0.551 \times 10^{10} \mathrm{~mm}^{4}
\end{aligned}
$$

The negative region:
In the negative bending region, the gross moment of inertia will be based on the rectangular section shown in Figure 7.7-2b. For this area, the centroid is:
$\bar{y}=\frac{620}{2}=310 \mathrm{~mm}$
from the top surface and I_{g} would be:
$I_{g}=\frac{b h^{3}}{12}=\frac{350 \times 620^{3}}{12}=0.695 \times 10^{10} \mathrm{~mm}^{4}$
Therefore, the crack moment, $M_{\text {cr }}$, would be:
$M_{c r}=\frac{f_{r} I_{g}}{y_{t}}=\left(\frac{3.28 \times 0.695 \times 10^{10}}{310}\right) \times \frac{1}{1000000}=73.5 \mathrm{kN} . \mathrm{m}$
$\frac{M_{c r}}{M_{a}}=\frac{73.5}{302}=0.243<1.0$
Therefore, the section is cracked and $I_{c r}$ and I_{e} should be determined and the deflection should be modified accordingly.
For the cracked transformed section shown in Figure 7.7-2e, the centroidal axis is found, taking moments about the bottom surface, to be:
$(\bar{y} \times 350) \times \frac{\bar{y}}{2}+7140 \times(\bar{y}-65)=28688 \times(560-\bar{y}) \Rightarrow \bar{y}=222 \mathrm{~mm}$
from that level, and $I_{c r}$ would be:
$I_{c r}=\frac{350 \times 222^{3}}{3}+7140 \times(222-65)^{2}+28688 \times(560-222)^{2}=0.473 \times 10^{10} \mathrm{~mm}^{4}$
Thus, for the negative-moment regions,

$$
\begin{aligned}
I_{e}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} I_{g} & +\left(1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right) I_{c r} \Rightarrow I_{e} \\
& =\left(\frac{73.5}{302}\right)^{3} \times 0.695 \times 10^{10}+\left(1-\left(\frac{73.5}{302}\right)^{3}\right) \times 0.473 \times 10^{10}
\end{aligned}
$$

$I_{e}=0.476 \times 10^{10} \mathrm{~mm}^{4}$
The average effective moment of inertia:
The average value of I_{e} to be used in calculation of deflection is:
$I_{\text {e avg. }}=\frac{1}{2}(0.551+0.476) \times 10^{10}=0.514 \times 10^{10} \mathrm{~mm}^{4}$
The modification factor for the crack:
Based on Eq. 7.6-2, the deflection should be modified for the crack based on the following relation:
$\Delta_{\text {with crack effects }}=\Delta_{\text {without crack effect }} \times \frac{I_{g}}{I_{e}} \Rightarrow$
$\Delta_{\text {with crack effects }}=\frac{1.347 \times 10^{10}}{0.514 \times 10^{10}} \Delta_{\text {without crack effect }}=2.62 \Delta_{\text {without crack effect }}$
3. Modification for the log-term effect:

It is next necessary to find the sustained-load deflection multiplier, λ_{Δ} given by Eq. 7.4-1:
$\lambda_{\Delta}=\frac{\xi}{1+50 \rho^{\prime}}$
The time-dependent coefficient, ξ, can be taken as 2.0 based on Figure 7.4-1 or
Table 7.4-1. For the positive bending zone, with no compression reinforcement, $\rho^{\prime}=0$, then λ_{Δ} would be:
$\lambda_{\Delta}=\frac{2}{1+50 \rho^{\prime}}=2$ ■
4. Determine the final deflections and compare with the code permissible values:

- Checking for immediate live load deflection:
i. Classify the structural system into a flat roof system or into a floor system: In the examples statement, the structural system is a floor system.
ii. Determine the immediate live load deflection with modification for the crack effect if necessary and compare with the permissible value of the code:

$$
\begin{aligned}
& \Delta_{\text {immediate } \ell}=\Delta_{\ell} \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }} \lessgtr \frac{\ell}{360} \\
& \Delta_{\text {immediate } \ell}=1.88 \times 2.62=4.92 \mathrm{~mm}<\frac{\ell}{360}=\frac{7900}{360}=21.9 \mathrm{~mm} \therefore \mathrm{Ok} .
\end{aligned}
$$

- Checking for the total deflection:
i. Classify the structural system into a floor system supports nonstructural elements likely to be damaged by large deflections elements or not.
Example statements mentions that the beam will support nonstructural partitions that would be damaged if large deflections were to occur.
ii. Compute the total deflection occurring after attachment of nonstructural elements, which is the sum of the time-dependent deflection due to all sustained loads and the immediate deflection due to any additional live load.

$$
\begin{aligned}
& \Delta_{\text {total }}=\left(\left(\Delta_{d}+\Delta_{\ell}\left(\frac{\text { Live sustained }}{\text { Live total }}\right)\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }} \times\left(\lambda_{\Delta}\right)_{\text {modification for long-term }}\right. \\
& \\
& \left.\quad+\left(\Delta_{\ell}\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {modification for crack }}\right) \lessgtr \frac{\ell}{480} \\
& \Delta_{\text {total }}=\left(\left(0.94+1.88 \times\left(\frac{20}{100}\right)\right) \times 2.62 \times(2)+(1.88) \times 2.62\right)=11.8 \mathrm{~mm}<\frac{\ell}{480}=\frac{7900}{480}=16.5 \mathrm{~mm} \\
& \quad \therefore \text { Ok. }
\end{aligned}
$$

Aforementioned computations and comparisons indicating that the stiffness of the proposed member is sufficient.

Contents

Chapter 7 1
Serviceability 1
7.1 Introduction 1
7.2 Control of Deflections 3
7.2.1 Basic Concepts 3
7.2.2 Indirect Approach 3
7.2.3 Direct Approach 4
7.2.4 Deflection Types in RC Beams 4
7.3 Immediate Deflection 5
7.3.1 Loads Used in Deflection Calculations 5
7.3.2 Member Flexural Rigidity EI 6
7.3.2.1 Modulus of Elasticity E 6
7.3.2.2 Effective Moment of Inertia Ie 6
7.4 Deflections Due to Long-term Loads 11
7.5 Permissible Deflections 12
7.6 A Step by Step Procedure to Check the Deflection 13
7.7 Examples for Deflection Control 15
7.8 Deflections Due to Shrinkage and Temperature Changes* 21
7.9 Moment Vs. Curvature For Reinforced Concrete Sections* 22
7.10 Cracking in Flexural Members* 23
7.11 ACI Code Provisions For Crack Control* 24

Analysis and Design for Torsion

8.1 Introduction

- Torsional forces may act, tending to twist a member about its longitudinal axis.
- Torsional forces seldom act alone and are usually concurrent with bending moment and transverse shear, and sometimes with axial force.

8.1.1 Torsion in Old Design Philosophy

For many years, torsion was regarded as a secondary effect and was not considered explicitly in design, its influence being absorbed in the overall factor of safety of rather conservatively designed structures.

8.1.2 Torsion in Current Design Philosophy

- Current methods of analysis and design have resulted in less conservatism, leading to somewhat smaller members that, in many cases, must be reinforced to increase torsional strength.
- Torsion should be included explicitly especially with the increasing use of structural members for which torsion is a central feature of behavior; examples include curved beam, curved bridge girders, and helical stairway slabs.

Figure 8.1-1: Members subjected to significant torsion: (a) curved beams; (b) bridge girders; (c) helical stairway slabs.

8.1.3 Primary versus Secondary Torsions

It is useful in considering torsion to distinguish between primary and secondary torsion in reinforced concrete structures.

8.1.3.1 Primary Torsion

- Sometimes called equilibrium torsion or statically determinate torsion, exists when the external load has no alternative load path but must be supported by torsion.
- For such cases, the torsion required to maintain static equilibrium could be uniquely determined.
- An example is the cantilevered slab of Figure 8.1-2 below. Loads applied to the slab surface cause twisting moments m_{t} to act along the length of the supporting beam. These are equilibrated by the resisting torque T provided at the columns. Without the torsional moments, the structure will collapse.

Figure 8.1-2: Primary or equilibrium torsion at a cantilevered slab.

8.1.3.2 Secondary Torsion,

- Also called compatibility torsion or statically indeterminate torsion, arises from the requirements of continuity, that is, compatibility of deformation between adjacent parts of a structure.
- For this case, the torsional moments cannot be found based on static equilibrium alone. Disregard of continuity in the design will often lead to extensive cracking, but generally will not cause collapse. An internal readjustment of forces is usually possible and an alternative equilibrium of forces found.
- An example of secondary torsion is found in the spandrel or edge beam supporting a monolithic concrete slab, shown in Figure 8.1-3a.
- First Load Path:

If the spandrel beam is torsionally stiff and suitably reinforced, and if the columns can provide the necessary resisting torque T, then the slab moments will approximate those for a rigid exterior support as shown in Figure 8.1-3b.

- Second Load Path:

However, if the beam has little torsional stiffness and inadequate torsional reinforcement, cracking will occur to further reduce its torsional stiffness, and the slab moments will approximate those for a hinged edge, as shown in Figure 8.1-3c.
If the slab is designed to resist the altered moment diagram, collapse will not occur.

(a) Secondary or compatibility torsion at an edge beam.

Figure 8.1-3: Secondary or compatibility torsion.

8.1.4 Torsion in Uncracked Plain Concrete Members

If the material is elastic, St. Venant's torsion theory indicates that torsional shear stresses are distributed over the cross section, as shown in Figure 8.1-4 below.

- Stress Distribution in Elastic Martial:

The largest shear stresses occur at the middle of the wide faces.

- Stress Distribution in Inelastic Martial:

If the material deforms inelastically, as expected for concrete, the stress

 distribution is closer to that shown by the dashed line.- Diagonal Stresses Associated with Torsional Shear Stresses:
- Shear stresses in pairs act on an element at or near the wide surface, as shown in Figure 8.1-4a.
- As explained in strength of materials texts, this state of stress corresponds to equal tension and compression stresses on the faces of an element at 45° to the direction of shear.
- These inclined tension stresses are of the same kind as those caused by transverse shear, discussed in Chapter 5.
- However, in the case of torsion, since the torsional shear stresses are of opposite sign on opposing sides of the member (Figure 8.1-4b), the corresponding diagonal tension stresses are at right angles to each other (Figure 8.1-4a).

Figure 8.1-4: Stresses caused by torsion.

8.1.5 Cracking Torque $\boldsymbol{T}_{\boldsymbol{c r}}$

- Definition of Cracking Torque $T_{c r}$
- When the diagonal tension stresses exceed the tensile resistance of the concrete, a crack forms at some accidentally weaker location and spreads immediately across the beam.
- The value of torque corresponding to the formation of this diagonal crack is known as the cracking torque $T_{c r}$.
- Using Thin-walled Tube, Space Truss Analogy to Compute $T_{c r}$:
- The nonlinear stress distribution shown by the dotted lines in Figure 8.1-4b lends itself to the use of the thin-walled tube, space truss analogy.
- Using this analogy, the shear stresses are treated as constant over a finite thickness \boldsymbol{t} around the periphery of the member, allowing the beam to be represented by an equivalent tube, as shown in Figure 8.1-5 below.
- Shear Flow According to Thin-walled Tube Model:

In the analogy, shear flow q is treated as a constant around the perimeter of the tube and related to applied torque, T, as follows:
$T=q\left(x_{0} t\right)_{\text {Area }} \times y_{0 \text { Arm }}+q\left(y_{0} t\right)_{\text {Area }} \times x_{0 \text { Arm }} \Rightarrow T=2 q x_{0} y_{0} t$
The product $x_{0} y_{0}$ represents the area enclosed by the shear flow path A_{0}, giving $\because x_{0} y_{0}=A_{0} \Rightarrow \therefore T=2 q A_{0} \Rightarrow q=\frac{T}{2 A_{0}}$

- Shear Stress τ According to Thin-walled Tube Model:
$\because \tau=\frac{q}{t} \Rightarrow \therefore \tau=\frac{T}{2 A_{0} t}$
- Corresponding Diagonal Tension:

From Figure 8.1-4a above

$$
\sigma=\tau
$$

Let tensile strength of concrete approximated with
$\sigma=0.33 \lambda \sqrt{f_{c}^{\prime}}$
Therefore, the cracking torque would be:
$T_{c r}=0.33 \lambda \sqrt{f_{c}^{\prime}}\left(2 A_{0} t\right)$
Let
$A_{0} \approx \frac{2}{3} A_{c p}, t=\frac{3}{4} \frac{A_{c p}}{p_{c p}}$
The cracking moment would be:
$T_{c r}=0.33 \lambda \sqrt{f_{c}{ }^{\prime}}\left(2 \times \frac{2}{3} A_{c p} \times \frac{3}{4} \frac{A_{c p}}{p_{c p}}\right)$
$T_{c r}=0.33 \lambda \sqrt{f_{c}{ }^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
where
$A_{c p}$ is area enclosed by outside perimeter of concrete cross section, in $m m^{2}$,
$p_{c p}$ is outside perimeter of concrete cross section, in mm .

Figure 8.1-5: Thin-walled tube under torsion.

8.1.6 Torsion in Reinforced Concrete Members

8.1.6.1 Reinforcement for Torsion

- To resist torsion for values of T above $T_{c r}$, reinforcement must consist of closely spaced stirrups and longitudinal bars,
- Reinforcement for torsion with cracking pattern are presented in Figure 8.1-6 below.

Figure 8.1-6: Reinforcement for torsion.

8.1.6.2 Shear Path after Cracking

- Tests show that, after cracking, the area enclosed by the shear path is defined by the dimensions x_{0} and y_{0} measured to the centerline of the outermost closed transverse reinforcement.
- These dimensions define the gross area
$A_{o h}=x_{o} y_{o}$
and the shear perimeter
$p_{h}=2\left(x_{o}+y_{o}\right)$
measured at the steel centerline, see Figure 8.1-7 above

8.1.6.3 Basic Relation for Stirrups Torsional Reinforcement

- With referring to Figure 8.1-8 below, the relation for

Figure 8.1-7: Notations for shear flow path after cracking of a reinforced concrete beam. stirrups torsional reinforcement can be formulated based on basic principles of equilibrium as presented in below:
$T_{4}=\frac{V_{4} x_{0}}{2}$

- With referring to Figure 8.1-9 below, the vertical shear force, V_{4}, can be related to the provided stirrups as follows:
$V_{4}=A_{t} f_{y t} n$
where
A_{t} is area of one leg of a closed stirrup,
$f_{y t}$ is yield strength of transverse reinforcement,
n is number of stirrups intercepted by torsional crack.
$\because n=y_{0} \frac{\cot \theta}{s} \Rightarrow \therefore V_{4}=\frac{A_{t} f_{y t} y_{0}}{s} \cot \theta$
and the pertained torsion, T_{4}, would be:
$T_{4}=\frac{A_{t} f_{y t} y_{0} x_{0}}{2 s} \cot \theta$
- The contributions of the horizontal walls T_{1}, T_{2}, and T 3 can be determined in the same way. Summing over all four sides, the nominal capacity of the section is:
$T_{\text {Resisted by stirrups }}=T_{n}=\sum_{i=1}^{4} \mathrm{~T}_{\mathrm{i}}=\frac{2 A_{t} f_{y t} y_{0} x_{0}}{s} \cot \theta$
- Noting that $y_{o} x_{o}=A_{o h}$ and rearranging slightly give
$T_{n}=\frac{2 A_{0 h} A_{t} f_{y t}}{s} \cot \theta$

Figure 8.1-8: Space truss analogy.

Figure 8.1-9: Vertical tension in stirrups.

8.1.6.4 Basic Relation for Longitudinal Reinforcement

- As shown in Figure 8.1-10 a and b, the horizontal component of compression in the struts in the vertical wall must be equilibrated by an axial tensile force ΔN_{4}.

(a)
(b)

Figure 8.1-10: Basis for contribution of longitudinal reinforcement for torsional strength: (a) diagonal compression in vertical wall of beam; and (b) equilibrium diagram of forces due to shear in vertical wall.

- Based on the assumed uniform distribution of shear flow around the perimeter of the member, the diagonal stresses in the struts must be uniformly distributed, resulting in a line of action of the resultant axial force that coincides with the mid-height of the wall.
- Referring to Figure 8.1-10b , the total contribution of the right-hand vertical wall to the change in axial force of the member due to the presence of torsion is:
$\Delta N_{4}=V_{4} \cot \theta=\frac{A_{t} f_{y t} y_{0}}{s} \cot ^{2} \theta$
- Summing over all four sides, the total increase in axial force for the member is:
$\Delta N=\sum_{i=1}^{4} \Delta \mathrm{~N}_{\mathrm{i}}=\frac{A_{t} f_{y t}}{s} 2\left(x_{0}+y_{0}\right) \cot ^{2} \theta \Rightarrow \Delta N=\frac{A_{t} f_{y t} p_{h}}{s} \cot ^{2} \theta$
where p_{h} is the perimeter of the centerline of the closed stirrups.
- Longitudinal reinforcement must be provided to carry the added axial force $\Delta \mathrm{N}$. If that steel is designed to yield, then:
$A_{l} f_{y}=\frac{A_{t} f_{y t} p_{h}}{s} \cot ^{2} \theta$
Solve for A_{l} to obtain:
$A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta$
where A_{ℓ} is total area of longitudinal reinforcement to resist torsion,
- Finally, as
$T_{n}=\frac{2 A_{0 h} A_{t} f_{y t}}{s} \cot \theta$
therefore,
$A_{t} f_{y t}=\frac{T_{n} s}{2 A_{0 h} A_{t} f_{y t} \cot \theta}$
Substitute $A_{t} f_{y t}$ into equation above for A_{l}
$A_{l}=\left(\frac{1}{s} p_{h} \frac{1}{f_{y}} \cot ^{2} \theta\right)\left(\frac{T_{n} s}{2 A_{0 h} A_{t} f_{y t} \cot \theta}\right)$
and for T_{n} to obtain:
$T_{n}=\frac{2 A_{o h} A_{l} f_{y}}{p_{h}} \tan \theta$

8.1.7 Torsion plus Shear

- Members are rarely subjected to torsion alone. The prevalent situation is that of a beam subject to the usual flexural moments and shear forces, which, in addition, must resist torsional moments.
- Basic Shear and Torsion Stresses in Reinforced Concrete Members:

Using the usual representation for reinforced concrete, the nominal shear stress caused by an applied shear force V is:
$\tau_{v}=\frac{V}{b_{w} d}$
While using the concept of thin-walled tube, the shear stress caused by torsion would be:
$\tau_{t}=\frac{T}{2 A_{0} t}$

- Superposition of Shear and Torsion Stresses in a Hollow Section:
- As shown in Figure 8.1-11 for hollow sections, these stresses are directly additive on one side of the member. Thus, for a cracked concrete cross section with
$A_{o}=0.85 A_{o h}$ and $t=\frac{A_{o h}}{p_{h}}$
the maximum shear stress can be expressed as:
$\tau=\tau_{v}+\tau_{t}=\frac{V}{b_{w} d}+\frac{T p_{h}}{1.7 A_{o h}^{2}}$
- For a member with a solid section, Figure 8.1-12, τ_{t} is predominately distributed around the perimeter, as represented by the hollow tube analogy, but the full cross section contributes to carrying τ_{v}.
- Comparisons with experimental results show that equation above for a hollow section is somewhat overconservative for solid sections and that a better representation for maximum shear stress is provided by the square root of the sum of the squares, SRSS 1, of the nominal shear stresses:
$\tau=\sqrt{\left(\frac{V}{b_{w} d}\right)^{2}+\left(\frac{T p_{h}}{1.7 A_{o h}^{2}}\right)^{2}}$

Torsional stresses

Figure 8.1-11: Addition of torsional and shear stresses in a hollow section.

Torsional stresses

Shear stresses

Figure 8.1-12: Addition of torsional and shear stresses in a solid section.

[^0]
8.2 ACI Code Provisions for Torsion Design

8.2.1 Basic Design Principle

The basic principles upon which ACI Code design provisions are based have been presented in the preceding chapters for flexure and shear. ACI Code 9.5.1.1 safety provisions require that:
$T_{u} \leq \phi T_{n}$
where
$T_{n}=$ nominal torsional strength of member,
$T_{u}=$ required torsional strength at factored loads. The strength reduction factor $\phi=0.75$ applies for torsion.

8.2.2 Computing of \boldsymbol{T}_{u}

- In accordance with ACI Code 9.4.4.3, sections located less than a distance d from the face of a support may be designed for the same torsional moment T_{u} as that computed at a distance d, recognizing the beneficial effects of support compression.
- However, if a concentrated torque is applied within this distance, the critical section must be taken at the face of the support.
- These provisions parallel those used in shear design.

8.2.3 Effective Section

8.2.3.1 Before Cracking

- For T beams, a portion of the overhanging flange contributes to the cracking torsional capacity and, if reinforced with closed stirrups, to the torsional strength.
- According to ACI Code 9.2.4.4, the contributing width of the overhanging flange on either side of the web would be as indicated in Figure 8.2-1 below.

(a) Symmetric slab

(b) Single side slab

Figure 8.2-1: Portion of slab to be included with beam for torsional design.

- The overhanging flanges shall be neglected in cases where the parameter $A_{c p}^{2} / p_{c p}$ for solid sections or $A_{g}^{2} / p_{c p}$ for hollow sections calculated for a beam with flanges is less than that calculated for the same beam ignoring the flanges.

8.2.3.2 After Cracking

After torsional cracking, the applied torque is resisted by the portion of the section represented by $A_{o h}$, the area enclosed by the centerline of the outermost closed transverse torsional reinforcement. For rectangular, box, and \boldsymbol{T} sections, $A_{o h}$ is illustrated in Figure 8.2-2 below.

Figure 8.2-2: Definition of $A_{\text {oh }}$.

8.2.3.3 Sections before and after Cracking

For sections with flanges, the Code does not require that the section used to establish $A_{c p}$ coincide with that used to establish $A_{o h}$.

8.2.4 Threshold Torsion

- If the value of factored torsional moment T_{u} is low enough, the effects of torsion may be neglected, according to ACI Code 22.7.1.1.
- This lower limit is ϕ times the threshold torsion $T_{t h}$, which equals 25 percent of the cracking torque, given by:
$T_{t h}=\frac{1}{4} T_{c r}$
$\because T_{c r}=0.33 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
$\therefore T_{\text {th for solid section }}=0.083 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
- For hollow cross sections, the threshold torsion is:
$T_{\text {th for hollow section }}=0.083 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{g}^{2}}{p_{c p}}\right)$
- The value of λ is as specified in ACI Code 19.2.4.2 and previously described with $\lambda=0.85,0.75$, and 1.0 for sand-lightweight, all-lightweight, and normalweight concrete, respectively.

8.2.5 Equilibrium vs. Compatibility Torsion

- As discussed in Article 8.1.3, a distinction is made in the ACI Code between equilibrium (primary) torsion and compatibility (secondary) torsion.
- For the equilibrium (primary) torsion, the supporting member must be designed to provide the torsional resistance required by static equilibrium.
- For secondary torsion resulting from compatibility requirements, it is assumed that cracking will result in a redistribution of internal forces; and according to ACI Code 22.7.3.2, the maximum torsional moment T_{u} may be reduced to:
$T_{u}=\phi T_{c r}$
or
$T_{u}=\phi\left(0.33 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)\right)$

8.2.6 Limitations on Shear Stress

- Based largely on empirical observations, the width of diagonal cracks caused by combined shear and torsion under service loads can be limited by limiting the calculated shear stress under factored shear and torsion.
- In accordance with ACI Code 22.7.7.1, shear stresses should be limited to the following values:
- For hollow sections:

$$
\left(\frac{V_{u}}{b_{w} d}\right)+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right) \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)
$$

- For solid sections:

$$
\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}} \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)
$$

8.2.7 Reinforcement for Torsion

8.2.7.1 Stirrups for Torsion

- As discussed in Article 8.1.6 above, stirrups for torsion can be determined from following relation:

$$
A_{t}=\frac{T_{u} s}{2 \phi A_{o} f_{y t} \cot \theta}
$$

- According to ACI Code 22.7.6.1, the angle θ may assume any value between $\mathbf{3 0}$
and 60°, with a value of $\boldsymbol{\theta}=45^{\circ}$ suggested.
- The Code limits f_{yt} to a maximum of $\mathbf{4 2 0} \mathbf{~ M P a}$ for reasons of crack control.
- The reinforcement provided for torsion must be combined with that required for shear. Based on the typical two-leg stirrup, this may be expressed as

$$
\frac{A_{v+t}}{s}=\frac{A_{v}}{s}+2 \frac{A_{t}}{s}
$$

- Anchorage of torsional stirrups is presented in Figure 8.2-3 below.

Figure 8.2-3: Stirrup-ties and longitudinal reinforcement for torsion: (a) spandrel beam with flanges on one side; (b) interior beam; (c) isolated rectangular beam; (d) wide spandrel beam; and (e) T beam with torsional reinforcement in flanges.

- Maximum Spacing for Torsional Stirrups

According to ACI Code 9.6.4.2, to control spiral cracking, the maximum spacing of torsional stirrups should be:
$s_{\text {Maximum }}=\operatorname{Minimum~}\left(\frac{p_{h}}{8}\right.$ or 300 mm$)$

- Minimum Area of Closed Stirrups

In addition, for members requiring both shear and torsion reinforcement, the minimum area of closed stirrups is equal to:
$A_{v}+2 A_{t}=0.062 \sqrt{f_{c}^{\prime}} \frac{b_{w} s}{f_{y t}} \geq 0.35 \frac{b_{w} s}{f_{y t}}$

8.2.7.2 Longitudinal Reinforcement

- Based on discussion of Article 8.1.6 above, the area of longitudinal bar reinforcement A_{ℓ} required to resist T_{n} is given by:
$A_{\ell}=\left(\frac{A_{t}}{s}\right) p_{h}\left(\frac{f_{y t}}{f_{y}}\right) \cot ^{2} \theta$ where θ must have the same value used to calculate A_{t}.
- The term A_{t} / s should be taken as the value calculated, not modified based on minimum transverse steel requirements.
- Based on an evaluation of the performance of reinforced concrete beam torsional test specimens, ACI Code 9.6.4.3 requires a minimum value of A_{ℓ} equal to the lesser:
a. $0.42 \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}}{f_{y t}}\right)-\left(\frac{A_{t}}{s}\right) p_{h}\left(\frac{f_{y t}}{f_{y}}\right)$
b. $0.42 \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}}{f_{y t}}\right)-\left(\frac{0.175 b_{w}}{f_{y t}}\right) p_{h}\left(\frac{f_{y t}}{f_{y}}\right)$

8.3 DEsign Procedures and Examples

Designing a reinforced concrete flexural member for torsion involves a series of steps. The following sequence ensures that each is covered:

- Compute V_{u} and T_{u}. When pertinent conditions are satisfied, V_{u} and T_{u} can be determined at distance d from face of support.
- Determine if the factored torque is less than:
$\phi T_{T h}=\phi 0.083 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
If so, torsion may be neglected. If not, proceed with the design. Note that in this step, portions of over-hanging flanges, as defined in Figure 8.2-1 above, must be included in the calculation of $A_{c p}$ and $p_{c p}$.

$$
h_{w} \leqslant 4 h_{f}
$$

(a) Symmetric slab

(b) Single side slab

Figure 8.2-1: Portion of slab to be included with beam for torsional design. Reproduce for convenience.

- If the torsion is compatibility torsion, rather than equilibrium torsion, as described in Section 8.1.3 above, the maximum factored torque may be reduced to:
$\phi 0.33 \lambda \sqrt{f_{c}{ }^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
Equilibrium torsion cannot be adjusted.
- Check the shear stresses in the section under combined torsion and shear, using the following criteria:
- For hollow sections:

$$
\left(\frac{V_{u}}{b_{w} d}\right)+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right) \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)
$$

- For solid sections:

$$
\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}} \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)
$$

- Calculate the required transverse reinforcement for torsion using following relation:
$A_{t}=\frac{T_{u} s}{2 \phi A_{o} f_{y t} \cot \theta}$
Combine A_{t} and A_{v} using following relation:
$\frac{A_{v+t}}{s}=\frac{A_{v}}{s}+2 \frac{A_{t}}{S}$
- Check that the minimum transverse reinforcement requirements are met for both torsion and shear. These include:
- The maximum spacing:
$s_{\text {Maximum }}=\operatorname{Minimum}\left(\frac{p_{h}}{8}\right.$ or 300 mm$)$
- The minimum area:
$A_{v}+2 A_{t}=\operatorname{Maximum}\left(0.062 \sqrt{f_{c}^{\prime}} \frac{b_{w} s}{f_{y t}}, 0.35 \frac{b_{w} s}{f_{y t}}\right)$
As in Chapter 5, solve for $s_{\text {For minimum value of } A_{v}+2 A_{t}}$
$s_{\text {For minimum value of } A_{v}+2 A_{t}}=\operatorname{minimum}\left(\frac{\left(A_{v}+2 A_{t}\right) f_{y t}}{0.062 \sqrt{f_{c}^{\prime}} b_{w}}, \frac{\left(A_{v}+2 A_{t}\right) f_{y t}}{0.35 b_{w}}\right)$
- Calculate the required longitudinal torsional reinforcement A_{ℓ}, using the following relation:

$$
A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta
$$

then comparing with $A_{l \text { minimum }}$ given by:

$$
A_{l \text { minimum }}=\operatorname{minimum}\left(0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{A_{t}}{s}\right) p_{h} \frac{f_{y t}}{f_{y}}, 0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{0.175 b_{w}}{f_{y t}}\right) p_{h} \frac{f_{y t}}{f_{y}}\right)
$$

- Details for Torsional Longitudinal Bars:

According to ACI Code 9.7.5,

- The spacing of the longitudinal bars should not exceed 300mm,
- They should be distributed around the perimeter of the cross section to control cracking and to ensure that the centroid of the additional longitudinal reinforcement for torsion should approximately coincide with the centroid of the section.
- The bars shall have a diameter at least 0.042 times the transverse reinforcement spacing, but not less than 10 mm .
- At least one longitudinal bar must be placed at each corner of the stirrups.
- Careful attention must be paid to the anchorage of longitudinal torsional reinforcement so that it is able to develop its yield strength at the face of the supporting columns, where torsional moments are often maximum.

Example 8.3-1

The 8.5m span beam shown in Figure $\mathbf{8 . 3 - 1}$ below carries a monolithic slab cantilevering $\mathbf{1 . 8 m}$ past the beam centerline. The resulting L beam supports a live load of $11.5 \mathrm{kN} / \mathbf{m}$ along the beam centerline plus $\mathbf{2 . 4} \mathbf{~ k P a}$ uniformly distributed over the upper slab surface. The effective depth to the flexural steel centroid is $\mathbf{5 4 6 m m}$, and the distance from the beam surfaces to the centroid of stirrup steel is $\mathbf{4 5 m m}$. Material strengths are $f_{c}^{\prime}=35 \mathrm{MPa}$ and $f_{y}=f_{y t}=420 \mathrm{MPa}$. Using same stirrup spacing along beam span, design the torsional and shear reinforcement for the beam.
It is useful to note that based on flexure requirement a longitudinal reinforcement of $1191 \mathrm{~mm}^{2}$ should be provided for negative region and about $900 \mathrm{~mm}^{2}$ should be provided for positive region.

Elevation View.

Sectional View.

Figure 8.3-1: Structure for Example 8.3-1. Continue.

Solution

Factored Loads

Factored uniformly distributed load:
$W_{u}=1.2 \times(0.15 \times 24)+1.6 \times 2.4=8.16 \mathrm{kPa}$
The resultant for this UDL would be:
$R_{\text {u of } U D L}=8.16 \times 1.65=13.47 \frac{\mathrm{kN}}{\mathrm{m}}$
Located at eccentricity of:
$e=\frac{1.65}{2}+\frac{0.30}{2}=0.975 \mathrm{~m}$
Factored live load:
$q_{u}=1.2 \times(0.3 \times 0.6 \times 24)+1.6 \times 11.5 \approx 24 \mathrm{kN} / \mathrm{m}$
Factored Shear Force and Torsion

As all related conditions are satisfied, therefore shear force and torsion can be determined at distance
V_{u} @ distance d from face of support

$$
\begin{aligned}
& =\frac{1}{2}((24+13.47) \times(8.50-0.546 \times 2)) \\
& \approx 139 \mathrm{kN}
\end{aligned}
$$

T_{u} @ distance d from face of support

$$
\begin{aligned}
& =\frac{1}{2}((13.47 \times 0.975) \times(8.50-0.546 \times 2)) \\
& =48.6 \mathrm{kN} . \mathrm{m}
\end{aligned}
$$

Comparing with $\phi T_{\text {th }}$
$\phi T_{T h}=\phi 0.083 \lambda \sqrt{f_{c}{ }^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
The effective section would be as indicated in below:
$A_{c p}=(300 \times 600+150 \times 450)=247500 \mathrm{~mm}^{2}$

$p_{c h}=(300+600) \times 2+450 \times 2=2700 \mathrm{~mm}$
$\phi T_{T h}=\phi 0.083 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)=\frac{0.75 \times 0.083 \times 1.0 \times \sqrt{35}\left(\frac{247500^{2}}{2700}\right)}{10^{6}}=8.36 \mathrm{kN} . \mathrm{m}<T_{u}$
Clearly, torsion must be considered in the present case.
Primary versus compatibility torsion:
Since the torsional resistance of the beam is required for equilibrium, no reduction in T_{u} may be made.

Checking for shear stresses:

Check the shear stresses in the section under combined torsion and shear. As the section is a solid one, therefore shear stresses would be checked using the following criteria:
$\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}} \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)$
Proposed the stirrups indicated in below, with 45 mm cover to the center of the stirrup bars from all faces, $x_{0}=300-90=210 \mathrm{~mm}, y_{0}=600-90=510 \mathrm{~mm}$
$A_{o h}=210 \times 510=107100 \mathrm{~mm}^{2}, p_{h}=2 \times(210+510)=1440 \mathrm{~mm}$
Substitute in the criterion to obtain

$$
\begin{gathered}
\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}}=\sqrt{\left(\frac{139 \times 10^{3}}{300 \times 546}\right)^{2}+\left(\frac{48.6 \times 10^{6} \times 1440}{1.7 \times 107100^{2}}\right)^{2}} \\
\quad \leq b \longrightarrow \\
\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}}=\sqrt{\left(\frac{139 \times 10^{3}}{300 \times 546}\right)^{2}+\left(\frac{48.6 \times 10^{6} \times 1440}{1.7 \times 107100^{2}}\right)^{2}}=0.75 \times(0.17 \sqrt{35}+0.66 \sqrt{35})
\end{gathered}
$$

$$
=3.68 M P a=3.68 M P a \therefore O k
$$

Therefore, the cross section is of adequate size for the given concrete strength.
Design of Transverse Reinforcement
The values of A_{t} and A_{v} will now be calculated at the distance d from column face. With choosing $\theta=45^{\circ}$,
$A_{t}=\frac{T_{u} s}{2 \phi A_{o} f_{y t} \cot \theta}$
$A_{o}=0.85 A_{\text {oh }}=0.85 \times 210 \times 510=91035 \mathrm{~mm}^{2}$
$A_{t}=\frac{48.6 \times 10^{6}}{2 \times 0.75 \times 91035 \times 420 \times 1.0} s=0.847 \mathrm{~s}$
$\phi V_{c}=\frac{0.75 \times 0.17 \times \sqrt{35} \times 546 \times 300}{1000}=124 \mathrm{kN}$
$V_{s}=\frac{V_{u}-\phi V_{c}}{\phi}=\frac{139-124}{0.75}=20 \mathrm{kN}$
From Chapter 5,
$V_{s}=\left(A_{v} f_{y t}\right) \times \frac{d}{s} \Rightarrow A_{v}=\frac{V_{s}}{f_{y t} d} s=\frac{20000}{420 \times 546} s=0.0872 s$
Combine A_{t} and A_{v} using following relation:
$2 A_{t}+A_{v}=2 \times 0.847 s+0.0872 s=1.78 s$
Try stirrups of No. 13
$2 A_{t}+A_{v}=2 \times \frac{\pi \times 13^{2}}{4}=1.78 \mathrm{~s}$
Solve for spacing s :
$s=149 \mathrm{~mm}$
Try No. 13 @ 125 mm
Check with maximum spacing for shear and torsion:
$\because V_{s}<0.33 \lambda \sqrt{f_{c}{ }^{\prime}} b_{w} d$
Therefore,
$s_{\text {Maximum for shear }}=$ Minimum $\left(\frac{d}{2}, 600\right)$
While the maximum spacing for torsion is:
$s_{\text {Maximum for torsion }}=$ Minimum $\left(\frac{p_{h}}{8}\right.$ or 300 mm$)$
Therefore, $s_{\text {Maximum }}$ for both aspects would be:
$s_{\text {Maximum }}=\operatorname{Minimum}\left(\frac{d}{2}, \frac{p_{h}}{8}, 300\right)=\operatorname{Minimum}\left(\frac{546}{2}, \frac{1440}{8}, 300\right)=\operatorname{Minimum}(273,180,300)$

$$
=180 \mathrm{~mm}>s_{\text {Provided }} \therefore \text { Ok }
$$

Finally, checking the limitation on minimum area of transverse reinforcement:
$s_{\text {For minimum value of } A_{v}+2 A_{t}}=$ minimum $\left(\frac{\left(A_{v}+2 A_{t}\right) f_{y t}}{0.062 \sqrt{\mathrm{f}_{\mathrm{c}}{ }^{\prime} \mathrm{b}_{\mathrm{w}}}}, \frac{\left(\mathrm{A}_{\mathrm{v}}+2 \mathrm{~A}_{\mathrm{t}}\right) \mathrm{f}_{\mathrm{yt}}}{0.35 \mathrm{~b}_{\mathrm{w}}}\right)$
$\mathrm{S}_{\text {For minimum value of } \mathrm{A}_{\mathrm{v}}+2 \mathrm{~A}_{\mathrm{t}}}=$ minimum $\left(\frac{2 \times \frac{\pi \times 13^{2}}{4} \times 420}{0.062 \times \sqrt{35} \times 300}, \frac{2 \times \frac{\pi \times 13^{2}}{4} \times 420}{0.35 \times 300}\right)$

$$
=\text { minimum }(1013,1061)=1013 \mathrm{~mm} \gg s_{\text {Provided }} \therefore \text { Ok } .
$$

Therefore use No. 13 @ 125 mm along whole span of the beam.
Design for Longitudinal Reinforcement for Torsion:
Calculate the required longitudinal torsional reinforcement A_{l}, using the following relation:
$A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta$
The longitudinal steel required for torsion at a distance d from the column face is:
$\because A_{t}=0.847 s \Rightarrow \frac{A_{t}}{s}=0.847$
Then
$A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta=0.847 \times 1440 \times 1.0 \times 1.0^{2}=1219 \mathrm{~mm}^{2}$
Comparing with $A_{l \text { minimum }}$ given by:

$$
\begin{aligned}
A_{l \text { minimum }}= & \operatorname{minimum}\left(0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{A_{t}}{s}\right) p_{h} \frac{f_{y t}}{f_{y}}, 0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{0.175 b_{w}}{f_{y t}}\right) p_{h} \frac{f_{y t}}{f_{y}}\right) \\
A_{l \text { minimum }}= & \operatorname{minimum}\left(0.42 \times \sqrt{35} \times \frac{247500}{420}-(0.847) \times 1440 \times 1.0,\right. \\
& \left.0.42 \times \sqrt{35} \times \frac{247500}{420}-\left(\frac{0.175 \times 300}{420}\right) \times 1440 \times 1.0\right)=\operatorname{minimum}(225,1284) \\
& =225 \mathrm{~mm}^{2}<A_{l} \therefore \text { Ok. } .
\end{aligned}
$$

Reinforcement will be placed at the top, mid-depth, and bottom of the member each level to provide not less than $1219 / 3=406$. Try rebar with No. 20 :
No.of rebars at mid depth $=\frac{406}{\frac{\pi \times 20^{2}}{4}}=1.29$
Use 2No. 20 @ mid depth
No. of top rebars $=\frac{1191+406}{\frac{\pi \times 20^{2}}{4}} \approx 5.0$
Use 5No. 20 @top
No.of bottom rebars $=\frac{900+406}{\frac{\pi \times 20^{2}}{4}}=4.15$
Use 5No. 20 @ Bottom.
Proposed beam reinforcement are presented in Figure 8.3-2 below. To be a final decision, proposed reinforcement should be checked for ACI requirements for details of torsional longitudinal bars, ACI Code 9.7.5,

- The spacing of the longitudinal bars should not exceed 300 mm , Ok.
- They should be distributed around the perimeter of the cross section to control cracking, Ok.
- The bars shall have a diameter at least 0.042 times the transverse reinforcement spacing, but not less than 10 mm ., Ok.
- At least one longitudinal bar must be placed at each corner of the stirrups, Ok.
- Careful attention must be paid to the anchorage of longitudinal torsional reinforcement so that it is able to develop its yield strength at the face of the supporting columns, where torsional moments are often maximum. This should be as discussed in Chapter 7.

Longitudinal section view.
Figure 8.3-2: Beam reinforcement for Example 8.3-1.

5No. 20 Bottom
Rebars
Section @ supports

5No. 20 Bottom
Rebars

[^1]
Example 8.3-2

For a maintenance shop indicated in Figure 8.3-3 below, design a floor supporting spandrel beam for torsion and shear. The floor slab is subjected to a live load of 2.5 kPa and a superimposed dead load of 2.0 kPa in addition of its own weight. In your design, assume that:

- $f_{c}^{\prime}=28 \mathrm{MPa}$, and $f_{y}=f_{y t}=420 \mathrm{MPa}$,
- Based on flexural design, $A_{\text {top required }} \approx 700 \mathrm{~mm}^{2}$ and $A_{\text {bottom required }} \approx 610 \mathrm{~mm}^{2}$,
- Try two layers with No. 20 for longitudinal reinforcement and No. 10 for stirrups.

3D View.

3D Sectional View.
Figure 8.3-3: Maintenance shop for Example 8.3-2.

Figure 8.3-3: Maintenance shop for Example 8.3-2. Continue.

Solution

Factored Loads

Factored uniformly distributed, W_{u}, that acting on the slab would be:
$W_{D}=0.2 \times 24+2.0=6.8 \mathrm{kPa}$
$W_{u}=\max (1.4 \times 6.8,1.2 \times 6.8+1.6 \times 2.5)=12.2 \mathrm{kPa}$
With considering brick cladding as a dead load and with assuming $\gamma_{\text {Brick }}=19 \mathrm{kN} / \mathrm{m}^{3}$, the factored line load, q_{u}, would be:
$q_{u}=1.2 \times\left((0.25 \times 2.40 \times 19)_{\text {Weight of brick wall }}+(0.3 \times 0.6 \times 24)_{\text {selfweight of the beam }}\right)=18.9 \frac{\mathrm{kN}}{\mathrm{m}}$
Factored Shear Force, V_{u}, and Torsion, T_{ν}, Acting on Beam
As would be discussed in Chapter 12, Analysis and Design of One-way Slabs, an edge supported slab is classified as one-way slab when its length to width ratio is more than 2.
$\frac{l}{s}=\frac{8.00}{3.50}=2.28>2$
Therefore, floor system is classified as one-way slab system.
In Chapter 12, it is shown that shear force and torsion transferred from the slab to the supporting beam can be estimated from following relations, see Figure 8.3-4 below:
$M_{u \text { exterior-ve of slab }}=T_{u}$ torsional moment acting on beam $=\frac{W_{u} l_{n}^{2}}{24}$
$V_{\text {shear force acting on slab }}=$ Load acting on beam $=\frac{W_{u} l_{n}}{2}$
where:
$W_{u}=$ Factored UDL acting on slab $=12.2 \mathrm{kPa}$
$l_{n}=$ clear span of slab $=$ clear spacing between supporting beam $=3.5-\frac{0.3}{2} \times 2=3.2 \mathrm{~m}$
$M_{u \text { exterior-ve of slab }}=T_{u}$ torsional moment acting on beam $=\frac{12.2 \times 3.2^{2}}{24}=5.21 \mathrm{kN} . \mathrm{m} \mathrm{per} \mathrm{m}$
$V_{\text {shear force acting on slab }}=$ Load acting on beam $=\frac{12.2 \times 3.2}{2}=19.5 \frac{\mathrm{kN}}{\mathrm{m}}$
Including the factored loads that acting directly on beam, the total factored line load acting on the beam would be:
q_{u} total line load acting on the beam $=19.5+18.9=38.4 \frac{\mathrm{kN}}{\mathrm{m}}$ ■

Figure 8.3-4: Forces transformed from supported slab to the supporting beam.
As all pertinent conditions are satisfied, therefore, design force can be determined at distance d from face of support. With two layers of reinforcement and with adopting of No. 20 for longitudinal reinforcement and No. 10 for stirrups, the effective depth would be: $d=600-40-10-20-\frac{25}{2}=517 \mathrm{~mm}$
$V_{u @ \text { distance d from face of support }}=\frac{38.4 \times\left(8.0-\frac{0.6}{2} \times 2-0.517 \times 2\right)}{2}=122 \mathrm{kN}$
$T_{u} @$ distance d from face of support $=\frac{5.21 \times\left(8.0-\frac{0.6}{2} \times 2-0.517 \times 2\right)}{2}=16.6 \mathrm{kN} . \mathrm{m} \mathrm{per} \mathrm{m}$
A more accurate torque can be determined with considering of offset between transferred shear force, V_{u}, and the center line of the spandrel beam:
T_{u} @ distance d from face of support $=\frac{\left(5.21+19.5 \times \frac{0.3}{2}\right) \times\left(8.0-\frac{0.6}{2} \times 2-0.517 \times 2\right)}{2}$

$$
=25.9 \mathrm{kN} . \mathrm{m} \text { per } \mathrm{m}
$$

Comparing with $\phi T_{t h}$
$\phi T_{T h}=\phi 0.083 \lambda \sqrt{f_{c}{ }^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)$
The effective section would be as indicated in below:
$A_{c p}=(300 \times 600+200 \times 400)=260000 \mathrm{~mm}^{2}$
$p_{c h}=(300+600) \times 2+400 \times 2=2600 \mathrm{~mm}$
$\phi T_{T h}=\phi 0.083 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)=\frac{\left(0.75 \times 0.083 \times 1.0 \times \sqrt{28} \times\left(\frac{260000^{2}}{2600}\right)\right)}{10^{6}}=8.56 \mathrm{kN} . \mathrm{m}<T_{u}$
Clearly, torsion must be considered in the present case.
Primary versus compatibility torsion:
Since the torsional resistance of the beam is required for computability, therefore T_{u}. can be reduced to the value indicated in below:

$$
\begin{aligned}
& T_{u \text { reduced }}=\phi 0.33 \lambda \sqrt{f_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right) \\
&=\frac{0.75 \times 0.33 \times 1.0 \times \sqrt{28} \times\left(\frac{260000^{2}}{2600}\right)}{10^{6}} \\
&=34.1 \mathrm{kN} . \mathrm{m}>T_{u \text { applied }}
\end{aligned}
$$

Therefore, no benefit can be obtained for torque reduction and the design should be based on T_{u} of $16.6 \mathrm{kN} . \mathrm{m}$.
Checking for shear stresses:
Check the shear stresses in the section under combined torsion and shear. As the section is a solid one, therefore shear stresses would be checked using the following criteria:
$\sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}} \leq \phi\left(\frac{V_{c}}{b_{w} d}+0.66 \sqrt{f_{c}^{\prime}}\right)$
Proposed the stirrups indicated in below, with 45 mm cover to the center of the stirrup bars from all faces,
$x_{0}=300-40 \times 2-\frac{10}{2} \times 2=210 \mathrm{~mm}$
$y_{0}=600-40 \times 2-\frac{10}{2} \times 2=510 \mathrm{~mm}$
$A_{\text {oh }}=210 \times 510=107100 \mathrm{~mm}^{2}$
$p_{h}=2 \times(210+510)=1440 \mathrm{~mm}$
Substitute in the criterion to obtain

$$
\begin{aligned}
& \sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}}=\sqrt{\left(\frac{122 \times 10^{3}}{300 \times 517}\right)^{2}+\left(\frac{25.9 \times 10^{6} \times 1440}{1.7 \times 107100^{2}}\right)^{2}} \\
& \leq 0.75 \times(0.17 \sqrt{28}+0.66 \sqrt{28}) \\
& \sqrt{\left(\frac{V_{u}}{b_{w} d}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}}=2.06 M P a \leq 3.29 M P a \therefore O k .
\end{aligned}
$$

Therefore, the cross section is of adequate size for the given concrete strength.

Design of Transverse Reinforcement

The values of A_{t} and A_{v} will now be calculated at the distance d from column face. With choosing $\theta=45^{\circ}$,
$A_{t}=\frac{T_{u} s}{2 \phi A_{o} f_{y t} \cot \theta}$
$A_{o}=0.85 A_{\text {oh }}=0.85 \times 210 \times 510=91035 \mathrm{~mm}^{2}$
$A_{t}=\frac{25.9 \times 10^{6}}{2 \times 0.75 \times 91035 \times 420 \times 1.0} s=0.452 \mathrm{~s}$
$\phi V_{c}=\frac{0.75 \times 0.17 \times \sqrt{28} \times 517 \times 300}{1000}=105 \mathrm{kN}$
$V_{s}=\frac{V_{u}-\phi V_{c}}{\phi}=\frac{122-105}{0.75}=22.6 \mathrm{kN}$
From Chapter 5,
$V_{s}=\left(A_{v} f_{y t}\right) \times \frac{d}{s} \Rightarrow A_{v}=\frac{V_{s}}{f_{y t} d} s=\frac{22.6 \times 10^{3}}{420 \times 517} s=0.104 s$
Combine A_{t} and A_{v} using following relation:
$2 A_{t}+A_{v}=2 \times 0.452 s+0.104 s=1.00 s$
Try stirrups of No. 10
$2 A_{t}+A_{v}=2 \times \frac{\pi \times 10^{2}}{4}=1.00 s$
Solve for spacing s :
$s=157 \mathrm{~mm}$
Try No. 10 @ 150 mm
Check with maximum spacing for shear and torsion:
$\because V_{s}<0.33 \lambda \sqrt{f_{c}{ }^{\prime}} b_{w} d$
Therefore,
$s_{\text {Maximum for shear }}=$ Minimum $\left(\frac{d}{2}, 600\right)$
While the maximum spacing for torsion is:
$s_{\text {Maximum for torsion }}=\operatorname{Minimum}\left(\frac{p_{h}}{8}\right.$ or 300 mm$)$
Therefore, $s_{\text {Maximum }}$ for both aspects would be:
$s_{\text {Maximum }}=\min \left(\frac{d}{2}, \frac{p_{h}}{8}, 300\right)=\min \left(\frac{517}{2}, \frac{1440}{8}, 300\right)=180 \mathrm{~mm}>s_{\text {Provided }} \therefore$ Ok.
Try No. 10 @ 150 mm
Finally, checking the limitation on minimum area of transverse reinforcement:
$s_{\text {For minimum value of } A_{v}+2 A_{t}}=\min \left(\frac{\left(A_{v}+2 A_{t}\right) f_{y t}}{0.062 \sqrt{f_{c}^{\prime}} b_{w}}, \frac{\left(A_{v}+2 A_{t}\right) f_{y t}}{0.35 b_{w}}\right)$
$\mathrm{S}_{\text {For minimum value of } \mathrm{A}_{\mathrm{v}}+2 \mathrm{~A}_{t}}=\min \left(\frac{2 \times \frac{\pi \times 10^{2}}{4} \times 420}{0.062 \times \sqrt{28} \times 300}, \frac{2 \times \frac{\pi \times 10^{2}}{4} \times 420}{0.35 \times 300}\right)=628 \mathrm{~mm}>s_{\text {Provided }}$

$$
\therefore O k
$$

Therefore use No. 10 @ 150 mm along whole span of the beam.
Design for Longitudinal Reinforcement for Torsion:
Calculate the required longitudinal torsional reinforcement A_{l}, using the following relation:
$A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta$
The longitudinal steel required for torsion at a distance d from the column face is:
$\because A_{t}=0.452 s \Rightarrow \frac{A_{t}}{s}=0.452$
Then
$A_{l}=\frac{A_{t}}{s} p_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta=0.452 \times 1440 \times 1.0 \times 1.0^{2}=650 \mathrm{~mm}^{2}$
Comparing with $A_{l \text { minimum }}$ given by:

$$
\begin{aligned}
A_{l \text { minimum }}= & \min \left(0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{A_{t}}{s}\right) p_{h} \frac{f_{y t}}{f_{y}}, 0.42 \sqrt{f_{c}^{\prime}} \frac{A_{c p}}{f_{y t}}-\left(\frac{0.175 b_{w}}{f_{y t}}\right) p_{h} \frac{f_{y t}}{f_{y}}\right) \\
A_{l \text { minimum }}= & \min \left(0.42 \times \sqrt{28} \times \frac{260000}{420}-(0.452) \times 1440 \times 1.0,\right. \\
& \left.0.42 \times \sqrt{28} \times \frac{260000}{420}-\left(\frac{0.175 \times 300}{420}\right) \times 1440 \times 1.0\right)=724 \mathrm{~mm}^{2}>A_{l} \therefore \text { Not Ok. }
\end{aligned}
$$

$\therefore A_{l}=724 \mathrm{~mm}^{2}$
Reinforcement will be placed at the top, mid-depth, and bottom of the member. Each level to provide not less than $724 / 3=241$. Try No. 20 rebar:
No. of rebars at mid depth $=\frac{241}{\frac{\pi \times 20^{2}}{4}} \approx 0.767$
Therefore, using 2No. 16 @ mid - depth seems more suitable and economical.
No. of top rebars $=\frac{700+241}{\frac{\pi \times 20^{2}}{4}}=2.99$
Use 3No. 20 @top
No. of bottom rebars $=\frac{610+241}{\frac{\pi \times 20^{2}}{4}}=2.7$
Use 3No. 20 @ Bottom.

Longitudinal section.

Beam Section at Supports

Section at Mid-span

Figure 8.3-5: Reinforcement for Example 8.3-2.
Proposed beam reinforcement are presented in Figure 8.3-5 above. To be a final decision, proposed reinforcement should be checked for ACI requirements for details of torsional longitudinal bars, ACI Code 9.7.5,

- The spacing of the longitudinal bars should not exceed 300mm, Ok.

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas
Academic Year 2018-2019

- They should be distributed around the perimeter of the cross section to control cracking, Ok.
- The bars shall have a diameter at least 0.042 times the transverse reinforcement spacing, but not less than 10 mm , Ok.
- At least one longitudinal bar must be placed at each corner of the stirrups, Ok.
- Careful attention must be paid to the anchorage of longitudinal torsional reinforcement so that it is able to develop its yield strength at the face of the supporting columns, where torsional moments are often maximum. This should be as discussed in Chapter 6.

Contents

Chapter 1
8 1
Analysis and Design for Torsion 1
8.1 Introduction 1
8.1.1 Torsion in Old Design Philosophy 1
8.1.2 Torsion in Current Design Philosophy 1
8.1.3 Primary versus Secondary Torsions 2
8.1.3.1 Primary Torsion 2
8.1.3.2 Secondary Torsion, 2
8.1.4 Torsion in Uncracked Plain Concrete Members 3
8.1.5 Cracking Torque $\boldsymbol{T c r}$ 4
8.1.6 Torsion in Reinforced Concrete Members 5
8.1.6.1 Reinforcement for Torsion 5
8.1.6.2 Shear Path after Cracking 5
8.1.6.3 Basic Relation for Stirrups Torsional Reinforcement 5
8.1.6.4 Basic Relation for Longitudinal Reinforcement 6
8.1.7 Torsion plus Shear 7
8.2 ACI Code Provisions for Torsion Design 8
8.2.1 Basic Design Principle 8
8.2.2 Computing of $\boldsymbol{T u}$ 8
8.2.3 Effective Section 8
8.2.3.1 Before Cracking 8
8.2.3.2 After Cracking 8
8.2.3.3 Sections before and after Cracking 9
8.2.4 Threshold Torsion 9
8.2.5 Equilibrium vs. Compatibility Torsion 9
8.2.6 Limitations on Shear Stress 9
8.2.7 Reinforcement for Torsion 9
8.2.7.1 Stirrups for Torsion 9
8.2.7.2 Longitudinal Reinforcement 10
8.3 Design Procedures and Examples 11

Chapter 9 Short Columns

9.1 Introduction

9.1.1 Definition of Column

- Columns are defined as members that carry loads chiefly in compression with a ratio of height to least lateral dimension exceeding 3
- According to Article $\mathbf{1 4 . 3 . 3}$ of the code, vertical member with ratio of unsupported height to average least lateral dimension not exceed 3, is classified as pedestal and can be designed as a plain concrete member.
- Pedestals are usually used in steel structures to protect steel against corrosion due to soil contact, see Figure 9.1-1 and Figure 9.1-2 shown below.
- Usually columns carry bending moments as well, about one or both axes of the cross section, and the bending action may produce tensile forces over a part of the cross section. Even in such cases, columns are generally referred to as compression members, because the compression forces dominate their behavior.

9.1.2 Other Compression Members

- In addition to the most common type of compression member, i.e., vertical elements in structures, other member can be classified as compression members and design on same basis adopted for column.
- These compression members include arches, inclined members in gable frame, and compression elements in trusses. It is interested to know that truss can be constructed with reinforced concrete, for more information Advanced Reinforced Concrete Design by N. K. Raju Page 281.

Figure 9.1-1: Pedestal used in a pipe supporting structure.

Figure 9.1-2: Pedestal used in a gable steel structure.

Figure 9.1-3: Other compression members.

9.1.3 Columns Classification According to Their Reinforcement

According to details of their reinforcement, reinforced concrete columns can be classified into:

- Tied Columns:

Members reinforced with longitudinal bars and lateral ties, see Figure 9.1-4 below.

- Spiral Columns

Members reinforced with longitudinal bars and continuous spirals, Figure 9.1-5 below.

Longitudinal bars and lateral ties

Longitudinal bars and spiral reinforcement

Figure 9.1-5: Spiral columns.

- Composite columns:

Composite compression members reinforced longitudinally with structural steel shapes, pipe, or tubing, with or without additional longitudinal bars, and various types of lateral reinforcement, Figure 9.1-6 above.

- Types 1 and 2 are by far the most common, and the discussion of this chapter will refer to them.

9.1.4 Columns
 According Classification Slenderness

- According to their length or

Figure 9.1-6: Composite columns. slenderness, columns may be divided into two broad categories:

- Short columns, for which the strength is governed by the strength of the materials and the geometry of the cross section.
- Slender columns, for which the strength may be significantly reduced by lateral deflections.
- Only short columns will be discussed in this Chapter; the effects of the slenderness in reducing column strength will be covered in Chapter 10.

9.1.5 Columns Classification According to Nature of Applied Forces

According to the nature of applied loads, columns can be calcified into following types.

9.1.5.1 Axially Loads Columns

- Sometimes columns are almost subjected to concentric forces with negligible moments, Figure 9.1-7 above.
- Interior columns in building with equal spans are with in this category when subjected to gravity loads, see columns B2, C2 of Figure 9.1-10 below.
- Analysis of columns under axial loads, i.e., checking the adequacy of proposed longitudinal and lateral reinforcements for given axial loads has been presented in Article 9.2. While design of columns under axial loads, i.e., select the required longitudinal and lateral reinforcements for the axial loads has been presented in Article 9.3 below.

9.1.5.2 Columns Subjected to Axial Force and Uniaxial Moment

- In buildings with equal spans, edge columns are mainly subjected to axial force and uniaxial moment, see Figure 9.1-8 and see columns B1, C1, A2, D2, B2, and D2 of Figure 9.1-10 below.
- Analysis and design of columns that subjected to axial force and uniaxial moment are presented in Article 0 and Article 9.6 respectively.

Figure 9.1-8: Columns subjected to axial force and uniaxial moment.

9.1.5.3 Columns Subjected to Axial Force and Biaxial Moments

- Columns at corner of buildings, columns A1, A2, D1, and D2 of Figure 9.1-10, are usually subjected to axial force and biaxial moments as indicated in Figure 9.1-9 below.
- As the design of these columns is iterative in nature, only their analysis is presented in Article 9.8.

Figure 9.1-9: Columns subjected to axial force and biaxial moments.

Figure 9.1-10: Columns layout for a building with equal spans.

9.2 ACI Analysis Procedure for a Short Column under an Axial Load (Small ECCENTRICITY)

- Earlier ACI versions have defined small eccentricity as follows:
- For spirally reinforced columns: $e / h \leq 0.05$.
- For tied reinforced columns: $e / h \leq 0.10$.
- For short columns, definition of minimum eccentricity is implicitly included as will be discussed in Articles 9.5 and 9.6.
- ACI procedures for the analysis of short columns under axial loads can be summarized as follows:

9.2.1 Checking of Longitudinal Reinforcement for Nominal Requirements

Reinforcement Limits

- Check ρ_{g} within acceptable limits.
$0.01 \leq \rho_{g}=\frac{A_{S t}}{A_{g}} \leq 0.08$
- According to AC1 Code (10.6.1.1), the ratio of longitudinal steel area $A_{\text {st, }}$ to gross concrete cross section A_{g} should be in the range from 0.01 to 0.08 .
- The lower limit is necessary:
- To ensure resistance to bending moments not accounted for in the analysis.
- To reduce the effects of creep and shrinkage of the concrete under sustained compression.
- Ratios higher than 0.08 not only are uneconomical, but also would cause difficulty owing to congestion of the reinforcement, particularly where the steel must be spliced.
- Most columns are designed with ratios below 0.04. Larger-diameter bars are used to reduce placement costs and to avoid unnecessary congestion.
- The special large-diameter, No. 43 and No. 37 bars are produced mainly for use in columns.

Number of Rebars

- Check the rebar number with the minimum number of longitudinal bars:
- Four bars for tied columns.
- Six bars for spiral columns.
- According to ACI Code 10.7.3.1, a minimum of four longitudinal bars is required when the bars are enclosed by spaced rectangular or circular ties, and a minimum of six bars must be used when the longitudinal bars are enclosed by a continuous spiral.

Minimum Spacing between Longitudinal Bras

- According to (ACI318M, 2014), article 25.2.3, for longitudinal reinforcement in columns, pedestals, struts, and boundary elements in walls, clear spacing between bars shall be
$\mathrm{S}_{\text {Minimum }}=$ Maximum $\left(1.5 \mathrm{~d}_{\text {Bar }}, 40^{\mathrm{mm}}, \frac{4}{3} \times\right.$ maximum size of aggregate $)$
- As the student in his course on concrete technology how to select the maximum size of aggregate as a function of rebar spacing, the third condition related to maximum size of aggregate is assumed satisfied in this course.

9.2.2 Design Strength of Axially Loaded Columns

- According to (ACI318M, 2014), article 22.4, design strength of axially loaded column, can be determined as follows:
- For spiral column the design strength is:
$\emptyset P_{\text {nMaximum }}=0.85 \varnothing\left[0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+A_{s t} f_{y}\right]$
with $\emptyset=0.75$.
- For tied columns:
$\emptyset P_{\text {nMaximum }}=0.80 \emptyset\left[0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+A_{s t} f_{y}\right]$
with $\varnothing=0.65$.
- In articles 0 and 9.6, it will be shown that a column has its maximum strength when it is subjected to concentrically loaded with a compression force.
- Nominal strength of axially loaded column can be derived as follows:

Nominal Strength of an Axially Loaded Column can be found recognizing the nonlinear response of both materials (steel and concrete) by:
$P_{n}=0.85 f_{c}^{\prime} A_{c}+A_{s t} f_{y}$
or
$P_{n}=0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+A_{s t} f_{y}$
i.e., by summing the strength contributions of the two components of the column.

- Strength Reduction Factor for Columns:

The ACI strength reduction factors, ϕ, are lower for columns than for beams, see article 21.2.1. of the (ACI318M, 2014),

- Reflecting their greater importance in a structure,

- A beam failure would normally affect only a local region whereas a column failure could result in the collapse of the entire structure,
In addition, these factors reflect differences in the behavior of tied columns and spirally reinforced columns that shown in Figure 9.2-1 below.
$\emptyset_{\text {Tied } \text { column }}=0.65$
$\emptyset_{\text {Spiral Column }}=0.75$

Figure 9.2-1: Behavior of spirally reinforced and tied columns.

- Provisions for Small Eccentricity:
- A farther limitation on column strength is imposed by ACI Code 22.4 to allow for accidental eccentricities of loading not considered in the analysis.
- This is done by imposing an upper limit on the axial load that is less than the calculated design strength:
Reduction Factor for Accidental Eccentricities Tied Column $=0.8$
Reduction Factor for Accidental Eccentricities Spiral Column $=0.85$
- Based on above discussion, design strength of axially loaded columns would be:
- For spiral column the design strength is:
$\emptyset P_{\text {nMaximum }}=0.85 \emptyset\left[0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+A_{s t} f_{y}\right]$
with $\varnothing=0.75$.
- For tied columns:
$\emptyset P_{\text {nMaximum }}=0.80 \emptyset\left[0.85 f_{c}^{\prime}\left(A_{g}-A_{s t}\right)+A_{s t} f_{y}\right]$
with $\varnothing=0.65$.

9.2.3 Checking of Lateral Reinforcement (Ties), (ACI318M, 2014), Article 25.7.2

- All bars of tied columns shall be enclosed by lateral ties at least No 10 in size for longitudinal bars up to No. 32 and at least No. 13 in size for Nos. 36, 43, and 57 and bundled longitudinal bars.
- The spacing of the ties shall not exceed:
$S_{\text {Maximum }}=\min \left[16 d_{\text {bar }}, 48 d_{\text {ties }}\right.$, Least dimension of column $]$
- Arrangement of Rectilinear Ties
- The ties shall be so arranged that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie having an included angle of not more than 135, and no bar shall be farther than 150 mm clear on either side from such a laterally supported bar.
- Rectilinear ties arrangement according to ACI Code requirements can be summarized as follows, Figure 9.2-2 below.

Bars not to exceed 150 mm

Set of overlapping closed ties to enclose all bars

Figure 9.2-2: Tie arrangements for square and rectangular columns.

- Anchorage of Circular Ties
- Circular ties shall be permitted where longitudinal bars are located around the perimeter of a circle.
- Anchorage of individual circular ties shall be in accordance with:
i. Ends shall overlap by at least 150 mm
ii. Ends shall terminate with standard hooks,
iii. Overlaps at ends of adjacent circular ties shall be staggered around the perimeter enclosing the longitudinal bars.
- Above anchorage requirements have been summarized in Figure 9.2-3 above.

Figure 9.2-3: Circular tie anchorage.

9.2.4 Checking of Lateral Reinforcement (Spiral)

- For spirally reinforced columns, ACI Code requirements (25.7.3) for lateral reinforcement may be summarized as follows:
- Spirals shall consist of a continuous bar or wire not less than 10 mm . in diameter.
- Compare the spiral ratio provided by the designer ($\rho_{\text {s Provided }}$) with the minimum recommended spiral ratio by the ACI Code ($\rho_{\text {sMinimum }}$):
$\rho_{\text {s Provided }}=\frac{\text { Volume of the spiral steel in one revolution }}{\text { volume of concrete core contained in one revoltion }}$

$$
\begin{gathered}
=\frac{4 A_{s p}}{D_{c} S} \\
\rho_{\text {sMinimum }}=0.45\left(\frac{A_{g}}{A_{c}}-1\right) \frac{f_{c}^{\prime}}{f_{s y}}
\end{gathered}
$$

Notations adopted in analysis and design of spiral reinforcements.

Design of Concrete Structures

Example 9.2-1

For a column that has the cross section area shown in Figure 9.2-5, check the column adequacy with ACI Code requirements and compute the design axial load. Use $f_{c}^{\prime}=27.5 \mathrm{MPa}$, and $\mathrm{f}_{\mathrm{y}}=$ 420MPa.

Solution

Longitudinal reinforcement
Check ρ_{g} within acceptable limits:
$A_{g}=400^{2}=160000 \mathrm{~mm}^{2}$
$A_{s t}=\frac{\pi \times 30^{2}}{4} \times 8=5652 \mathrm{~mm}^{2}$
$0.01<\rho_{g}=\frac{5652}{160000}=3.53 \%<0.08$

Figure 9.2-5: Proposed tied column for Example 9.2-1.

Check minimum number of longitudinal bars:
$8>4 \quad \therefore O k$.
Check minimum distance between longitudinal bars:
$S_{\text {Minimum }}=$ Maximum $\left[1.5 \times 30^{\mathrm{mm}}, 40^{\mathrm{mm}}\right]=45^{\mathrm{mm}}<110^{\mathrm{mm}} \therefore$ Ok.
Design Axial Strength, ϕP_{n}
Calculate the maximum design axial load strength $\emptyset P_{n(\max)}$:
$\emptyset P_{\text {nмахітит }}=0.80 \times 0.65[0.85 \times 27.5(160000-5652)+5652 \times 420]=$
$\emptyset P_{\text {nмахітum }}=3110 \mathrm{kN}$
Lateral reinforcement (Ties)
Checking of Lateral Reinforcement (Ties):
Ties diameter:
$\because \emptyset=30^{\mathrm{mm}}<32^{\mathrm{mm}}, \therefore$ we can use $\emptyset=10^{\mathrm{mm}}$ for ties
Ties spacing:
$\mathrm{S}_{\text {Maximum }}=\min \left[16 \times 30^{\mathrm{mm}}, 48 \times 10^{\mathrm{mm}}, 400^{\mathrm{mm}}\right]=400^{\mathrm{mm}}=\mathrm{S}_{\text {Provided }} \therefore \mathrm{Ok}$.
Ties arrangement:
$\because \mathrm{S}_{\text {Spacing between longitudinal bars }}<150^{\mathrm{mm}}$
Then, alternate longitudinal bars will be supported by corner bars.

Example 9.2-2

Check the column shown in Figure 9.2-6 with general requirements of the ACI Code, then determine whether this column is adequate to carry a factored load of $\mathrm{P}_{\mathrm{u}}=$ 2250 kN or not.
In your analysis:

- Assume small eccentricity.
- Use $\mathrm{f}_{\mathrm{c}}^{\prime}=27.5 \mathrm{MPa}$, and $\mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$.

Solution

Longitudinal reinforcement
Check ρ_{g} within acceptable limits:
$A_{g}=\frac{\pi \times 380^{2}}{4}=113354 \mathrm{~mm}^{2}$

Figure 9.2-6: Spiral column of Example 9.2-2.
$A_{s t}=\frac{\pi \times 25^{2}}{4} \times 7=3434 \mathrm{~mm}^{2} \Rightarrow \rho_{g}=\frac{3434}{113354}=3.0 \% \Rightarrow 0.01<\rho_{g}<0.08 \therefore \mathrm{Ok}$.
Check minimum number of longitudinal bars
$7>6 \therefore O k$.
Check minimum distance between longitudinal bars
$S_{\text {Minimum }}=$ Maximum $\left[1.5 \times 25^{m m}, 40^{m m}\right]=40.0^{m m}<80^{m m} \therefore$ Ok.
Design Axial Strength
Calculate the maximum design axial load strength $\emptyset \mathrm{P}_{\mathrm{n}(\max)}$:
$\emptyset P_{\text {nмахітит }}=0.85 \times 0.75[0.85 \times 27.5(113354-3434)+3434 \times 420]=2557 \mathrm{kN}>P_{u} \quad \therefore O k$.

Lateral reinforcement (Ties)

Check the lateral reinforcement (Spiral):
Check Spiral Diameter:
$\emptyset_{\text {spiral }}=10 \mathrm{~mm}$ Ok.
Check Spiral Steel Ratio:
$A_{s p}=\frac{\pi \times 10^{2}}{4}=78.5^{\mathrm{mm}^{2}} \Rightarrow \rho_{\text {sProvided }}=\frac{4 \times 78.5^{\mathrm{mm}^{2}}}{(380-2 \times 40)^{\mathrm{mm}} \times 50^{\mathrm{mm}}}=0.0209$
$\rho_{\text {SMinimum }}=0.45 \times\left(\frac{113354}{\frac{\pi \times 300^{2}}{4}}-1\right) \times \frac{27.5}{420}=0.0178<0.0209 \therefore$ Ok.
Check the Clear Spacing:
$25^{m m} \leq\left[S_{\text {Clear_Provided }}=50^{m m}-10^{m m}=40^{m m}\right] \leq 80^{m m} \therefore O k$.

9.3 ACI Design Procedure for a Short Column under an Axial Load (Small ECCENTRICITY)

ACI Code procedure for design of a short column under an axial compression force can be summarized as follows:

- Determine the applied factored axial load P_{u} :
- Establish a desired ρ_{g}.
- Determine the required gross column area A_{g} :

For tied column:
$A_{\text {gRequired }}=\frac{P_{U}}{0.80 \times \emptyset\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]}$
For spiral column:
$A_{\text {gRequired }}=\frac{P_{U}}{0.85 \times \emptyset\left[0.85 f_{c}^{\prime}\left(1-\rho_{g}\right)+f_{y} \rho_{g}\right]}$

- Select the column dimensions. Round the answer to the nearest 25^{mm}.
- Find the load that carried by the concrete:

For tied column:
$\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete $=0.80 \times \emptyset\left[0.85 f_{\mathrm{c}}^{\prime} \mathrm{A}_{\mathrm{g}}\left(1-\rho_{\mathrm{g}}\right)\right]$
For spiral column:
$\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete $=0.85 \times \emptyset\left[0.85 f_{c}^{\prime} \mathrm{A}_{\mathrm{g}}\left(1-\rho_{\mathrm{g}}\right)\right]$

- Determine the load required to be carried by the longitudinal steel:
$\emptyset \mathrm{P}_{\mathrm{n} \text { Carried by }}$ Steel $=\mathrm{P}_{\mathrm{u}}-\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete
- Determine the required steel area of longitudinal bars:

For tied column:
$\emptyset \mathrm{P}_{\text {nCarried by Steel }}=0.80 \emptyset\left[\mathrm{~A}_{\text {stRequired }} \mathrm{f}_{\mathrm{y}}\right]$
For spiral column:
$\emptyset \mathrm{P}_{\text {nCarried by Steel }}=0.85 \emptyset\left[\mathrm{~A}_{\text {stRequired }} \mathrm{f}_{\mathrm{y}}\right]$

- Determine the required number of bars:

No.of Bar $_{\text {Required }}=\frac{A_{\text {stRequired }}}{A_{\text {Bar }}}$
Round required number to the nearest integer and check with requirement of the ACI for the minimum number of longitudinal bars:
No. of Bars $_{\text {Provided }} \geq 4_{\text {for tied columns }}$
No. of Bars $_{\text {Provided }} \geq 6_{\text {for spiral columns }}$

- Check the spacing between the longitudinal bars:
$S_{\text {Provided }} \geq$ Maximum of $\left[1.5 d_{\text {Bar }}, 40^{\mathrm{mm}}\right]$
- Design the lateral reinforcement:

Ties:
Select ties diameter:
If $\varphi_{\text {Longitudinal }} \leq 32^{\mathrm{mm}}$ then:
$\varphi_{\text {Ties }}=10^{\mathrm{mm}}$
Else
$\varphi_{\text {Ties }}=13^{\mathrm{mm}}$
Select ties spacing:
$S_{\text {Required }} \leq$ Minimum $\left[16 \varphi_{\text {Bar }}, 48 \varphi_{\text {ties }}\right.$,Least Column Dimensions $]$
Arrange the ties according to requirements of the ACI for maximum spacing between longitudinal bars (use the standard arrangements of Figure 9.2-2
above).
Spiral:
$\varphi_{\text {Spiral }} \geq 10^{m m}$
Compute $\rho_{\text {sMinimum }}$
$\rho_{\text {sMinimum }}=0.45\left(\frac{A_{g}}{A_{c}}-1\right) \frac{f_{c}^{\prime}}{f_{s y}}$
Let $\rho_{s}=\rho_{\text {sMinimum }}$ to compute the required $S_{\text {Required }}$:

$$
S_{\text {Required }}=\frac{4 A_{s p}}{D_{c} \rho_{\text {sMinimum }}}
$$

The clear spacing $S_{\text {Required clear }}$ between turns of the spiral must be:
$25 \leq S_{\text {Clear }} \leq 80^{m m}$

Example 9.3-1

Design a tied column to carry a factored axial load of $\mathrm{P}_{\mathrm{u}}=3184 \mathrm{kN}$.

- Assume that there is no identified applied moment.
- Assume that the column is short.
- Assume $\rho_{\text {Preferable }}=0.03$.
- Assume $\mathrm{f}_{\mathrm{c}}^{\prime}=27.5 \mathrm{MPa}, \mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$.
- Try square section.
- $\operatorname{Try} \varphi_{\text {Longitudinal Bar }}=29^{\mathrm{mm}}, \mathrm{A}_{\text {Bar }}=645 \mathrm{~mm}^{2}$
- $\operatorname{Try} \varphi_{\text {Lateral Reiforcement }}=10^{\mathrm{mm}}$.

Solution

Compute $\mathrm{A}_{\text {gRequired }}$:
$\mathrm{A}_{\text {gRequired }}=\frac{3184 \times 10^{3} \mathrm{~N}}{0.80 \times 0.65[0.85 \times 27.5(1-0.03)+420 \times 0.03]}=173587 \mathrm{~mm}^{2}$
Try square section:
$B=\sqrt{173587 \mathrm{~mm}^{2}}=416.6^{\mathrm{mm}}$
Try B $=425^{\mathrm{mm}}, \therefore \mathrm{A}_{\mathrm{g}}=180625 \mathrm{~mm}^{2}$.
Compute $\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete :
$\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete $=0.8 \times 0.65[0.85 \times 27.5 \times 180625(1-0.03)]=2130 \mathrm{kN}$
Compute $\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Steel :
$\emptyset \mathrm{P}_{\mathrm{n} \text { Carried by Steel }}=3184-2130=1054 \mathrm{kN}$
Compute $A_{\text {stReqired }}$:
$1054 \times 10^{3}=0.8 \times 0.65 \times\left[420 \times \mathrm{A}_{\text {stReqired }}\right] \Rightarrow \mathrm{A}_{\text {stReqired }}=4826 \mathrm{~mm}^{2}$
Compute Number of longitudinal bars:
$\operatorname{Try} \varphi_{\text {Longitudinal }}=29^{\mathrm{mm}}$:
No. $=\frac{4826}{645}=7.48$
Try $8 \varphi 29^{\mathrm{mm}}$:
$\because 8 \geq 4 \therefore 0 \mathrm{ok}$.
Check spacing between longitudinal bars:
$\mathrm{S}_{\text {Provided }}=\left[425^{\mathrm{mm}}-2 \times 40^{\mathrm{mm}}\right.$

$$
-2 \times 10^{\mathrm{mm}}
$$

$$
\left.-3 \times 29^{\mathrm{mm}}\right] \frac{1}{2}
$$

$$
=119^{\mathrm{mm}}
$$

$\mathrm{S}_{\text {Minimum }}=$ Maximum $\left[1.5 \mathrm{~d}_{\text {bar }}, 40^{\mathrm{mm}}\right]$

$$
=43.5^{\mathrm{mm}}<119^{\mathrm{mm}}
$$

$$
\therefore \text { Ok. }
$$

Design of Ties:
Ties diameter:
$\because \varphi_{\text {Longitudinal Bars }}<32^{\mathrm{mm}}$,

$$
\therefore \text { Use } \varphi_{\text {Ties }}=10^{\mathrm{mm}}
$$

Tie spacing:
$S_{\text {Required }}=$ Minimum $\left[16 \times 29^{m m}, 48\right.$

$$
\begin{aligned}
& \left.\times 10^{m m}, 425^{m m}\right] \\
& =425^{m m}
\end{aligned}
$$

Figure 9.3-1: Final design section for the column of Example 9.3-1.
Try $\varphi 10^{m m} @ 425^{m m}$
Ties arrangement:
As we intend to use eight rebars and spacing between rebars is less than 150 mm , then the ties reinforcement is presented in Figure 9.3-1.

Example 9.3-2

Redesign the column of Example 9.3-1 as a circular spirally reinforced column with P_{u} $=3429 \mathrm{kN}$.

Solution

Compute $\mathrm{A}_{\text {gRequired }}$:
$A_{\text {gRequired }}=\frac{3429 \times 10^{3} \mathrm{~N}}{0.85 \times 0.75[0.85 \times 27.5(1-0.03)+420 \times 0.03]}=152488 \mathrm{~mm}^{2}$
$\frac{\pi D^{2}}{4}=152488 \mathrm{~mm}^{2}, \therefore D_{\text {Required }}=441^{\mathrm{mm}}, \operatorname{Try} D_{\text {Provided }}=450^{\mathrm{mm}}$
Compute $\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Concrete :
$\emptyset \mathrm{P}_{\mathrm{n} \text { Carried by Concrete }}=0.85 \times 0.75 \times\left[0.85 \times 27.5 \times \frac{\pi \times 450^{2}}{4}(1-0.03)\right]=2298 \mathrm{kN}$
Compute $\emptyset \mathrm{P}_{\mathrm{n}}$ Carried by Steel
$\emptyset \mathrm{P}_{\mathrm{n} \text { Carried by Steel }}=3429 k N-2298 k N=1131 k N$
Compute $A_{\text {stRequired }}$
$0.85 \times 0.75 \times\left[A_{\text {stRequired }} \times 420\right]=1131000 \mathrm{~N}$
$A_{\text {stRequired }}=4224 \mathrm{~mm}^{2}$
Compute number of longitudinal bars:
Try $\varphi_{\text {Longitudinal }}=29^{\mathrm{mm}}, A_{\text {Bar }}=645 \mathrm{~mm}^{2}$.
No. $=\frac{4224}{645}=6.55$
Try $7 \varphi 29^{\mathrm{mm}}$.
$\because 7 \geq 6 \therefore O k$.
Check spacing between longitudinal bars:
$D_{\text {Center of Longitudinal Bars }}=450^{\mathrm{mm}}-2 \times 40^{\mathrm{mm}}-2 \times 10^{\mathrm{mm}}-29^{\mathrm{mm}}=321^{\mathrm{mm}}$
$S_{\text {Provided }}=\frac{\left[\pi \times 321^{\mathrm{mm}}-7 \times 29^{\mathrm{mm}}\right]}{7}=115^{\mathrm{mm}}$
$S_{\text {Minimum }}=$ Maximum $\left[1.5 d_{\text {Bar }}, 40^{\mathrm{mm}}\right]=43.5^{\mathrm{mm}}<115^{\mathrm{mm}} \therefore$ Ok.
Spiral Design:
Spiral diameter:
$\because \varphi_{\text {Spiral }}=10^{\mathrm{mm}} \therefore$ Ok.
Compute $\rho_{\text {SMinimum }}$:
$D_{c}=450^{\mathrm{mm}}-2 \times 40^{\mathrm{mm}}=370^{\mathrm{mm}}$
$A_{c}=\frac{\pi \times 370^{2}}{4}=107467 \mathrm{~mm}^{2}$
$A_{g}=\frac{\pi \times 450^{2}}{4}=158962 \mathrm{~mm}^{2}$
$\rho_{\text {SMinimum }}=0.45\left(\frac{158962}{107467}-1\right) \times \frac{27.5}{420}$

$$
=14.2 \times 10^{-3}
$$

Figure 9.3-2: Final design section for the column of Example 9.3-2.
$A_{s p}=\frac{\pi \times 10^{2}}{4}=78.5^{\mathrm{mm}^{2}}$
$\begin{aligned} & \therefore S_{\text {Required }}= 4 \times 78.5^{\mathrm{mm}^{2}} \\ & \begin{array}{c}370^{\mathrm{mm}} \times 14.2 \times 10^{-3} \\ \\ =59.8^{\mathrm{mm}}\end{array}\end{aligned}$
Try $\varphi 10^{\mathrm{mm}} @ 60^{\mathrm{mm}}$
$\because S_{\text {Clear }}=50^{\mathrm{mm}}<80^{\mathrm{mm}} \quad \therefore$ Ok.
$\because S_{\text {Clear }}=50^{\mathrm{mm}}>25^{\mathrm{mm}} \quad \therefore$ Ok.
Use $\varphi 10^{\mathrm{mm}} @ 60^{\mathrm{mm}}$
The final section of the column is shown in Figure 9.3-2.

9.4 Homework: Analysis and Design of Axially Loaded Columns Problem 9.4-1

Check the adequacy of the column that shown below according to the requirement of the ACI Code and compute its design strength.
Assume:

- Short column
- $\mathrm{f}_{\mathrm{c}}^{\prime}=27.5 \mathrm{MPa}$
- $\mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$
- $A_{B a r}=637.5 \mathrm{~mm}^{2}$

Answers

Longitudinal reinforcement:
Check ρ_{g} within acceptable limits:
$A_{g}=90000 \mathrm{~mm}^{2}, A_{s t}=2550 \mathrm{~mm}^{2}$
$0.01<\rho_{g}=2.83 \%<0.08$

Figure 9.4-1: Proposed tied column for Problem 9.4-1.

Check minimum number of longitudinal bars:
No.of Bars $=4 \quad \therefore$ Ok.
Check minimum distance between longitudinal bars:
$S_{\text {Minimum }}=43^{m m}<143^{m m} \therefore O k$.
Calculate the maximum design axial load strength $\emptyset P_{n(\max)}$:
$\emptyset P_{\text {nмaximum }}=1620 \mathrm{kN}$
Lateral reinforcement (Ties):
Ties diameter:
$\because \emptyset=29^{m m}<32^{m m}, \therefore$ we can use $\emptyset=10^{m m}$ for ties
Ties spacing:
$S_{\text {Maximum }}=300^{m m}=S_{\text {Provided }} \therefore$ Ok.
Ties arrangement:
For a column with four rebars only, no interior ties are required.

Problem 9.4-2

Design a square tied column to support an axial load of $\mathrm{P}_{\mathrm{u}}=4078 \mathrm{kN}$. Design the necessary ties also.
Assume:

- Short column
- $\mathrm{f}_{\mathrm{c}}^{\prime}=34.5 \mathrm{MPa}$
- $\mathrm{f}_{\mathrm{y}}=420 \mathrm{MPa}$
- $\rho_{\mathrm{g}}=0.05$
- $\varphi_{\text {Longitudinal Bars }}=32^{\mathrm{mm}}$
- $\varphi_{\text {Ties }}=10^{\mathrm{mm}}$

Answers

Compute $A_{\text {gRequired }}$:
$A_{\text {gRequired }}=160510 \mathrm{~mm}^{2}$
Try square section:
$B \approx 400^{m m}$
Try $B=400^{\mathrm{mm}}, \therefore A_{g}=160000 \mathrm{~mm}^{2}$.
Compute $\emptyset P_{n}$ Carried by concrete :
$\emptyset P_{n}$ carried by concrete $=2318 \mathrm{kN}$
Compute $\emptyset P_{n}$ Carried by Steel :
$\emptyset P_{n}$ Carried by Steel $=1760 \mathrm{kN}$
Compute $A_{\text {stReqired }}$:
$A_{\text {stReqired }}=8059 \mathrm{~mm}^{2}$
Compute Number of longitudinal bars:
No. ≈ 10
$\because 10>4 \therefore O k$.
Check spacing between longitudinal bars:
$S_{\text {Provided }}=57.3^{m m}, S_{\text {Minimum }}=\operatorname{Maximum}\left[1.5 d_{\text {bar }}, 40^{\mathrm{mm}}\right]=48^{\mathrm{mm}}<57.3^{\mathrm{mm}} \quad \therefore$ Ok.
Design of Ties:
Ties diameter:
$\because \varphi_{\text {Longitudinal Bars }}=32^{m m}, \therefore$ Use $\varphi_{\text {Ties }}=10^{m m}$
Tie spacing
$S_{\text {Required }}=400^{\mathrm{mm}}$
Try $\varphi 10^{m m} @ 400^{m m}$
Ties arrangement:
Sketch for details of longitudinal and lateral reinforcements are shown in Figure 9.4-2.

Problem 9.4-3

Repeat Problem 9.4-2, using a rectangular section that has width $\mathrm{b}=350^{\mathrm{mm}}$.
Answers
Compute $A_{\text {gRequired }}$:
$A_{\text {gRequired }}=160510 \mathrm{~mm}^{2}$
Try rectangular section with $b=350^{m m}$, therefore $h=459 \mathrm{~mm}$
Try $b=350^{m m}, h=460^{m m} \quad \therefore A_{g}=161000 \mathrm{~mm}^{2}$.
Compute $\emptyset P_{n}$ carried by concrete :
$\emptyset P_{n}$ carried by Concrete $=2332 \mathrm{kN}$
Compute $\emptyset P_{n}$ Carried by Steel :
$\emptyset P_{n \text { Carried by Steel }}=1746 \mathrm{kN}$
Compute $A_{\text {stReqired }}$:
$A_{\text {stReqired }}=7994 \mathrm{~mm}^{2}$
Compute Number of longitudinal bars:
No. $=\frac{7994}{804}=9.94$, Try $10 \varphi 32^{\mathrm{mm}} . \because 10>4 \therefore O k$.
Check spacing between longitudinal bars:
$S_{\text {Provided }}=77.3^{\mathrm{mm}}, S_{\text {Minimum }}=$ Maximum $\left[1.5 d_{\text {bar }}, 40^{\mathrm{mm}}\right]=48^{\mathrm{mm}}<74^{\mathrm{mm}} \quad \therefore \mathrm{Ok}$.
Design of Ties:
Ties diameter:
$\because \varphi_{\text {Longitudinal Bars }}=32^{m m}, \therefore$ Use $\varphi_{\text {Ties }}=10^{\mathrm{mm}}$
Tie spacing
$S_{\text {Required }}=350^{\mathrm{mm}}$
Try $\varphi 10^{m m} @ 350^{m m}$
Ties arrangement:
Sketch for details of longitudinal and lateral reinforcements are shown in Fig. below.
$S_{\text {Provided }}=77^{\mathrm{mm}}<150^{\mathrm{mm}}$
No additional interior ties are required.

Figure 9.4-3: Final design section for Problem 9.4-3.

Problem 9.4-4

Design the spiral column that supports four girders of bridge shown in Figure 9.4-4 below. In your design, assume that.

- Each girder has a dead load reaction of 150 kN and has a live load reaction of 100 kN.
- $f_{c}{ }^{\prime}=28 \mathrm{MPa}$ and $f_{y}=420 \mathrm{MPa}$.
- Rebar No. 25 for longitudinal reinforcement and No. 10 for spiral reinforcement.
- Column has a height of 4 m , and it is assumed short.
- Column and cap selfweight should be included in your solution.

Hint for Solution: According to ACI Code, version 2011, Article (10.8.3) "As an alternative to using the full gross area for design of a compression member with a square, octagonal, or other shaped cross section, it shall be permitted to use a circular section with a diameter equal to the least lateral dimension of the actual shape. Gross area considered, required percentage of reinforcement, and design strength shall be based on that circular section". Then this column can be transformed from hexagonal shape to the following circular shape.

Figure 9.4-4: Four girders that supported on the column of Problem 9.4-4.

Figure 9.4-5: Transformation of an octagonal column into the equivalent circular section.

9.5 Analysis of a Column with Compression Load Plus Uniaxial Moment

9.5.1 Introduction

- Members that are axially loaded, i.e., concentrically compressed, occur rarely, if ever in buildings and other structures. Components such as columns chiefly carry loads in compression but simultaneous bending is usually present.
- Bending moments are caused by:
- Continuity, i.e., by the fact that building columns are parts of monolithic frames in which the support moments of the girders are partly resisted by the abutting columns.

Figure 9.5-1: Moments in columns due to frame continuity.

- Transverse loads such as wind forces.

Figure 9.5-2: Moments in columns due to lateral forces.

- Loads carried eccentrically on column brackets when the column axis does not coincide with the pressure line.
- Imperfections of construction.

For these reasons, members that should be designed for simultaneous compression and bending are very frequent in almost all types of concrete structures.

- When a member is subjected to combined axial compression P and moment M, it is usually convenient to replace the axial load and moment with an equal load P applied at eccentricity $e=M / P$. The two loadings are statically equivalent.

Figure 9.5-3: Equivalent eccentricity of column load.

- Two approaches for analysis of a column with axial force and uniaxial moment will be discussed in Articles 9.5.2 and 9.5.3 below.

9.5.2 Column Analysis by Direct Application of Basic Principles

- Figure 9.5-5 "a" shows a member loaded parallel to its axis by a compressive force P, at an eccentricity e measured from the centerline.

(a)

(b)

(c)

Figure 9.5-5: Column subject to eccentric compression: (a) loaded column; (b) strain distribution at section a-a; (c) stresses and forces at nominal strength.

- Above column can be analyzed based on direct application of basic principles of applied mechanics and as follows:

9.5.2.1 Compatibility

- With plane sections assumed to remain plane, concrete strains vary linearly with distance from the neutral axis which is located a distance "c" from the more heavily loaded side of the member.
- With full compatibility of deformations, the steel strains at any location are the same as the strains in the adjacent concrete; thus if the ultimate concrete strain is ϵ_{u}, the strain in the bars nearest the load is $\epsilon_{\mathrm{s}}^{\prime}$ while that in the tension bars at the far side is ϵ_{s}.

[^0]: ${ }^{1}$ SRSS summation is usually adopted to superimpose two quantities that their maximum values occurs at different positions or at different times.

[^1]: Figure 8.3-2: Beam reinforcement for Example 8.3-1. Continue.

