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• Compression steel having area As
′  and tension steel with area As, are located at 

distances d and d′, respectively, from the compression face (See Figure 9.5-5 “b” 

above). 

9.5.2.2 Constitutive Relationships 

The corresponding stresses and forces are shown in Figure 9.5-5 “c”, just as for simple 

bending, the actual concrete compressive stress distribution is replaced by an 
equivalent rectangular distribution having depth 𝑎 = 𝛽1𝑐. 

9.5.2.3 Equilibrium Equations 

• Equilibrium between external and internal axial forces shown in Figure 9.5-5 “c”; 

requires that: 

∑ 𝑭𝒚 = 𝟎. 𝟎 

𝑃𝑛 = 0.85𝑓𝑐
′𝑎𝑏 + 𝐴𝑠

′ 𝑓𝑠
′ − 𝐴𝑠𝑓𝑠 

• Also, the moment about the centerline of the section of the internal stresses and 
forces must be equal and opposite to the moment of the external force. 𝑃𝑛, so 

that: 

∑ 𝑀 = 0.0 

𝑀𝑛 = 𝑃𝑛𝑒 = 0.85𝑓𝑐
′𝑎𝑏 (

ℎ

2
−

𝑎

2
) + 𝐴𝑠

′ 𝑓𝑠
′ (

ℎ

2
− 𝑑′) + 𝐴𝑠𝑓𝑠(𝑑 −

ℎ

2
) 

• These are the two basic equilibrium relations for rectangular eccentrically 

compressed members.  

• For a given eccentricity determined from the frame analysis (i.e., 𝑒 =
𝑀

𝑃
) it is 

possible to solve above equations for the load and moment 𝑀𝑛 that would result 

in failure as follows: 
o In both equations, 𝑓𝑠

′, 𝑓𝑠, and 𝑎 can be expressed in terms of a single 

unknown 𝑐, the distance to the neutral axis. This is easily done based on 

the geometry of the strain diagram, with 𝜖𝑢 taken equal to 0.003 as usual, and 

using the stress-strain curve of the reinforcement.  
o The result is that the two equations contain only two unknowns, 𝑃𝑛 and c, 

and can be solved for those values simultaneously. However, to do so in 

practice would be complicated algebraically particularly because of the need to 
incorporate the limit 𝑓𝑦 on both 𝑓𝑠

′, and 𝑓𝑠. 
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9.5.3 Concept of Interaction Diagram 
9.5.3.1 Basic Concepts 

• A better approach, providing the basis for practical design, is to construct a 

Strength Interaction Diagram defining the failure load and failure moment for a 

given column for the full range of eccentricities from zero to infinity (see Fig. 
below): 

 

Figure 9.5-6: Interaction 

diagram for nominal 
column strength in 

combined bending and 

axial load. 

 

• On such a diagram, any radial line represents a particular eccentricity e =
M

P
. For 

that eccentricity, gradually increasing the load will define a load path as shown, 

and when that load path reaches the limit curve, failure will result.  
• The vertical axis corresponds to e = 0, and P0 is the capacity of the column if 

concentrically loaded, as given by equations of articles 9.2 and 9.3.  

• The horizontal axis corresponds to an infinite value of e, i.e., pure bending at 

moment capacity M0.  

• Failure Regions on Interaction Diagram:  
o Small eccentricities will produce failure governed by concrete compression. 

o Large eccentricities give a failure triggered by yielding of the tension steel. 

9.5.3.2 Construction of A nominal Interaction Diagram 

For a given column, the interaction diagram is most easily constructed by following 

procedure: 

• Selecting successive choices of neutral axis distance “c”, from infinity (axial load 
with eccentricity 0) to a very small value found by trial to give 𝑃𝑛 =  0 pure 

bending).  

• For each selected value of “c”, the steel strains and stresses and the concrete 

force are easily calculated as follows:  
o For the tension steel: 

𝜖𝑠 = 𝜖𝑢

𝑑 − 𝑐

𝑐
 

𝑓𝑠 = 𝐸𝑠𝜖𝑢

𝑑 − 𝑐

𝑐
≤ 𝑓𝑦 

o While for the compression steel: 

𝜖𝑠
′ = 𝜖𝑢

𝑐 − 𝑑′

𝑐
 

𝑓𝑠
′ = 𝐸𝑠𝜖𝑢

𝑐 − 𝑑′

𝑐
≤ 𝑓𝑦 

o The concrete stress block has depth: 
𝑎 = 𝛽1𝑐 ≤ ℎ 
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o Substitute the values of 𝑓𝑠, 𝑓𝑠
′, and 𝑎 into the following relations to compute the 

values of 𝑃𝑛 and 𝑀𝑛 that corresponding to assume “c” value.  

∑ 𝐹𝑦 = 0.0 ⟹ 𝑃𝑛 = 0.85𝑓𝑐
′𝑎𝑏 + 𝐴𝑠

′ 𝑓𝑠
′ − 𝐴𝑠𝑓𝑠 

∑ 𝑀 = 0.0 ⟹ 𝑀𝑛 = 𝑃𝑛𝑒 = 0.85𝑓𝑐
′𝑎𝑏 (

ℎ

2
−

𝑎

2
) + 𝐴𝑠

′ 𝑓𝑠
′ (

ℎ

2
− 𝑑′) + 𝐴𝑠𝑓𝑠(𝑑 −

ℎ

2
) 

• These steps (starting from assuming of “c” to obtain the corresponding 𝑃𝑛 and 

𝑀𝑛) represent a point on the interaction diagram. Then these will be repeated 

until enough number of points on interaction is obtained to draw the required 

diagram.  
• Construct interaction diagram through connecting between points drawn. 

9.5.3.3 Design Interaction Diagram 

• As was discussed in Chapter 3, the strength reduction factor “∅” is a function of 

steel strain and as shown in Figure 9.5-7 below. 

 

Figure 9.5-7: Variation of 𝝓 with net 

tensile strain in extreme tension 

reinforcement, 𝜺𝒕. 

• Each point on the interaction diagram has its strain, see Figure 9.5-8 below, and 

in turn has own factor of safety, see Figure 9.5-9 below.  

 

Figure 9.5-8: Strain distributions corresponding to points on the interaction diagram. 
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• Column design strengths (∅𝑃𝑛, ∅𝑀𝑛) can be obtained by multiplied the nominal 

strengths (𝑃𝑛, 𝑀𝑛) by the corresponding factor of safety “∅” to obtained the 

Design Interaction Diagram and as shown Figure 9.5-9 below. 

 

Figure 9.5-9: ACI safety provisions 
superimposed on column interaction 

diagram. 

9.5.3.4 Notes on Design Interaction Diagram 

• For high eccentricities, as the eccentricity increases to infinity (pure: bending), 

the ACI Code recognizes that the member behaves progressively more like a 

flexural member and less like a column. This is acknowledged in ACI Code by 
providing a linear transition in ∅ from values of 0.65 (for tied column) and 0.75 

(for spiral column) to 0.90 (for beam) as the net tensile strain in the extreme 
tensile steel 𝜖𝑠 increases from 0.002 for Grade 60 reinforcement to 0.005. 

• At the other extreme, for columns with very small or zero calculated 

eccentricities, the. ACI Code recognizes that accidental construction 

misalignments and other unforeseen factors may produce actual eccentricities in 

excess of these small design values. Therefore, regardless of the magnitude of 

the calculated eccentricity, ACI Code limits the maximum design strength to 
0.80 ∅𝑃𝑛𝑚𝑎𝑥, for tied columns and to 0.85∅ 𝑃𝑛𝑚𝑎𝑥 for spirally reinforced. 

9.5.3.5 A Set of Design Interaction Curves 

Our textbook (Design of Concrete Structures, 15th Edition, by David Darwin, Charles W. 

Dolan, and A. H. Nilson) includes the group of useful Design Interaction Diagrams.  
 

 
  



Design of Concrete Structures Chapter 9: Short Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 9: Page 23  
 

Example 9.5-1 

Check the adequacy of column shown below for general ACI requirement then use an 
appropriate interaction diagram to find its design axial load and design bending 

moment. 

Use 𝑓𝑐
’ =  28 𝑀𝑃𝑎 and 𝑓𝑦 =  420 𝑀𝑃𝑎. 𝐴𝐵𝑎𝑟 𝑜𝑓 29𝑚𝑚 =  645𝑚𝑚. 

 

Figure 9.5-10: Proposed column section 

for Example 9.5-1. 

Solution 

• The procedure for analysis of an eccentrically loaded column is exactly similar to 

the procedure of a concentrically loaded column in all steps except in the 
computing of design axial force and bending moment (∅𝑃𝑛 , ∅𝑀𝑛). 

• Longitudinal reinforcement: 
Check ρg  within acceptable limits: 

𝐴𝑔 = 500 × 350 = 175 000 𝑚𝑚2 

𝐴𝑠𝑡 = 645 × 6 = 3  870 𝑚𝑚2 

0.01 < 𝜌𝑔 =
3  870 

175 000
 = 2.2% < 0.08 

Check minimum number of longitudinal bars: 
6 > 4   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars: 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5 × 29𝑚𝑚 , 40𝑚𝑚] 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 43.5𝑚𝑚 < 82𝑚𝑚  ∴ 𝑂𝑘. 

• Calculate the design axial load strength and bending moment for given 
eccentricity (∅𝑃𝑛, ∅𝑀𝑛): 

γ =
350

500
= 0.7 

Based on 𝛾 value and as the reinforcements are distributed on two faces of the 

rectangular column, then the interaction diagram that will be used is as shown in 

Figure below. 

For  
e

h
=

125

500
=  0.25 

the Rn for the interaction diagram will be: 

Rn =
Pn. e

fc
′Agh

= 0.17 

Mn = Pn. e = 0.17 × 28 × (500 × 350) × 500 = 417 kN. m 

As we working with compression controlled section (i.e. with a section has 𝜖𝑡 <
0.002) then the strength reduction factor is ∅ = 0.65 
∅Mn = 0.65 × 417 kN. m = 271 kN. m∎ 

and the Kn for the interaction diagram will be: 

Kn = 0.69 =
Pn

fc
′Ag

 

Pn = 0.69 × 28 × 500 × 350 = 3 381 kN 
∅Pn = 0.65 × 3 381 kN = 2 198 kN ∎ 
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• Lateral reinforcement (Ties):  

Ties diameter: 
∵  ∅ = 29mm < 32mm, ∴ we can use ∅ = 10mm for ties 
Ties spacing: 
SMaximum = min[16 × 29mm, 48 × 10mm, 350mm] = 350mm > SProvided  ∴ Ok. 
Ties arrangement: 
∵ SSpacing between longitudinal bars < 150mm 

Then, alternate longitudinal bars will be supported by corner bars. 

 

Figure 9.5-11: Adopting interaction diagram to computed design strength for the 

column of Example 9.5-1. 
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Example 9.5-2 

In Example 9.2-1 above, it was required to check the column shown in Figure below 

to general requirements of ACI code and to compute its design strength. Material 
properties where fc

′ = 27.5 MPa , and fy = 420MPa. Resolve this example based on 

interaction diagram instead of equations for axially loaded columns. 

 

Figure 9.2-5: Proposed tied 

column for Example 9.2-1. 

Reproduce for convenience. 

Solution 

Checking for General Requirements 

General requirements of ACI code are nominal in nature and do not related to use of 

interaction diagram or use equation in computing of column design strength: 

Longitudinal reinforcement 
Check ρg  within acceptable limits: 

𝐴𝑔 = 4002 = 160  000 𝑚𝑚2 

𝐴𝑠𝑡 =
𝜋 × 302

4
 × 8 = 5  652 𝑚𝑚2 

0.01 < 𝜌𝑔 =
5 652

160 000
 = 3.53% < 0.08 

Check minimum number of longitudinal bars: 
8 > 4   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars: 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5 × 30𝑚𝑚 , 40𝑚𝑚] 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 45𝑚𝑚 < 110𝑚𝑚  ∴ 𝑂𝑘. 
Lateral reinforcement (Ties) 

Checking of Lateral Reinforcement (Ties): 

Ties diameter: 
∵  ∅ = 30mm < 32mm, ∴ we can use ∅ = 10mm for ties 
Ties spacing: 
SMaximum = min[16 × 30mm, 48 × 10mm, 400mm] = 400mm = SProvided  ∴ Ok. 
Ties arrangement: 
∵ SSpacing between longitudinal bars < 150mm 

Then, alternate longitudinal bars are supported. 

Column Design Strength 
Strength of axially loaded columns are not related to whether reinforcement are 
distributed on two faces or on four faces nor related to 𝛾 value. To emphasize this fact, 

two extremes interaction diagrams, the first one for reinforcement distributed on four 
faces and with 𝛾 value of 0.6 while the other with reinforcement on two faces and with 

𝛾 value of 0.9, have been compared in below. 
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Figure 9.5-12: Two interaction diagrams that are equally applicable to solve the 

axially loaded column of Example 9.5-2.  

Adopting any one of interaction diagrams for rectangular columns with 𝑓𝑐
′ = 4 𝑘𝑠𝑖 and 

𝑓𝑦 = 28 𝑀𝑃𝑎 will leads to: 

For  

𝜌𝑔 =
5 652

160 000
 = 3.53% 

𝐾𝑛 =
𝑃𝑛

𝑓𝑐
′𝐴𝑔

≈ 1.06 

𝑃𝑛 =
(1.06 × 27.5 × 400 × 400)

1000
= 4664 𝑘𝑁 

For compression control region and with tied columns: 
𝜙 = 0.65 
𝜙𝑃𝑛 = 0.65 × 4664 = 3032 𝑘𝑁 

This design strength is close to that computed based on equations in Example 9.2-1,  
∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 3110 𝑘𝑁 
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Figure 9.5-13: Sample interaction diagram adopted to solve the axially loaded column 

of Example 9.5-2. 
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Example 9.5-3 

In Example 9.2-2 above, it was required to check the column shown in Figure 9.2-6 

to general requirements of ACI code and then determine whether this column is 
adequate to carry a factored load of Pu= 2250 kN. Material properties where fc

′ =
27.5 MPa , and fy = 420MPa. Resolve this example based on interaction diagram instead 

of equations for axially loaded columns. 

 

Figure 9.2-6: Spiral column of Example 

9.2-2. Reproduce for convenience.  

Solution 

Checking for General Requirements of ACI Code 

Longitudinal reinforcement 
Check ρg  within acceptable limits: 

𝐴𝑔 =
𝜋 × 3802

4
= 113  354 𝑚𝑚2 

𝐴𝑠𝑡 =
𝜋 × 252

4
 × 7 = 3 434 𝑚𝑚2 

𝜌𝑔 =
3  434

113  354
 = 3.0% 

0.01 < 𝜌𝑔 < 0.08 ∴ 𝑂𝑘.  

Check minimum number of longitudinal bars 
7 > 6   ∴ 𝑂𝑘. 
Check minimum distance between longitudinal bars 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[1.5 × 25𝑚𝑚 , 40𝑚𝑚] 
𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 40.0𝑚𝑚 < 80𝑚𝑚  ∴ 𝑂𝑘. 
Check the lateral reinforcement (Spiral): 

Check Spiral Diameter: 
∅𝑆𝑝𝑖𝑟𝑎𝑙 = 10𝑚𝑚 𝑂𝑘. 

Check Spiral Steel Ratio: 

𝐴𝑠𝑝 =
𝜋 × 102

4
= 78.5𝑚𝑚2

 

𝜌𝑠𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 =
4 × 78.5𝑚𝑚2

(380 − 2 × 40)𝑚𝑚 × 50𝑚𝑚
= 0.0209 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 × (
113  354

𝜋 × 3002

4

− 1) ×
27.5

420
= 0.0178 < 0.0209 ∴ 𝑂𝑘. 

Check the Clear Spacing: 
25𝑚𝑚 < [𝑆𝐶𝑙𝑒𝑎𝑟 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 50𝑚𝑚 − 10𝑚𝑚 = 40𝑚𝑚] < 80𝑚𝑚  ∴ 𝑂𝑘. 
Axial Design Strength of the Column 

With any of interaction diagrams for circular columns,  
With  

𝜌𝑔 =
3  434

113  354
 = 3.0% 
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Figure 9.5-14: A sample interaction diagram adopted to solve the Example 9.5-3. 

𝐾𝑛 =
𝑃𝑛

𝑓𝑐
′𝐴𝑔

≈ 1.1 

𝑃𝑛 =

(1.1 × 27.5 × (
𝜋 × 3802

4
))

1000
= 3431 𝑘𝑁  

As axially loaded columns are located in compression-controlled regions, therefore 𝜙 of 

0.75 is adopted for this spiral column: 
𝜙𝑃𝑛 = 0.75 × 3431 = 2573 𝑘𝑁 

This value is close to that of 2557 kN which computed based on relations for axially 
loaded columns in Example 9.2-2. The proposed column is adequate as: 
𝜙𝑃𝑛 = 2573 𝑘𝑁 > 𝑃𝑢 = 2250 kN 
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9.6 DESIGN OF A COLUMN WITH COMPRESSION LOAD PLUS UNIAXIAL MOMENT 

9.6.1 General Guides for Columns Design 
• The following guides that related to columns design have been proposed by J. G. 

MacGregor in his book “Reinforced Concrete: Mechanics and Design, 4th 

Edition): 
• Type of Column: 

o For eccentricity, e/h, greater than 0.2, a tied column with bars in the faces 

farthest from axis of bending is most efficient. Even more efficiency can be 

obtained by using of a rectangular column. 

o Tied columns with bars in four faces are used for e/h ratios of less than about 
0.2 and also when moments exist about both axes. Many designers prefer 

this arrangement because there is less possibility of construction error 

in the field if there are equal numbers of rebars in each face of the 

column.  

o Spiral columns are relatively infrequent in non-seismic areas. In seismic areas 
or in other situations where ductility is important, spiral columns are used 

frequently. 

• Estimating the Column Size: 

o The initial stage in column design involves estimating the required size of 

column. There is no simple rule for doing this, since the axial-load capacity of 
a given cross section varies with the moment acting on section. For very small 

moments following relations can be used (these relations similar to that 
derived in Article 9.3):  

o For Tied Columns: 

𝐴𝑔𝑇𝑟𝑎𝑖𝑙 ≥
𝑃𝑈

0.4[𝑓𝑐
′ + 𝑓𝑦𝜌𝑔]

 

o For spiral column: 

𝐴𝑔𝑇𝑟𝑎𝑖𝑙 ≥
𝑃𝑈

0.5[𝑓𝑐
′ + 𝑓𝑦𝜌𝑔]

 

o Both of these relations will tend to underestimate the column size if there are 

moments present. 
• Column Thickness “b”: 

o The Fire Codes usually specified minimum column size as follows: 
Table 9.6-1: Minimum column thickness for fire rating requirements, adopted from  

Fire Rating (hours) Minimum Column Thickness (mm) 

1 hour 𝑏 ≥ 225 𝑚𝑚  

2-3 hours 𝑏 ≥ 300 𝑚𝑚  

o Although the ACI Code does not specify a minimum column size, the 
minimum dimension of cast-in-place tie column should not be less 

than 200mm and preferably not less than 250mm.  

o The diameter of a spiral column should not be less than about 300mm. 
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9.6.2 Using Interaction Charts in Design Process 

Conventional design charts permit the direct design of eccentrically loaded columns 

throughout the common range of strength and geometric variables. They may be used 
in one of two ways as presented in Article 9.6.2.1 and Article 0 below. 

9.6.2.1 Selection of Reinforcement for Column of Given Size 

For a given factored load Pu and equivalent eccentricity e =
Mu

Pu
 and given cross section 

this direct procedure can be summarized as follows: 
Design of Longitudinal Reinforcement: 

• Calculate the ratio 𝛾 based on required cover distances to the bar centroid, and 

select the corresponding column design chart. 

• Calculate 𝐾𝑛 =
Pu

∅fc
′ Ag

 and 𝑅𝑛 =
𝑃𝑢𝑒

∅𝑓𝑐
′𝐴𝑔ℎ

 where Ag is section gross area.  

• Strength reduction value is selected based on type of section (i.e. is the member 

a compression controlled member or a tension controlled member or in the 

transition region). 
• From the graph, for the values found in above, read the required reinforcement 

ratio ρg. 

• Calculate the total steel area Ast. 

• Compute the required number of longitudinal bars: 

No. of Longitudinal Bars =
Ast

ABar
 

• The limitations on the number and arrangement of longitudinal bars are as 

discussed in the design of columns for axial loads. 

Design of Lateral Reinforcement 

Design of lateral reinforcement is exactly as discussed in the design of columns for 
axial loads, Article 9.3. For convenience, these procedures have been represented in 

below: 
Ties: 

• Select ties diameter: 
• If 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 ≤ 32𝑚𝑚 then: 

𝜙𝑇𝑖𝑒𝑠 = 10𝑚𝑚 

Else 
𝜙𝑇𝑖𝑒𝑠 = 13𝑚𝑚 

• Select ties spacing: 
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≤ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚[16𝜑𝐵𝑎𝑟  , 48𝜑𝑡𝑖𝑒𝑠, 𝐿𝑒𝑎𝑠𝑡 𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠] 

• Arrange the ties according to requirements of the ACI for maximum spacing 
between longitudinal bars (use the standard arrangements of Figure 9.2-2 

above). 

Spiral:  

• Spiral Diameter 
𝜙𝑆𝑝𝑖𝑟𝑎𝑙 ≥ 10𝑚𝑚 

• Compute 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 (
𝐴𝑔

𝐴𝑐
− 1)

𝑓𝑐
′

𝑓𝑠𝑦
  

Let 𝜌𝑠 = 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 to compute the required 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑: 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
4𝐴𝑠𝑝

𝐷𝑐 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚
 

• Check with Limitation for Clear Spacing 
The clear spacing 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐶𝑙𝑒𝑎𝑟 between turns of the spiral must be: 

25 ≤ 𝑆𝐶𝑙𝑒𝑎𝑟  ≤ 80𝑚𝑚 
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Example 9.6-1 

In a two-story building that shown in Figure 9.6-1 below an exterior column is to be 

designed for the following loading: 

• First Load Pattern: 
𝑃𝐷𝑒𝑎𝑑 = 987 𝑘𝑁 
𝑃𝐿𝑖𝑣𝑒 = 1 481 𝑘𝑁 
𝑀𝐷𝑒𝑎𝑑 = 220 𝑘𝑁. 𝑚 
𝑀𝐿𝑖𝑣𝑒 = 315 𝑘𝑁. 𝑚 

• Second Load Pattern: 
𝑃𝐷𝑒𝑎𝑑 = 987 𝑘𝑁 
𝑃𝐿𝑖𝑣𝑒 = 738 𝑘𝑁 
𝑀𝐷𝑒𝑎𝑑 = 220 𝑘𝑁. 𝑚 
𝑀𝐿𝑖𝑣𝑒 = 315 𝑘𝑁. 𝑚 

Architectural considerations required that a rectangular column to be used, with 
dimensions: 
𝑏 = 500𝑚𝑚 and ℎ = 625𝑚𝑚 

Materials: 
𝑓𝑐

′ = 28 𝑀𝑃𝑎 
𝑓𝑦 = 420 𝑀𝑃𝑎 

Reinforcement: 
Try 𝜑 = 32𝑚𝑚 for longitudinal reinforcement (𝐴𝐵𝑎𝑟 =  819 𝑚𝑚2). 

Try 𝜑 = 10𝑚𝑚 for lateral reinforcement. 

Based on above data 

• Design the column for first load pattern. 

• Check to ensure that the column is adequate for the second load pattern. 

 

First Load Pattern 

Figure 9.6-1: Building and the edge column for the Example 9.6-1. 
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Second Load Pattern 

Figure 9.6-1: Building and the edge column for the Example 9.6-1. Continued. 

Solution 

Design of Column for First Load Pattern 

The column will be designed initially for full load, then it would be checked for 

adequacy when live load is partially removed.  

According to the ACI safety provisions, the column must be designed for a factored 

load: 
Pu Maximum = 1.2 × 987 + 1.6 × 1 481 = 3 554 kN 
𝑀𝑢 = 1.2 × 220 + 1.6 × 315 = 768 𝑘𝑁. 𝑚 

Design of Longitudinal Reinforcement: 
• Calculate the ratio γ based on required cover distances to the bar centroid, and 

select the corresponding column design chart. 
𝛾ℎ = 625 − 2 × 40 − 2 × 10 − 32 = 493 𝑚𝑚 

𝛾 =
𝛾ℎ

ℎ
=

493

625
= 0.79 

Say 𝛾 = 0.80 and assume that the reinforcement will be distributed on four faces. 

Then the interaction diagram that used in the design is that shown in Figure 
9.6-2 below. 

• Calculate Kn =
Pu

∅fc
′ Ag

 and Rn =
Pue

∅fc
′ Agh

:  

𝑒 =
𝑀𝑢

𝑃𝑢
=

768 𝑘𝑁. 𝑚

3 554 kN
= 0.216 𝑚 

𝑒

ℎ
=

0.216𝑚

0.625𝑚
= 0.35 

• Based on 
𝑒

ℎ
 ratio, one can see that the tensile strain for this column under 

proposed loads is less than 0.002. Therefore the section is compression 
controlled section and strength reduction factor is ∅ = 0.65.  

Kn =
Pu

∅fc
′Ag

=
3 554 000 N

0.65 × 28
N

mm2 × (625 × 500)mm2
= 0.625 

Rn =
Pue

∅fc
′Agh

=
768 × 106 𝑁. 𝑚𝑚

0.65 × 28
𝑁

𝑚𝑚2 × (625 × 500)mm2 × 625𝑚𝑚
= 0.216 
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• From the graph, the required reinforcement ratio, ρg, would be: 

ρg = 0.04 

• Calculate the total steel area Ast: 
𝐴𝑠𝑡 = 0.04 × 625 × 500 = 12 500 𝑚𝑚2 

• Compute the required number of longitudinal bars: 

No. of Longitudinal Bars =
Ast

ABar
=

12 500 mm2

819 mm2
= 15.3 

Try 16 ∅ 32. 

 

Figure 9.6-2: Interaction diagram for Example 9.6-1, first load pattern. 

Design of Lateral Reinforcement: 

• Ties diameter: 
∵  ∅ = 32mm, ∴ we can use ∅ = 10mm for ties 

• Ties spacing: 
SRequired = min[16 × 32mm, 48 × 10mm, 500mm] = 480mm 

Use ∅10mm @ 475 mm 

• Ties arrangement: 

The following arrangement can be used for our column: 
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Figure 9.6-3: Design section for 

the column of Example 9.6-1 

based on first load pattern.  

Column Checking for Second Load Pattern 

Aim of Checking for the Second Load Pattern:  

• Before starting the checking, it is useful to discuss the aim of this checking.  
• At first sight this checking seems unnecessary as the column that designed with 

live load acting on all floors and roofs of course will be adequate when live loads 

acting on the floor under consideration only.  

• Unfortunately, the problem is not so simple as appear, i.e. some columns that 

are adequate for full live loads may be not adequate for partially live load, this 

strange fact can be explained as follows: 
o Assume that required reinforcement has been selected based on full live loads 

as was done in previous article and assume that load path for dead and full 

live loads will be as shown in Figure below. 

o As the axial force in a column resulting from accumulation of loads acting on 

the floor under consideration and on above floors and roof, then removing live 
loads from above floors and roof will decrease the axial force in that column. 

o For gravity loads, bending moments in a column are mainly resulting from 

negative moments of beams that connected directly to the column, the 

removing of live loads from above floors and roof does not change the bending 

moments in the column. Based on this reasoning, bending moments have been 
assumed the same in first and second load patterns. 

• Then with second load pattern, load path will move vertically in downward 
direction (as we have negative ΔP and zero ΔM). With this movement, load case 

that was inside the interaction diagram may move to be outside it. Therefore, the 

section that was pass under full live load may fail under partial live load! 

 

Figure 9.6-4: Schematic 

integration diagram to 
show the aim of 

checking for the second 

pattern.  
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Figure 9.6-4: Schematic 

integration diagram to 
show the aim of 

checking for the second 

pattern. Continued. 

Checking Details: 
• Check to ensure that the column is adequate for the second load pattern: 

𝑃𝑢 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 1.2 × 987 + 1.6 × 738 = 2 365 𝑘𝑁       𝑀𝑢 = 768 𝑘𝑁. 𝑚 

Say 𝛾 = 0.80 

𝑒 =
𝑀𝑢

𝑃𝑢
=

768 𝑘𝑁. 𝑚

2 365  kN
= 0.325 𝑚  

𝑒

ℎ
=

0.325 𝑚

0.625𝑚
= 0.52 

Kn =
Pu

∅fc
′Ag

=
2 365  000 N

0.65 × 28
N

mm2 × (625 × 500)mm2
= 0.416 

Rn =
Pue

∅fc
′Agh

=
768 × 106 𝑁. 𝑚𝑚

0.65 × 28
𝑁

𝑚𝑚2 × (625 × 500)mm2 × 625𝑚𝑚
= 0.216 

• From Figure 9.6-5 with ρg Required = 0.028 < ρProvided , one concludes that vertical 

movement of load path in downward direction is not too large to transfer the load 

case from inside to outside the interaction diagram, then the section stills 
adequate. 

 

Figure 9.6-5: Interaction 

diagram to check the second 
load pattern for the column of 

Example 9.6-1.  
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9.6.2.2 Selecting of Column Size for a Given Reinforcement Ratio 

Example 9.6-2 

A column is to be designed to carry factored loads of: 
𝑃𝑢 =  2 139 𝑘𝑁 
𝑀𝑢 =  667 𝑘𝑁. 
Assume that: 

• Bending moment about major or strong axis. 
• Material strengths 𝑓𝑦 =  420𝑀𝑃𝑎 and 𝑓𝑐

′ =  28 𝑀𝑃𝑎 are specified.  

• Cost studies for the particular location indicate that a reinforcement ratio of 

about 0.03 is optimum.  

• Column depth: h=625mm. 
• ∅ = 36𝑚𝑚 for longitudinal reinforcements (𝐴𝐵𝑎𝑟 = 1 006 𝑚𝑚2). 

• Steel with bars concentrated in two layers, adjacent to the outer faces of the 

column and parallel to the axis of beading, will be used. 

Find the required column width “b” and design the longitudinal lateral reinforcements. 

 
Figure 9.6-6: Proposed section for 

Example 9.6-2. 

Solution 

Column Width “b” and Design of Longitudinal Reinforcement 

• Calculate the ratio γ based on required cover distances to the bar centroid, and 

select the corresponding column design chart. 
𝛾ℎ = 483 𝑚𝑚 

γ =
γh

h
=

483

625
= 0.78 

• Say γ = 0.80 and as steel is assumed to be concentrated in two layers, then the 

design interaction diagram will be as Figure 9.6-7 below. 

As  

e =
Mu

Pu
=

667

2 139 
= 0.31 

and  
e

h
=

0.31

0.625
= 0.496 ≈ 0.5 

then (from Figure above) 

Kn =
Pu

∅fc
′bh

= 0.51 

• As we working in the compression controlled region, then the strength reduction 
factor ∅ is 0.65. 

b =
2 139 000 N

0.65 × 28
N

mm2 × 0.51 × 625mm
= 369 mm 

Use 375mm by 625mm section. 
Ast Required =  0.03 × 625mm × 375mm = 7 031 mm2 

No. of Rebars =
7 031 mm2

1 006 mm2
= 6.99  

Use 8∅36𝑚𝑚 rebars. 
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Figure 9.6-7: Interaction 

diagram to design the 

column of Example 9.6-2. 

Design of Lateral Reinforcement 

• Ties diameter: 
∵  ∅ = 36mm > 32mm, ∴ we must use ∅ = 13mm for ties 

• Ties spacing: 
SRequired = min[16 × 36mm, 48 × 13mm, 375mm] = 375mm, Use ∅13mm @ 375 mm 

• Ties arrangement: 
As can be shown from Figure 9.6-8 below, the proposed distribution does not 

satisfy the ACI Code requirements related to minimum spacing between 

longitudinal rebars. Then bundled rebars must be used in our design.  

 

Figure 9.6-8: Final design 

section for the column of 

Example 9.6-2. 

 

Figure 9.6-8: Final design 

section for the column of 

Example 9.6-2. Continued.  
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9.7 HOMEWORK PROBLEMS: ANALYSIS AND DESIGN OF A COLUMN UNDER AXIAL LOAD 

AND UNIAXIAL MOMENT 
Problem 9.7-1 

Using an appropriate interaction curve, determine the value of 𝑃𝑛 for the short tied 

column shown in Figure 9.7-1 below. Assume that 𝑓𝑐
′ = 28 𝑀𝑃𝑎 and 𝑓𝑦 =  420 𝑀𝑃𝑎. 

 Figure 9.7-1: Column for Problem 9.7-1. 

Answers 
• Compute 𝛾: 

𝛾 = 0.70 

• As the reinforcement is distributed along two faces only and as 𝛾 = 0.07, then use 

corresponding interaction diagram: 

∵
𝑒

ℎ
= 0.50 

𝐴𝑔 = 150 000 𝑚𝑚2, 𝐴𝐵𝑎𝑟 = 804 𝑚𝑚2, 𝐴𝑠𝑡 = 4 824 𝑚𝑚2, ∴  𝜌𝑔 = 0.032 

𝐾𝑛 =
𝑃𝑛

𝑓𝑐’𝐴𝑔
=  0.51 ⟹ 𝑃𝑛 = 2 142 𝑘𝑁 ∎ 

 

Problem 9.7-2 

For the column shown in Figure 9.7-2 below, based on structural calculations a 

designer has proposed the attached section. Check the adequacy of this section to ACI 

Code requirements and to the applied load. Assume that selfweight can be neglected.  

  
Figure 9.7-2: Frame and proposed column section for Problem 9.7-2. 

Answers 

Checking of Longitudinal Reinforcement: 
• Check if ρg  within acceptable limits: 

𝐴𝑔 = 337 500 𝑚𝑚2, 𝐴𝑠𝑡 = 12 864 𝑚𝑚2 ⟹ 0.01 < 𝜌𝑔 = 3.81 % < 0.08 

• Check minimum number of longitudinal bars: 
16 > 4   ∴ 𝑂𝑘. 

• Check minimum distance between longitudinal bars: 
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𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 48𝑚𝑚, 𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑 = 47.5 𝑚𝑚 ≈ 48𝑚𝑚 𝑂𝑘. 
Section Strength 

• Calculate the design axial load strength and bending moment for given 
eccentricity (∅𝑃𝑛, ∅𝑀𝑛): 

𝑃𝑢 =  6 200 𝑘𝑁, 𝑀𝑢 = 150 𝑘𝑁. 𝑚 ⟹ 𝑒 = 0.024 𝑚, ∵  
𝑒

ℎ
= 0.032 < 0.10 

• Then this column can be analyzed as an axially loaded column, i.e. the applied 

moment can be neglected. 
∅𝑃𝑛𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 6 827 𝑘𝑁 > 𝑃𝑢 𝑂𝑘. 

Checking of Ties: 

• Ties diameter: 
∵ 𝜑𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝐵𝑎𝑟𝑠 = 32𝑚𝑚 

Then using of 𝜑𝑇𝑖𝑒𝑠 = 10𝑚𝑚 is okay. 

• Tie spacing  
𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 450𝑚𝑚 > 𝑆𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑   𝑂𝑘. 

• Ties arrangement: 

The proposed distribution is adequate according to ACI requirements. 
 

Problem 9.7-3 

The short tied column shown in Figure 9.7-3 below is to be used to support the 

following loads and moments: 
𝑃𝐷 =  556 𝑘𝑁,    𝑃𝐿 =  623 𝑘𝑁, 𝑀𝐷 =  102 𝑘𝑁. 𝑚 , 𝑎𝑛𝑑   𝑀𝐿 =  122 𝑘𝑁. 𝑚 

Select longitudinal bars to be placed in its end faces only using appropriate ACI column 

interaction diagram, and design the ties. 
Assume: Short column, ∅ 32 𝑚𝑚 for longitudinal reinforcement, fc

′ = 28 MPa, and fy =

420 MPa. 

 

Figure 9.7-3: Column section for Problem 

9.7-3. 

Answers 

Applied Factored Loads: 

𝑃𝑢 =  1 664 𝑘𝑁, 𝑀𝑢 = 318 𝑘𝑁. 𝑚 ⟹ 𝑒 = 0.191 𝑚 ⟹
𝑒

ℎ
= 0.38 

Longitudinal reinforcement: 
• Compute 𝛾: 

𝛾 = 0.75 

• Based on 
e

h
, the strength reduction factor “∅” can assumed to be 0.65: 

𝐾𝑛 =
𝑃𝑢

∅𝑓𝑐’𝐴𝑔
= 0.52 

• Steel ratio 𝜌𝑔 can be computed from interpolation from curves of 𝛾 = 0.70 and 𝛾 =

0.80. 

𝛾 0.70 0.75 0.80 
𝜌𝑔 2.2% 2.1% 2.0% 

𝐴𝑠𝑡 =  3 675 𝑚𝑚2 ⟹ 𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑏𝑎𝑟𝑠 = 4.57, Try 6 ∅ 32mm. 

Design of Lateral Reinforcement (Ties): 

• Ties diameter: 
∵  ∅ = 32mm, ∴ we can use ∅ = 10mm for ties 

• Ties spacing: 
SMaximum = 350mm 
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• Ties arrangement: 
∵ SSpacing between longitudinal bars < 150mm 

Then, alternate longitudinal bars will be supported by corner bars. 

 
Figure 9.7-4: Final design section for 

Problem 9.7-4. 
 

Problem 9.7-4 

Design the spiral column that supports four girders of bridge shown in Figure 9.7-5 

below. In your design assume that. 
• Each girder has a dead load reaction of 150 kN and has a live load reaction of 

100 kN. 

• Assume that live load acting on right span only. 

• fc' = 28 MPa and fy = 420 MPa. 

• Rebar No. 25 for longitudinal reinforcement (Abar = 510mm2) and No. 10 for 
spiral reinforcement.  

• Column has a height of 4m, and it is assumed short. 

• Column and cap selfweight should be included in your solution. 

As was discussed previously, your solution can be based on the equivalent circular 
section instead of actual hexagonal section, see Figure 9.4-5.  

 

Figure 9.7-5: Bridge girders and 

column for Problem 9.7-4. 



Design of Concrete Structures Chapter 9: Short Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 9: Page 42  
 

 

Figure 9.4-5: Transformation of an 

octagonal column into the equivalent 

circular section. Reproduced for 

convenience  

Answers 

Applied Factored Loads: 

𝑃𝐷 = (150 𝑘𝑁 × 4)𝐺𝑖𝑟𝑑𝑒𝑟𝑠 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + ((3.02 × 0.75 − 0.32 × 0.6 × 4)𝑚3 × 24
𝑘𝑁

𝑚3
)

𝐶𝑎𝑝 𝑆𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡

+ ((
𝜋0.752

4
 × 4) 𝑚3 × 24

𝑘𝑁

𝑚3
)

𝐶𝑜𝑙𝑢𝑚𝑛 𝑆𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡

  

𝑃𝐷 = (600 )𝐺𝑖𝑟𝑑𝑒𝑟𝑠 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + (157)𝐶𝑎𝑝 𝑆𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡 + (42)𝐶𝑜𝑙𝑢𝑚𝑛 𝑆𝑒𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡 = 799 𝑘𝑁 

As all dead loads are symmetric, then MDead is zero. 
𝑃𝐿 = (100 𝑘𝑁 × 2)𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑅𝑖𝑔ℎ𝑡 𝑆𝑖𝑑𝑒 𝑆𝑝𝑎𝑛 = 200 𝑘𝑁  

𝑀𝐿 = 𝑃𝐿 × 𝐴𝑟𝑚 = 200 𝑘𝑁 × (
3.0

2
−

0.3

2
) 𝑚 = 270 𝑘𝑁. 𝑚 

Then factored forces will be: 

𝑃𝑢 =  1 279 𝑘𝑁, 𝑀𝑢 = 432 𝑘𝑁. 𝑚 ⟹ 𝑒 = 0.338 𝑚 ⟹
𝑒

ℎ
= 0.45 

Longitudinal reinforcement: 
• Compute γ: 

𝛾ℎ = 750 − 40 × 2 − 10 × 2 − 25 = 625 ⟹ 𝛾 =
𝛾ℎ

ℎ
=

625

750
= 0.83  

Say γ = 0.8. 

• Based on 
e

h
, the strength reduction factor “∅” can be taken equal to 0.75: 

𝐾𝑛 =
𝑃𝑢

∅𝑓𝑐’𝐴𝑔
=

1 279 000 𝑁

0.75 × 28 ×
7502 × 𝜋

4

= 0.138 

• Based on interaction diagram shown Figure 9.7-6 below, it seems that required 

ratio ρg is less than 1%, then ACI minimum reinforcement ratio should adopted: 

𝜌𝑔 = 0.01 ⟹ 𝐴𝑠𝑡 =  0.01 ×
7502 × 𝜋

4
= 4 416mm2 ⟹ 𝑁𝑜. 𝑜𝑓 𝑅𝑒𝑏𝑎𝑟𝑠 =  

4 416 

510
= 8.65 

Then use 9Ø25mm. 

Spiral Design: 

• Spiral diameter: 
∵ 𝜑𝑆𝑝𝑖𝑟𝑎𝑙 = 10𝑚𝑚  ∴ 𝑂𝑘. 

• Compute ρSMinimum: 
𝐷𝑐 = 750𝑚𝑚 − 2 × 40𝑚𝑚 = 670𝑚𝑚 

𝐴𝑐 =
𝜋 × 6702

4
= 352 386 𝑚𝑚2, 𝐴𝑔 =

𝜋 × 7502

4
= 441 562 𝑚𝑚2 

𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 0.45 (
𝐴𝑔

𝐴𝑐
− 1)

𝑓𝑐
′

𝑓𝑠𝑦
 = 0.45 (

441 562

352 386
− 1) ×

28

420
= 7.59 × 10−3 

𝐴𝑠𝑝 =
𝜋 × 102

4
= 78.5𝑚𝑚2

 

𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
4𝐴𝑠𝑝

𝐷𝑐 𝜌𝑠𝑀𝑖𝑛𝑖𝑚𝑢𝑚
⟹∴ 𝑆𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =

4 × 78.5𝑚𝑚2

670𝑚𝑚 × 7.59 × 10−3
= 61.7𝑚𝑚 
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Try 𝜑10𝑚𝑚 @ 60𝑚𝑚 

Use   𝛗𝟏𝟎𝐦𝐦 @ 𝟔𝟎𝐦𝐦  
• The final section of the column is shown in Figure 9.7-7 below. 

∵ 𝑆𝐶𝑙𝑒𝑎𝑟 = 50𝑚𝑚 < 80𝑚𝑚   ∴ 𝑂𝑘. 
∵ 𝑆𝐶𝑙𝑒𝑎𝑟 = 50𝑚𝑚 > 25𝑚𝑚   ∴ 𝑂𝑘. 

 

Figure 9.7-6: Inteaction diagram for the equivalent circular column of Problem 9.7-4. 

 
Figure 9.7-7: Final column section for the 

column of Problem 9.7-4.  
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9.8 ANALYSIS OF COLUMNS SUBJECTED TO COMPRESSION FORCE AND BIAXIAL 

MOMENTS 

9.8.1 A Circular Column under an Axial Force and Biaxial Moments 
• Circular columns have polar symmetry and thus the same ultimate capacity in all 

directions. 

• Then if a circular column is subjected to biaxial moments, these moments can be 
transformed into an equivalent uniaxial bending moment that computed based on 

the following relations: 

𝑒 = √𝑒𝑥
2 + 𝑒𝑦

2 

or  

𝑀𝑢 = √𝑀𝑢𝑥
2 + 𝑀𝑢𝑦

2     

 
Figure 9.8-1: Circular column under axial 

force and biaxial moments. 
 

Example 9.8-1 

Use an appropriate interaction diagram to determine 𝑃𝑛 value that can be supported by 

circular column shown in Figure 9.8-2 below. 

Assume that: 𝑓𝑦 =  420𝑀𝑃𝑎, 𝑓𝑐
′ =  28 𝑀𝑃𝑎 and 𝐴𝐵𝑎𝑟 =  645 𝑚𝑚2. 

 
Figure 9.8-2: Circular column of Example 

9.8-1. 

Solution 

• The equivalent eccentricity for the resultant moment can be determined based on 

the following relation. 

𝑒 = √𝑒𝑥
2 + 𝑒𝑦

2 = √0.152 + 0.202 = 0.25 ⟹
𝑒

ℎ
=

0.25

0.50
= 0.5 

𝛾 =
0.30

0.50
= 0.6 
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• Based on γ value and as the column is a circular column, then the interaction 

diagram of Figure 9.8-3 below has been adopted. 

𝐴𝑠𝑡 = 6 × 645 𝑚𝑚2 = 3 870 𝑚𝑚2, 𝐴𝑔 =
𝜋 × 5002

4
= 196 250 𝑚𝑚2 ⟹ 𝜌𝑔 =

3 870 𝑚𝑚2

196 250 𝑚𝑚2
≈ 2.0% 

𝐾𝑛 = 0.25 =
𝑃𝑛

𝐴𝑔𝑓𝑐
′ ⟹ 𝑃𝑛 = 0.25 × 196 250 𝑚𝑚2  × 28

𝑁

𝑚𝑚2
= 1 374 𝑘𝑁 

 

Figure 9.8-3: Interaction diagram adopted for circular column of Example 9.8-1. 
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9.8.2 Analysis of a Rectangular Column under an Axial Force and Biaxial 
Moments  

9.8.2.1 Basic Concepts 

• The article aims to analyze a rectangular column under a compression force and 

biaxial moments. 

• With analysis problem, column is assumed to has known dimensions and known 
reinforcement and to be checked for resisting a force set consists of a 
compression force and biaxial moments (see Figure 9.8-4 below). 

 
Figure 9.8-4: A Rectangular column under 

an axial force and biaxial moments. 

• Criterion for Including or Negating the Effect of the Smaller Moment: 

• According (Nilson, Design of Concrete Structures, 14th Edition, 2011), following 

criterion can be adopted to consider the minor bending moment into 
consideration: “In general, biaxial bending should be taken into account 

when the estimated ratio of smaller to larger bending moments 

approaches or exceed 0.2”. 

• As for a column with compression force and uniaxial moment, analysis of a 

column with a compression force and biaxial moments starts with construction of 
column interaction diagram. 

• If a specific load set is located inside or on the interaction diagram, then this 

column is adequate to resist applied load set safely and vice versa.  

• Typical interaction diagram for a rectangular column under a compression force 
and biaxial moments is shown in Figure 9.8-5 below.  

 

Figure 9.8-5: Interaction 

diagram for compression 

plus biaxial bending: (a) 
uniaxial bending about Y 

axis; (b) uniaxial 
bending about X axis; (c) 

biaxial bending about 
diagonal axis; (d) 

interaction surface. 

• It is difficult to draw or represent of a three-dimension interaction diagram 

(especially without a computer program), then for practical applications curve of 
Figure 9.8-5 is usually approximated based on one of two methods presented in 

Articles 9.8.2.2 and 9.8.2.3 below. 
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9.8.2.2 Reciprocal Load Method 

• It is a simple approximate design method developed by Bresler.  
• It has been satisfactorily verified by comparison with results of extensive tests 

and accurate calculations.  

• The method can be summarized as follows: 

o Re-draw the interaction diagram in terms of (
1

𝑃𝑛
, 𝑒𝑥, and 𝑒𝑦) instead of (𝑃𝑛, 𝑀𝑥, 

and 𝑀𝑦) to obtain the surface “S” that shown in Figure 9.8-6 below. Based on 

the new terms, the main unknown in an analysis problem is 
1

𝑃𝑛
.  

o Use a plane 𝑆1 that defined by points A, B, and C to approximate the original 

surface S. Then the approximate value of unknown 
1

𝑃𝑛
 can be computed based 

on the following relation: 
1

𝑃𝑛
=

1

𝑃𝑛𝑥0
+

1

𝑃𝑛𝑦0
−

1

𝑃0
  

where 
Pn is approximate value of nominal load in biaxial bending with eccentricities ex 

and ey 

Pny0 is nominal load when only eccentricity ex is present (ey = 0) (can be 

computed from a specific interaction diagram for an axial force and uniaxial 

bending moment). 
Pnx0 is nominal load when only eccentricity ey is present (ex = 0) (can be 

computed from a specific interaction diagram for an axial force and uniaxial 

bending moment). 
P0 is nominal load for concentrically loaded column (can be computed from a 

specific interaction diagram for an axial force and uniaxial bending moment or 

may be computed based on relations given in article 2 but without factors of 
0.8 for tied columns and 0.85 for spiral columns). 

o Finally, column adequacy can be checked based on the following comparison: 

If  
𝑃𝑢 ≤ ∅𝑃𝑛 

Then the column is adequate. Else the column is inadequate to support a 
factored applied load of 𝑃𝑢 acting at eccentricities ex and ey. 

 

Figure 9.8-6: Interaction surfaces for the 

reciprocal load method. 

• Notes on Reciprocal Load Method: 
The reciprocal load method is very simple to use, but the representation of 

the curved failure surface by an approximating plane is not reliable in 

the range of large eccentricities, where failure is initiated by steel 

yielding. 
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Example 9.8-2 

The 300 by 500mm column shown in Figure 9.8-7 below is reinforced with eight No. 

29 bars (𝐴𝐵𝑎𝑟𝑠 =  645𝑚𝑚2) arranged around the column perimeter. A factored load Pu of 

1 134 kN is to be applied with eccentricities ey =  75mm and ex =  150mm. Material 

strengths fy =  420MPa and fc
′ =  28 MPa are specified. Check the adequacy of the column 

using the reciprocal load method. 

 
Figure 9.8-7: Column for Example 

9.8-2. 

Solution 

• Considering the bending moment about y-axis (To compute Pny0): 

𝐴𝑠𝑡 =  8 × 645𝑚𝑚2 = 5 160 𝑚𝑚2, 𝐴𝑔 = 500 × 300 = 150 000 𝑚𝑚2 ⟹ 𝜌𝑔 = 3.44 %  
𝑒

ℎ
=

150

500
=  0.3, 𝛾 =

375

500
= 0.75   

As we don’t have an interaction diagram with 𝛾 = 0.75, then we’ll use the average 

value for 𝛾 = 0.70 and 𝛾 = 0.80, see Figure 9.8-8 below. 

𝐾𝑛 𝑎𝑣𝑔. =  
𝑃𝑛𝑦0

𝐴𝑔𝑓𝑐
′ =

0.62 + 0.66

2
= 0.64 

𝑃𝑛𝑦0 =  0.64 × 150 000 × 28 = 2 688 𝑘𝑁  

• Considering the bending moment about x-axis (To compute 𝐏𝐱𝐲𝟎): 
𝑒

ℎ
=

75

300
=  0.25, 𝛾 =

175

300
= 0.58 

Say 𝛾 = 0.60 

𝐾𝑛 =  
𝑃𝑛𝑥0

𝐴𝑔𝑓𝑐
′ = 0.65 

𝑃𝑛𝑥0 =  0.65 × 150 000 × 28 = 2 730 𝑘𝑁 

• Consider the case of axially load column (To compute 𝑷𝟎): 
𝑃0 = 0.85 × 28 × (150 000 −  5 160) + 420 ×  5 160 = 5 614 𝑘𝑁  

• Compute the approximate column strength when it is subjected to an axial force 
and biaxial moments: 
1

𝑃𝑛
=

1

𝑃𝑛𝑥0
+

1

𝑃𝑛𝑦0
−

1

𝑃0
=

1

2 730 
+

1

2 688
−

1

5 614
= 5.60 × 10−4 

𝑃𝑛 = 1 785 𝑘𝑁  ? 𝑃𝑛𝑚𝑎𝑥 = 0.80 × 𝑃0 = 0.8 × 5 614 𝑘𝑁 = 4 491 𝑘𝑁 
𝑃𝑛 = 1 785 𝑘𝑁 < 𝑃𝑛𝑚𝑎𝑥 = 4 491 𝑘𝑁    𝑂𝑘. 

• Finally, check column adequacy based on following comparison:  
∅𝑃𝑛 = 0.65 × 1 785 𝑘𝑁 = 1 160 𝑘𝑁 > 1 134 𝑘𝑁 

The column is adequate according to reciprocal load method. 
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Figure 9.8-8: Interaction diagrams adopted in Example 9.8-2.  
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9.8.2.3 Load Contour Method 

• Checking of a column adequacy for an axial force and biaxial moments (i.e., 
checking if the load state is inside or outside the column interaction diagram) can 

also be done based on checking if the load state is inside or outside the Load 
Contour for a plane of constant force 𝑃𝑛. 

 

Figure 9.8-9: 
Interaction contours 

at constant 𝑷𝒏. 

• If load state falls within the Load Contour, then the column is safe and vice 

versa.  
• General form of load contour curve can be approximated by a nondimensional 

interaction equation: 

(
𝑀𝑛𝑥

𝑀𝑛𝑥0
)

𝛼1

+ (
𝑀𝑛𝑦

𝑀𝑛𝑦0
)

𝛼2

= 1.0 

where 
𝑀𝑛𝑥 = 𝑃𝑛𝑒𝑦  

𝑀𝑛𝑥0 = 𝑀𝑛𝑥 when 𝑀𝑛𝑦 = 0.0 

𝑀𝑛𝑦0 = 𝑀𝑛𝑦 when 𝑀𝑛𝑥 = 0.0 

α1 and α2 are exponents depending on:  

o Column dimensions. 

o Amount and distribution of steel reinforcement.  
o Stress-strain characteristics of steel and concrete.  

o Amount of concrete cover.  

o Size of lateral ties or spiral.  
• When α1 = α2 = α, the shapes of such interaction contours are as shown in Figure 

9.8-10 below for specific values. 

• Values of 𝛂: 

o 𝛼 values fall in the range from 1.15 to 1.55 for square and rectangular 

columns.  

o Values near the lower end of that range are the more conservative.  
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Figure 9.8-10: Interaction contours at 

constant 𝑷𝒏 for varying 𝜶. 

• More Useful Form of Load Contour: 
o Introducing of the ACI factors for reducing nominal axial and flexure strengths 

to design strength presents no difficulty. With the appropriate 𝜙 factors applied 

to 𝑃𝑛 , 𝑀𝑛𝑥, and 𝑀𝑛𝑦, a new failure surface is defined: 

(
𝜙𝑀𝑛𝑥

𝜙𝑀𝑛𝑥0
)

𝛼 

+  (
𝜙𝑀𝑛𝑦

𝜙𝑀𝑛𝑦0
)

𝛼 

= 1.0 

o The above equation can be rewritten in terms of applied moments: 

(
𝑀𝑢𝑥

𝜙𝑀𝑛𝑥0
)

𝛼 

+  (
𝑀𝑢𝑦

𝜙𝑀𝑛𝑦0
)

𝛼 

= 1.0 

• How to Use Load Contour: 
o In practice, the values of Pu, Mux, Muy are known from the analysis of the 

structure.  
o For a trial column section, the values of Mnx0 and Mny0 corresponding to the 

load Pu can easily be found by the usual methods for uniaxial beading.  

o It can be confirmed that a particular combination of factored moments falls 
within the load contour (safe design) or outside the contour (failure), and the 

design modified if necessary. 

• Notes on Load Contour Method: 
o Selection of the appropriate value of the exponent ∝ is made difficult by a 

number of factors relating to column shape and bar distribution.  
o For many cases, the usual assumption that 𝛼1 =  𝛼2 is a poor approximation. 
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Example 9.8-3 

Re-check the column of Example 9.8-2 by the Load Contour Method. Assume that the 

exponent ∝ conservatively taken equal to 1.15. 

Solution 

• Nominal Bending Strength about y-axis (∅𝑀𝑛𝑦0): 

𝛾 =
0.375𝑚

0.5𝑚
= 0.75 

Ag = 500mm × 300mm = 150  000 mm2 

𝐴𝑠𝑡 =  8 × 645𝑚𝑚2 = 5 160 𝑚𝑚2 
𝜌𝑔 = 3.44 %  

Based on above definition of (∅𝑀𝑛𝑦0), one must start the solution with Kn 

value to compute the required Rn  value based on steel reinforcement 

ratio. Required 𝑅𝑛  can’t be computed based on e/h ratio as this solution will not 

be consistent with the definition of (∅𝑀𝑛𝑦0). Based on interaction diagrams 

presented in Figure 9.8-11 below, column strength ∅𝑀𝑛𝑦0 would be: 

𝐾𝑛 =
𝑃𝑢

∅𝑓𝑐
′𝐴𝑔

=
1 134 000 

0.65 × 28 × 150000
= 0.41 

𝑅𝑛 𝑎𝑣𝑔. = (
∅𝑀𝑛𝑦0

𝑓𝑐
′𝐴𝑔ℎ

)
𝑎𝑣𝑔

=  
0.21 + 0.24

2
= 0.22  

∅𝑀𝑛𝑦0 = 0.65(0.22 × 28 × 150 000 × 500) = 300 𝑘𝑁. 𝑚  

  

Figure 9.8-11: Interaction diagrams adopted to compute ∅𝑴𝒏𝒚𝟎 of Example 9.8-3. 

• Nominal Bending Strength about x-axis (∅𝑀𝑛𝑥0): 

𝛾 =
0.175𝑚

0.3𝑚
= 0.58 

Say 𝛾 = 0.60, and based on interaction diagram of Figure 9.8-12 below. 

𝐾𝑛 =
𝑃𝑢

∅𝑓𝑐
′𝐴𝑔

= 0.41 (𝑎𝑠 𝑏𝑒𝑓𝑜𝑟) 

𝑅𝑛 = (
∅𝑀𝑛𝑥0

𝑓𝑐
′𝐴𝑔ℎ

) =   0.19  

∅𝑀𝑛𝑥0 = 0.65(0.19 × 28 × 150 000 × 300) = 156 𝑘𝑁. 𝑚  
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Figure 9.8-12: Interaction diagram adopted to compute ∅𝑴𝒏𝒙𝟎 of Example 9.8-3. 

• Check column adequacy based on Load Contour Method: 
𝑀𝑢𝑦 =  1 134 𝑘𝑁 × 0.150𝑚 = 170 𝑘𝑁. 𝑚 

𝑀𝑢𝑥 = 1 134 𝑘𝑁 × 0.075𝑚 = 85 𝑘𝑁. 𝑚 

(
𝑀𝑢𝑥

𝜙𝑀𝑛𝑥0
)

1.15 

+  (
𝑀𝑢𝑦

𝜙𝑀𝑛𝑦0
)

1.15 

?  1.0 

(
85

156
)

1.15

+  (
170

300
)

1.15 

?  1.0 

0.548 + 0.566 = 1.1 ≈  1.0   𝑂𝑘. 
The column is adequate according to Load Contour Method. 
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CHAPTER 10 
SLENDER COLUMNS 

10.1 INTRODUCTION AND BASIC CONCEPTS 

10.1.1 Definition of Slender Columns 
• A column is said to be slender if its cross-sectional dimensions are small com-

pared with its length.  

• The degree of slenderness is generally expressed in terms of the slenderness 

ratio ℓ𝑢/𝑟, where ℓ𝑢 is the unsupported length of the member and 𝑟 is the radius 

of gyration of its cross section, equal to: 

𝑟 =  √
𝐼

𝐴
 Eq. 10.1-1 

• According to ACI 6.2.5.1, the radius of gyration r for rectangular column can be 

determined from Eq. 10.1-2. 
𝑟𝐹𝑜𝑟 𝑎 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 =  0.3ℎ Eq. 10.1-2 

while for circular columns it may be taken as in Eq. 10.1-3. 
𝑟𝐹𝑜𝑟 𝑎 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 =  0.25𝐷 Eq. 10.1-3 

• It has long been known that a member of great slenderness will collapse under a smaller 
compression load than a stocky member with the same cross-sectional dimension.  

 

Example 10.1-1 

With referring to gross homogenous sections, show that Eq. 10.1-2 and Eq. 10.1-3 are 

rational in nature and can be derived from definition of Eq. 10.1-1. 
Solution 
For rectangular section: 

𝑟𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =  √
𝐼

𝐴
=

√
𝑏ℎ3

12
𝑏ℎ

=
1

√12
ℎ = 0.228ℎ ≈ 0.3ℎ 

For circular section: 

𝑟𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 =  √
𝐼

𝐴
= √

𝜋𝐷4

64
𝜋𝐷2

4

=
1

4
𝐷 = 0.25𝐷 

 

• This article aims to discuss the effects of slenderness on: 
o The strength of axially loaded columns, 

o The strength of columns that subjected to axial force and bending moment. 

10.1.2 Effect of Slenderness Ratio on Strength of Axially Loaded Columns 
10.1.2.1 Basic Concepts 

• Based on experimentally work, the relation between column strength and its 

slenderness ratio is as shown in Figure 10.1-1 below. 

For small values of klu/r, axial column strength 
can be predicated based on relations discussed 
in Chapter 9 for Short Columns.

For large values of klu/r, axial 
column strength shall be 
predicated based on Euler 
relation that discussed in this 
Chapter.

 

Figure 10.1-1: Effect of slenderness on 

strength of axially loaded columns. 
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• It can been shown that, for lower values of klu/r (values less than (klu/r)Limit in 

Figure 10.1-1 above) column strength can be predicated by the relation derived in 

Chapter 9: 

𝑃𝑛 = 0.85𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡) + 𝐴𝑠𝑡𝑓𝑦 Eq. 10.1-4 

• For larger slenderness ratio, column strength can be predicated based on the 

following relation that derived by Euler more than 200 years ago: 

𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
 Eq. 10.1-5 

where 𝑘𝑙𝑢 is defined as the effective length and it represents the distance between the 
inflection points. 

• Correspondingly, there is a limiting slenderness ratio (klu/r)Limit: 

o For values smaller than (klu/r)Limit this, failure occurs by simple crushing, 
regardless of klu/r;  

o For values larger than (klu/r)Limit failure occurs by buckling, the buckling load or 

stress decreasing for greater slenderness. 

10.1.1.1 Physical Meaning of Euler Load or Critical Load 

• An axially loaded column similar to that shown 
below should be designed for the dominated 

acting force (axial force Pu in this case). 
• However, this column is a part from structure 

that should be adequate for many decades. 
During that long age, this column may be 
subjected to a temporary lateral force due to a 

minor cause that can't be accounted in the 
design process. Then this column will be 

displaced laterally as shown below: 

 
Figure 10.1-3: A column subjected to dominate axial force and to minor or temporary 

lateral forces.  

• It has been noted experimentally, and has been approved analytically, that each 
column has a critical load (Pc) that when the column is loaded with an axial load 
Pu less than Pc and subjected to a lateral temporary force at the same time, it will 

return to its undeform shape when this temporary lateral load remove and vice 
versa.  

 

Figure 10.1-2: A 

column subjected 

to dominate axial 

force. 
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Figure 10.1-4: Behavior of 

axially loaded column when 

𝑷𝒖 is less or/and greater than 

𝑷𝒄. 

• As we have no control on the occurring of such temporary lateral force, then we 

cannot accept a column that loaded with an axial force equal to or greater than 

its critical load. Such column is classified as unstable column in engineering 

practice.  
• Then critical or Euler load represents a very important limit on axial load in 

columns:  
o For short columns: 

𝑃𝑐𝑟𝑎𝑠ℎ𝑖𝑛𝑔  <  𝑃𝑐 Eq. 10.1-6 

then 

Pn = Pcrashing = 0.85fc
′(Ag − Ast) + Astfy Eq. 10.1-7 

o For long or slender columns: 

𝑃𝑐𝑟𝑎𝑠ℎ𝑖𝑛𝑔 ≥  𝑃𝑐 Eq. 10.1-8 

then 

𝑃𝑛 = 𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
 Eq. 10.1-9 

10.1.2.2 Computing of Buckling Load or Euler Load 

• To compute or estimate critical load (or Euler Load) one should compute or 
estimate following quantities: 

1. Member stiffness or rigidity (EI) 
2. Member unsupported length (lu). 

3. Effective length factor or k factor. 
• Each one of above quantities will be discussed briefly below:  

10.1.2.3 ACI Procedure for Computing (EI) to be used in Euler Formula 

• In homogeneous elastic members such as steel columns, El is easily obtained 
from Young's modulus and the usual moment of inertia.  

• Reinforced concrete columns, however, are  
o Nonhomogeneous, since they consist of both steel and concrete,  

o Steel is substantially elastic, concrete is not and is in addition subject to creep 
and to cracking if tension occurs on the convex side of the column.  

• All of these factors affect the effective value of (El) for a reinforced concrete 

member.  

• According to Article 6.6.4.4.4 of the ACI code effective value of (EI) or, 𝐸𝐼𝑒𝑓𝑓, as 

called by the code, can be determined based on any one of the following 
relations: 

𝐸𝐼𝑒𝑓𝑓  =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
 Eq. 10.1-10 

𝐸𝐼𝑒𝑓𝑓  =
0.2𝐸𝑐𝐼𝑔 + 𝐸𝑠𝐼𝑠𝑒

1 + 𝛽𝑑𝑛𝑠
 Eq. 10.1-11 

𝐸𝐼𝑒𝑓𝑓  =
𝐸𝑐I

1 + 𝛽𝑑𝑛𝑠
 Eq. 10.1-12 

where 𝐸𝑐 is modulus of elasticity of concrete. 

o 𝐼𝑔 is moment of inertia of gross section of column. 
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o 𝐸𝑠 is modulus of elasticity of steel. 

o 𝐼𝑠𝑒 is moment of inertia of reinforcement about centroidal axis of member cross 

section. According to (Wight, 2016), calculation of 𝐼𝑠𝑒 can be simplified with 

refereeing to Table 10.1-1. 
Table 10.1-1: Calculations of 𝑰𝒔𝒆, adopted from (Wight, 2016). 

 
o 𝐼 is the effective moment of inertial computed based on Table 10.1-2 below. 

o 𝛽𝑑𝑛𝑠 is ratio of maximum factored axial sustained axial load to maximum 

factored axial load associated with the same load combination. 

Table 10.1-2: Alternative moments of inertia for elastic analysis at factored load, Table 
6.6.3.1.1(b) of the ACI code. 

 
• Notes on Computing of 𝐸𝐼𝑒𝑓𝑓: 

o Creep due to sustained loads will increase the lateral deflections of a column 
and, hence, the moment magnification. 
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o Creep effects are approximated in design by reducing the stiffness 𝐸𝐼𝑒𝑓𝑓 by 

dividing the short-term 𝐸𝐼 provided by the numerator Eq. 10.1-10 through Eq. 
10.1-12 by (1 +  𝛽𝑑𝑛𝑠).  

o For simplification, it can be assumed that βdns =  0.6. In this case Eq. 10.1-10 becomes 
EIeff  =  0.25EcIg. 

o In reinforced concrete columns subject to sustained loads, creep transfers 
some of the load from the concrete to the longitudinal reinforcement, 

increasing the reinforcement stresses. In the case of lightly reinforced 
columns, this load transfer may cause the compression reinforcement to yield 

prematurely, resulting in a loss in the effective EI. Accordingly, both the 

concrete and longitudinal reinforcement terms in Eq. 10.1-10 through Eq. 10.1-12 
are reduced to account for creep. 

o The equations in Table 10.1-2 above provide more refined values of I 

considering: 
▪ Axial load,  

▪ Eccentricity,  
▪ Reinforcement ratio,  
▪ Concrete compressive strength. 
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10.1.2.4 Column Unsupported Length (𝓵𝒖) 

• The unsupported length of a compression member, ℓ𝑢, shall be taken as the clear 

distance between floor slabs, beams, or other members capable of providing 

lateral support in the direction being considered.  

• Where column capitals or haunches are present, ℓ𝑢 shall be measured to the 

lower extremity of the capital or haunch in the plane considered." 

 
Figure 10.1-5: Unsupported column length, 𝓵𝒖. 

10.1.2.5 Computing of Effective Length Factor (or k Factor) 

• Meaning of Effective Length Factor (or k Factor): 
o Above Euler relation has been derived originally for simple boundary conditions 

(i.e. has been derived for a column that has hinge support at both ends). For 

this column Euler load or (critical load) is: 

𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑙𝑢)2
 Eq. 10.1-13 

o For other boundary conditions, k factor (effective length factor) can be used to 

transform length of the column under consideration to a length of an 
equivalent column with both ends are pinned.  

o For example, assume that we intend to compute the critical load for a 
cantilever column that has 4m height. As cantilever has k = 2 (as will be 
discussed below), then form buckling analysis point of view, behavior of this 

cantilever column will be similar to behavior of pinned column with length 

equal to (𝑘𝑙𝑢 =  2𝑥4 = 8𝑚). Based on this reasoning, one can conclude that: 

𝑃𝑐 𝑓𝑜𝑟 𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 =
1

4
𝑜𝑓 𝑃𝑐 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑖𝑛𝑛𝑒𝑑 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑠𝑎𝑚𝑒 𝐿𝑒𝑛𝑔𝑡ℎ Eq. 10.1-14 

• k Factor for a Isolated Columns with Typical Support Conditions: 
Above transformation of the actual column to an equivalent pinned column is 
based on the concept of extending or trimming the length of actual column until 

arriving to the inflection points, see Figure 10.1-6 and Figure 10.1-7 below. 

 𝑘 = 1  
𝑘 =

1

2
 

Figure 10.1-6: Effective length 

for isolated columns, braced 

columns. 
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 𝑘 = 2  𝑘 = 1 

Figure 10.1-7: Effective length 

for isolated columns, sway 

columns. 

• k Factor for a Column that is Part from a Structure: 
o Columns in real structures are rarely either hinged or fixed but have ends 

partially restrained against rotation by abutting members. Therefore, the k will 

be within limits shown in Figure 10.1-8 below. 

  
1

2
< 𝑘 < 1 

1 < 𝑘 < ∞ 

(a) Braced frames. (b) Sway frames. 
Figure 10.1-8: Effective length factor for columns that are parts from frames.  

o From Figure 10.1-8 above, one concludes that compression members free to 

buckle in a sway frame are always considerably weaker than when braced 

against sway. 
o An approximate but generally satisfactory way of determining (k) is by means 

of alignment charts. This method can be summarized as follows: 

▪ Compute the degree of end restraint at each end based on the following 

relation: 

ψ =
∑

𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

 Eq. 10.1-15 

▪ Based on 𝜓 and frame classification (braced against sway or not), effective 

length factor (k) can be computed based on alignment charts of Figure 10.1-9 
below. 
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(a) Nonsway frames. (b) Sway frames 
Figure 10.1-9: Alignment charts for effective length factors k. 

• 𝜓 for Hinge Support: 

Hinge support can be understood as columns that connected to beams with zero 
stiffness: 

ψHinge = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→0

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= ∞ Eq. 10.1-16 

• In the same approach, 𝜓𝐹𝑖𝑥𝑒𝑑 can be interpreted as columns that connected to 

infinitely rigid beams. 

ψFixed = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→∞

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= 0 Eq. 10.1-17 
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10.1.2.6 Analysis Examples for Euler Loads 

Example 10.1-2 

Using Eq. 10.1-10 to compute critical load about major axis, i.e. buckling in x-z plane, for 

the column shown in Figure 10.1-10 below. In your solution, assume that: 

• k = 0.83. 
• fc’ = 28 MPa. 

• Assume the sustained load is only 32.7%. 
• Column length is 4.88m. 

  
3D View. Elevation view. 

 

 
 Cross sectional of the column 
Figure 10.1-10: Column for Example 10.1-2. 

Solution 

Critical load (or Euler load) can be computed based on following relation: 

𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
 

According to example statement, the column shall be adopted to compute 𝐸𝐼𝑒𝑓𝑓: 

𝐸𝐼eff =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
 

𝐸𝑐 = 4700√28 = 24870 MPa 

𝐼𝑔 =  
300 × 3753

12
= 1.32 × 109mm4 

Based on problem information, 𝛽𝑑𝑛𝑠 = 0.327. 
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𝐸𝐼eff =
0.4 × 24870 × 1.32 × 109

1 + 0.327
= 9.89 × 1012 𝑁. 𝑚𝑚2 

Therefore, the critical or Euler load would be: 

𝑃𝑐 =  (
𝜋2 × 9.89 × 1012 𝑁. 𝑚𝑚2

(0.83 × 4880)2 𝑚𝑚2 ) ×
1

1000
= 5944 kN   ∎ 

 

Example 10.1-3 

Resolve Example 10.1-2 above but with determination of 𝐸𝐼𝑒𝑓𝑓 based on Eq. 10.1-11 to take 

reinforcement into account. 

Solution 

According to Eq. 10.1-11, 𝐸𝐼𝑒𝑓𝑓 would be: 

𝐸𝐼𝑒𝑓𝑓  =
0.2𝐸𝑐𝐼𝑔 + 𝐸𝑠𝐼𝑠𝑒

1 + 𝛽𝑑𝑛𝑠
 

As discussed in Chapter 2, 
𝐸𝑠 = 200000 𝑀𝑃𝑎 

While based on Parallel-Axis Theorem of Engineering Mechanics,  
𝐼𝑦 = 𝐼𝑦̅′ + 𝐴𝑑2 

The centroidal moment of inertia for each bar, 𝐼𝑦̅′, is so small and can be neglected in 

general: 
𝐼𝑦̅′ ≈ 0 

𝐼𝑠𝑒 = 𝐼𝑦 ≈ 𝐴𝑑2 = ((314 × 3) × (
254

2
)

2

) × 2 = 0.0304 × 109 𝑚𝑚4 

It can also be determined directly with refereeing to Table 10.1-1 
where 𝐼𝑠𝑒 for the indicated case 
𝐼𝑠𝑒 = 0.25𝐴𝑠𝑡(𝛾ℎ)2 = 0.25 × (314 × 6) × 2542 = 0.0304 × 109 𝑚𝑚4 

𝐸𝐼eff =
(0.2 × 24870 × 1.32 × 109) + (200000 × 0.0304 × 109)

1 + 0.327
= 9.53 × 1012 𝑁. 𝑚𝑚2 

𝑃𝑐 =  (

𝜋2 × 9.53 × 1012 
(0.83 × 4880)2 

1000
) = 5733 kN   ∎ 

 

Example 10.1-4 

For frame indicated in Figure 10.1-11 below: 

• Using the alignment chart of Figure 10.1-9, calculate the effective length factor for 

column AB of the braced frame shown below. 
• Compute the slenderness ratio of column AB. 

 
Figure 10.1-11: Frame for Example 10.1-4. 
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Solution 

• Effective Length Factor: 

𝜓 =  
∑

𝐸𝐼
𝐿 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝐿 𝐵𝑒𝑎𝑚𝑠

 

As 𝐸𝑐 for columns and beams can be assumed equal, then: 

𝜓𝐴 =  
∑

𝐼
𝐿𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝐿𝐵𝑒𝑎𝑚𝑠

 

As would be discussed later, according to ACI, 𝐼 for columns can be taken as 0.7𝐼𝑔 

and for beams can be taken as 0.35𝐼𝑔. These reductions are mainly due to 

cracking in reinforced concrete.  

𝜓𝐴 =  

0.7 ×
300 × 5003

12
3050

0.35 ×
300 × 4503

12
6100

+
0.35 ×

300 × 4503

12
7320

= 2.99 

𝜓𝐵 =  

0.7 ×
300 × 5003

12
3050

+
0.7 ×

300 × 5003

12
3660

0.35 ×
300 × 6003

12
6100

+
0.35 ×

300 × 6003

12
7320

= 

𝜓𝐵 =  
1.34 × 106

0.568 × 106
= 2.36 

From braced alignment chart, k = 0.875. 
• Slenderness Ratio: 

𝑘𝑙𝑢

𝑟
 =   

0.875 × (3.05 −
0.45

2 −
0.6
2 )

0.3 × 0.5
= 14.7 

 

Example 10.1-5 

With referring to Figure 10.1-12, determine the 

buckling load for the indicated truss-

supporting column when it bends about its 
major axis. Assume braced story and 𝛽𝑑𝑛𝑠 of 

0.7. 

Solution 

• When column extends from the foundation 
to the first floor: 

According to Euler formula, the buckling 
load would be: 

𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
 

With no information regarding column 

reinforcement, its rigidity, 𝐸𝐼, can be 

estimated based on the following relation: 

𝐸𝐼𝑒𝑓𝑓  =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
 

As bending is about the major axis, column 

moment of inertia, 𝐼𝑔, would be as 

indicated in below: 

𝐸𝐼𝑒𝑓𝑓  =
0.4 × (4700 × √28) ×

300 × 6003

12
1 + 0.7

= 31.5 × 1012 𝑁. 𝑚𝑚2 

The effective length factor, 𝑘, can be determined based on the alignment chart for 

the braced frame: 

 
Figure 10.1-12: Truss-supporting 

column for Example 10.1-5. 
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𝜓𝑙𝑜𝑤𝑒𝑟 = 𝜓ℎ𝑖𝑛𝑔𝑒 = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→0

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= ∞ 

𝜓𝑢𝑝𝑝𝑒𝑟 = 𝜓𝐴 =  
∑

𝐼
𝐿𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝐿𝐵𝑒𝑎𝑚𝑠

=

0.7 ×
300 × 6003

12

(4000 −
800

2
)

× 2

0.35 ×
300 × 8003

12
9000

= 4.22 

From the alignment chart, one concludes that 
the effective length factor is:  
𝑘 ≈ 0.92 

Finally, the unsupported length, 𝑙𝑢, for the 

column would be: 
𝑙𝑢 = 4000 − 800 = 3200 𝑚𝑚 

Therefore, the buckling load would be: 

𝑃𝑐 =  (
𝜋2 × (31.5 × 1012)

(0.95 × 3200)2 ) ×
1

1000
=  33641  𝑘𝑁 ∎  

• When column extends from to the first floor to 
the roof: 

𝜓𝑢𝑝𝑝𝑒𝑟 = 𝜓𝑝𝑖𝑛 = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→0

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= ∞ 

𝜓𝑙𝑜𝑤𝑒𝑟 =
∑

𝐼
𝐿𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝐿𝐵𝑒𝑎𝑚𝑠

=

0.7 ×
300 × 6003

12

(4000 +
800

2
)

× 2

0.35 ×
300 × 8003

12
9000

= 3.45 

From the alignment chart, one concludes that 

the effective length factor is:  
𝑘 ≈ 0.94 
𝑙𝑢 = 4000 mm 

𝑃𝑐 =  (
𝜋2 × (31.5 × 1012)

(0.94 × 4000)2 ) ×
1

1000
=  21990  𝑘𝑁 ∎ 
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Example 10.1-6 

With referring to Figure 10.1-13, determine the buckling 

load for the indicated truss-supporting column when 

it bends about its major axis. Assume braced story 

and 𝛽𝑑𝑛𝑠 of 0.7. 

Solution 

• When column extends from the foundation to the 
first floor: 

According to Euler formula, the buckling load 
would be: 

𝑃𝑐 =  
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
 

With no information regarding the column 

reinforcement, its rigidity, 𝐸𝐼, can be estimated 

based on the following relation: 

𝐸𝐼𝑒𝑓𝑓  =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
 

As bending is about the major axis, column 

moment of inertia, 𝐼𝑔, is: 

𝐸𝐼𝑒𝑓𝑓  =
0.4 × (4700 × √28) ×

300 × 6003

12
1 + 0.7

= 31.5 × 1012 𝑁. 𝑚𝑚2 

The effective length factor, 𝑘, can be determined 

based on the alignment chart for the braced 

frame: 

𝜓𝑙𝑜𝑤𝑒𝑟 = 𝜓ℎ𝑖𝑛𝑔𝑒 = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→0

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= ∞ 

𝜓𝑢𝑝𝑝𝑒𝑟 = 𝜓𝐴 =  
∑

𝐼
𝐿𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝐿𝐵𝑒𝑎𝑚𝑠

=

0.7 ×
300 × 6003

12

(4500 −
600

2
)

+
0.7 ×

300 × 6003

12

(3500 +
600

2
)

0.35 ×
300 × 6003

12
6000

= 6.0 

From the alignment chart, the effective length factor is:  
𝑘 ≈ 0.96 

Finally, the unsupported length, 𝑙𝑢, for the column would be: 
𝑙𝑢 = 4500 − 600 = 3900 𝑚𝑚 

Therefore, the buckling load would be: 

𝑃𝑐 =
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
=  (

𝜋2 × (31.5 × 1012)

(0.96 × 3900)2 ) ×
1

1000
=  22179  𝑘𝑁 ∎  

• When column extends from to the first floor to the roof: 

𝜓𝑢𝑝𝑝𝑒𝑟 = 𝜓𝑝𝑖𝑛 = lim
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

→0

∑
𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

= ∞ 

𝜓𝑙𝑜𝑤𝑒𝑟 =
∑

𝐼
𝐿𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝐿𝐵𝑒𝑎𝑚𝑠

=

0.7 ×
300 × 6003

12

(4500 −
600

2 )
+

0.7 ×
300 × 6003

12

(3500 +
600

2 )

0.35 ×
300 × 6003

12
6000

= 6.0 

From the alignment chart, the effective length factor is:  
𝑘 ≈ 0.96,  

𝑃𝑐 =  (
𝜋2 × (31.5 × 1012)

(0.96 × 3500)2 ) ×
1

1000
=  27538  𝑘𝑁 ∎ 

 

 
Figure 10.1-13: Truss-

supporting column for Example 

10.1-6. 
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10.1.3 Effects of Slenderness on a Column Subjected to a Compression Force 
and a Moment 

• Most reinforced concrete compression members are also subject to 
simultaneous flexure, caused by transverse loads or by end moments owing to 
continuity.  

• The behavior of members subject to such combined loading also depends greatly 
on their slenderness. 

10.1.3.1 Columns Bent into a Single Curvature 

Figure 10.1-14 below shows such a member, axially loaded by 𝑃 and bent by equal end 

moments 𝑀𝑒.  

• If no axial load were present, the moment 𝑀0 in the member would be constant 

throughout and equal to the end moments 𝑀𝑒. In this situation, i.e., in simple 

bending without axial compression, the member deflects as shown by, the 

dashed curve of Figure 10.1-14. 
• When P is applied, the moment at any point increases by an amount equal to P 

times its lever arm.  Then the maximum bending moment due to simultaneous 

action of flexure and axial force will be: 
𝑀max =  𝑀0 +  𝑃∆ Eq. 10.1-18 

• It can be shown that above summation can be re-written in the following 

multiplication: 

𝑀max =  𝑀0 ×
1

1 −
𝑃
𝑃𝑐

 Eq. 10.1-19 

where 
1

1 −
𝑃
𝑃𝑐

 

is known as the Moment Magnification Factor, which reflects the amount by which the 

moment 𝑀0 is magnified by the presence of simultaneous axial force P. 

 

Figure 10.1-14: Moments in slender 

members with compression plus bending, 

bent in single curvature. 

10.1.3.2 Columns Bent into Double Curvatures 

• It clear that the simultaneous effect of the axial force P on the moment 

magnification for that column shown in Figure 10.1-15 below that has double 

curvature is less than its effect on the moment magnification for a column that has single 
curvature (as the column shown Figure 10.1-14 above). 


	Chapter 09 Short Columns
	Short Columns
	9.5 Analysis of a Column with Compression Load Plus Uniaxial Moment
	9.5.2 Column Analysis by Direct Application of Basic Principles
	9.5.2.2 Constitutive Relationships
	9.5.2.3 Equilibrium Equations

	9.5.3 Concept of Interaction Diagram
	9.5.3.1 Basic Concepts
	9.5.3.2 Construction of A nominal Interaction Diagram
	9.5.3.3 Design Interaction Diagram
	9.5.3.4 Notes on Design Interaction Diagram
	9.5.3.5 A Set of Design Interaction Curves


	9.6 Design of A Column with Compression Load Plus Uniaxial Moment
	9.6.1 General Guides for Columns Design
	9.6.2 Using Interaction Charts in Design Process
	9.6.2.1 Selection of Reinforcement for Column of Given Size
	9.6.2.2 Selecting of Column Size for a Given Reinforcement Ratio


	9.7 Homework Problems: Analysis and Design of a Column under Axial Load and Uniaxial Moment
	9.8 Analysis of Columns Subjected to Compression Force and Biaxial Moments
	9.8.1 A Circular Column under an Axial Force and Biaxial Moments
	9.8.2 Analysis of a Rectangular Column under an Axial Force and Biaxial Moments
	9.8.2.1 Basic Concepts
	9.8.2.2 Reciprocal Load Method
	9.8.2.3 Load Contour Method




	Chapter 10 Slender Columns
	Chapter 10
	Slender Columns
	10.1 Introduction and Basic Concepts
	10.1.1 Definition of Slender Columns
	10.1.2 Effect of Slenderness Ratio on Strength of Axially Loaded Columns
	10.1.2.1 Basic Concepts
	10.1.1.1 Physical Meaning of Euler Load or Critical Load
	10.1.2.2 Computing of Buckling Load or Euler Load
	10.1.2.3 ACI Procedure for Computing (EI) to be used in Euler Formula
	10.1.2.4 Column Unsupported Length (,𝓵-𝒖.)
	10.1.2.5 Computing of Effective Length Factor (or k Factor)
	10.1.2.6 Analysis Examples for Euler Loads

	10.1.3 Effects of Slenderness on a Column Subjected to a Compression Force and a Moment
	10.1.3.1 Columns Bent into a Single Curvature
	10.1.3.2 Columns Bent into Double Curvatures





