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e Compression steel having area A and tension steel with area A, are located at
distances d and d’, respectively, from the compression face (See Figure 9.5-5 “b”
above).

9.5.2.2 Constitutive Relationships

The corresponding stresses and forces are shown in Figure 9.5-5 “c”, just as for simple
bending, the actual concrete compressive stress distribution is replaced by an
equivalent rectangular distribution having depth a = g;c.

9.5.2.3 Equilibrium Equations

e Equilibrium between external and internal axial forces shown in Figure 9.5-5 “c”;
requires that:

Z F,=0.0
P, = 0.85f/ab + ALf) — Af,

e Also, the moment about the centerline of the section of the internal stresses and
forces must be equal and opposite to the moment of the external force. B,, so

that:

ZM=0.0

. (h oay . (h h
Mn=Pne=0.85fcab(5—§)+Asfs'(§—d')+Asfs(d—E)

e These are the two basic equilibrium relations for rectangular eccentrically
compressed members.

e For a given eccentricity determined from the frame analysis (i.e., e=%) it is

possible to solve above equations for the load and moment M, that would result

in failure as follows:

o In both equations, f/, f;, and a can be expressed in terms of a single
unknown ¢, the distance to the neutral axis. This is easily done based on
the geometry of the strain diagram, with ¢, taken equal to 0.003 as usual, and
using the stress-strain curve of the reinforcement.

o The result is that the two equations contain only two unknowns, B, and c,
and can be solved for those values simultaneously. However, to do so in
practice would be complicated algebraically particularly because of the need to
incorporate the limit £, on both £/, and f..
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9.5.3 Concept of Interaction Diagram
9.5.3.1 Basic Concepts

e A better approach, providing the basis for practical design, is to construct a
Strength Interaction Diagram defining the failure load and failure moment for a
given column for the full range of eccentricities from zero to infinity (see Fig.

below):
P Figure 9.5-6: Interaction
A” diagram for nominal
column strength in
P, Compression failure range combined bending and
axial load.

N M,
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e On such a diagram, any radial line represents a particular eccentricity e =3 For

that eccentricity, gradually increasing the load will define a load path as shown,
and when that load path reaches the limit curve, failure will result.

e The vertical axis corresponds to e=0, and P, is the capacity of the column if
concentrically loaded, as given by equations of articles 9.2 and 9.3.

e The horizontal axis corresponds to an infinite value of e, i.e., pure bending at
moment capacity M,.

e Failure Regions on Interaction Diagram:
o Small eccentricities will produce failure governed by concrete compression.
o Large eccentricities give a failure triggered by yielding of the tension steel.

9.5.3.2 Construction of A nominal Interaction Diagram
For a given column, the interaction diagram is most easily constructed by following
procedure:

e Selecting successive choices of neutral axis distance “c”, from infinity (axial load
with eccentricity 0) to a very small value found by trial to give B, = 0 pure
bending).

e For each selected value of “c”, the steel strains and stresses and the concrete
force are easily calculated as follows:

o For the tension steel:
d—c
C

€Es = €y

fs =EsEuTSfy

o While for the compression steel:

, c—d
€s = €y p
, c—d’
fs = Esey < fy
o The concrete stress block has depth:
a = :Blc S h
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o Substitute the values of f;, f/, and a into the following relations to compute the
values of B, and M,, that corresponding to assume “c” value.
ZFy — 0.0 = P, = 0.85f/ab + ALf; — A,f,
! ! h ! h
773) B (5 ) T Ak
e These steps (starting from assuming of “c” to obtain the corresponding B, and

M,) represent a point on the interaction diagram. Then these will be repeated
until enough number of points on interaction is obtained to draw the required

h a
ZM — 00— M, =Pe-= O.85fc’ab( ¢

diagram.
e Construct interaction diagram through connecting between points drawn.
9.5.3.3 Design Interaction Diagram

e As was discussed in Chapter 3, the strength reduction factor “@” is a function of
steel strain and as shown in Figure 9.5-7 below.
¢ Figure 9.5-7: Variation of ¢ with net

A tensile strain in extreme tension

0.90 reinforcement, ¢,.
0.75+
0.65
Compression Tension
controlled — | Transiton _|_controlled
Al(- = il -
&= &, &= 0.005

e Each point on the interaction diagram has its strain, see Figure 9.5-8 below, and
in turn has own factor of safety, see Figure 9.5-9 below.

Uniform compression

€cu
® [ ]

€ou

i Balanced failure

Axial load resistance, P,

E
Moment resistance, M,

s = 0.005

Figure 9.5-8: Strain distributions corresponding to points on the interaction diagram.
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e Column design strengths (@B,, ®M,) can be obtained by multiplied the nominal
strengths (B,, M,) by the corresponding factor of safety “@” to obtained the
Design Interaction Diagram and as shown Figure 9.5-9 below.

P Figure 9.5-9: ACI safety provisions
) superimposed on column interaction
TIeSI q5 = 0.65; o= 0.‘80 diagram.
B Spirals: ¢ = 0.75; a = 0.85
0

Nominal strength

¢F,
adPy

AC| design
strength
M
oMy My
9.5.3.4 Notes on Design Interaction Diagram

e For high eccentricities, as the eccentricity increases to infinity (pure: bending),
the ACI Code recognizes that the member behaves progressively more like a
flexural member and less like a column. This is acknowledged in ACI Code by
providing a linear transition in @ from values of 0.65 (for tied column) and 0.75
(for spiral column) to 0.90 (for beam) as the net tensile strain in the extreme
tensile steel ¢ increases from 0.002 for Grade 60 reinforcement to 0.005.

e At the other extreme, for columns with very small or zero calculated
eccentricities, the. ACI Code recognizes that accidental construction
misalignments and other unforeseen factors may produce actual eccentricities in
excess of these small design values. Therefore, regardless of the magnitude of
the calculated eccentricity, ACI Code limits the maximum design strength to
0.80 @P,nax, for tied columns and to 0.85@ B4, for spirally reinforced.

9.5.3.5 A Set of Design Interaction Curves
Our textbook (Design of Concrete Structures, 15% Edition, by David Darwin, Charles W.
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Example 9.5-1

Check the adequacy of column shown below for general ACI requirement then use an
appropriate interaction diagram to find its design axial load and design bending
moment.

Use f, = 28 MPa and f, = 420 MPa. Agar of 20mm = 645mm.

6029mm

:\\ e=0.125

(ol * ef.*’ 4
JET
[« Al
R e
L s @10mm @ 250mm
S e Ties
035 Figure 9.5-10: Proposed column section
0.50 for Example 9.5-1.
Solution

The procedure for analysis of an eccentrically loaded column is exactly similar to
the procedure of a concentrically loaded column in all steps except in the
computing of design axial force and bending moment (@B, 0M,,).

Longitudinal reinforcement:

Check p, within acceptable limits:

Ay =500 x 350 = 175000 mm?

Ay = 645 X 6 =3 870 mm?

0.01< —3870 = 2.2% < 0.08
St SPg = 175000 T A0S
Check minimum number of longitudinal bars:

6 >4 . Ok.
Check minimum distance between longitudinal bars:
Sutinimum = Maximum[1.5 x 29™™  40™™]
SMinimum = 43.5MM < 82mm . Ok.
Calculate the design axial load strength and bending moment for given
eccentricity (0B, 0M,,):
350

=207
Y= 500

Based on y value and as the reinforcements are distributed on two faces of the
rectangular column, then the interaction diagram that will be used is as shown in
Figure below.

For

e_125_025
h 500

the R, for the interaction diagram will be:
P,.e
R, = A 0.17
M, =P,.e =0.17 X 28 X (500 x 350) X 500 = 417 kN.m
As we working with compression controlled section (i.e. with a section has ¢, <
0.002) then the strength reduction factor is @ = 0.65
PM,, = 0.65 X417 kN.m = 271 kN.mm
and the K, for the interaction diagram will be:
Py
K, = 0.69 = A,
P, = 0.69 x 28 x 500 x 350 = 3381 kN
PP, = 0.65xX 3381 kN =2198kN m
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e Lateral reinforcement (Ties):
Ties diameter:
v Q= 29MM < 32MMm . we can use @ = 10™™ for ties
Ties spacing:
SMaximum = Min[16 x 29MM 48 x 10™™, 350™™M] = 350™™ > S, - ied - Ok.
Ties arrangement:
SSpacing between longitudinal bars < 150™M™
Then, alternate longitudinal bars will be supported by corner bars.

2.0 T
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Figure 9.5-11: Adopting interaction diagram to computed design strength for the
column of Example 9.5-1.
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Example 9.5-2

In Example 9.2-1 above, it was required to check the column shown in Figure below
to general requirements of ACI code and to compute its design strength. Material
properties where f/=275MPa, and f, =420MPa. Resolve this example based on

interaction diagram instead of equations for axially loaded columns.

830mm
0.04 — = Longitudinal Reinforcement
R 3 _/u A+
e SR SR/ @10mm @ 400mm
) 4 Ties
(=] . e
= 7 R
| leigels
o oa — Figure 9.2-5: Proposed tied
' column for Example 9.2-1.
040 —— Reproduce for convenience.
Solution

Checking for General Requirements
General requirements of ACI code are nominal in nature and do not related to use of

interaction diagram or use equation in computing of column design strength:
Longitudinal reinforcement
Check p, within acceptable limits:
Ay = 400% = 160 000 mm?
7 X 302
Ag = 2 X 8 =15 652 mm?

5652 0
0.01 < Pg = 160 000 = 3.53% < 0.08

Check minimum number of longitudinal bars:

8>4 . Ok.

Check minimum distance between longitudinal bars:

Sutinimum = Maximum[1.5 X 30™™ ,40™™]

Sytinimum = 45™" < 110M™ . Ok.

Lateral reinforcement (Ties)

Checking of Lateral Reinforcement (Ties):

Ties diameter:

v @ = 30MM < 32MM - we can use @ = 10™™ for ties

Ties spacing:

SMaximum = m1n[16 X 30™MMm 48 x 1Omm’400mm] = 400™MM = Sprovided Ok.

Ties arrangement:

SSpacing between longitudinal bars < 150™™

Then, alternate longitudinal bars are supported.

Column Design Strength

Strength of axially loaded columns are not related to whether reinforcement are
distributed on two faces or on four faces nor related to y value. To emphasize this fact,
two extremes interaction diagrams, the first one for reinforcement distributed on four
faces and with y value of 0.6 while the other with reinforcement on two faces and with
y value of 0.9, have been compared in below.
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As strength of axially loaded columns is not
dependent on y nor on reinforcement distribution,
therefore this part is same for all interaction
diagrams that prepared for rectangular shape with
same materials.
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Figure 9.5-12: Two interaction diagrams that are equally applicable to solve the
axially loaded column of Example 9.5-2,

Adopting any one of interaction diagrams for rectangular columns with f/ =4 ksi and
fy = 28 MPa will leads to:

For

5652
P9 = 160 000
K, = ——~ 1.06
n ]cCAg

_ (1.06 X 27.5 X 400 X 400)

P, = = 4664 kN
" 1000

For compression control region and with tied columns:

¢ = 0.65

P, = 0.65 x 4664 = 3032 kN

This design strength is close to that computed based on equations in Example 9.2-1,
OPnmaximum = 3110 kN

=3.53%
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Figure 9.5-13: Sample interaction diagram adopted to solve the axially loaded column
of Example 9.5-2.
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Example 9.5-3

In Example 9.2-2 above, it was required to check the column shown in Figure 9.2-6
to general requirements of ACI code and then determine whether this column is
adequate to carry a factored load of Py,= 2250 kN. Material properties where f! =
27.5MPa, and f, = 420MPa. Resolve this example based on interaction diagram instead

of equations for axially loaded columns.

7025mm

@10mm @ 50mm
Spiral

Figure 9.2-6: Spiral column of Example
- 0.38 - 9.2-2. Reproduce for convenience.

Solution

Checking for General Requirements of ACI Code
Longitudinal reinforcement

Check p, within acceptable limits:

7 X 3802 ,

Ag = ———— =113 354mm
T X 252

Ay = ——— X7 = 3434 mm?
3 434 .

Pe =113 354 — 0%

0.01 < pgy < 0.08 - Ok.

Check minimum number of longitudinal bars

7>6 .~ O0k.

Check minimum distance between longitudinal bars
Sutinimum = Maximum[1.5 x 25™™  40™™]

Sytinimum = 40.0™™ < 80™™ . Ok,

Check the lateral reinforcement (Spiral):

Check Spiral Diameter:

Dspirar = 10mm Ok.

Check Spiral Steel Ratio:

_mx10% m2
Ag =—7—=785
4 x 78.5mm?
PspProvided = (380 —Jox 40)mm % 5omm = 0.0209
113 354 27.5
Psminimum = 045 X | ———57 — 1 | X 2o = 00178 < 0.0209 - Ok.
4

Check the Clear Spacing:
25™"™ < [Sciear Providea = 50™™ — 10™™ = 40™™M] < 80™™ .. Ok.
Axial Design Strength of the Column
With any of interaction diagrams for circular columns,
With

3 434

- = 0
Po =113 354 ~ 0%
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Figure 9.5-14: A sample interaction diagram adopted to solve the Example 9.5-3.

K =P—“»~v1.1
n f‘CIAg

<1.1 X 27.5 % (

Py = 1000 = 3431 kN

As axially loaded columns are located in compression-controlled regions, therefore ¢ of
0.75 is adopted for this spiral column:

¢P, =0.75 X 3431 = 2573 kN

This value is close to that of 2557 kN which computed based on relations for axially
loaded columns in Example 9.2-2. The proposed column is adequate as:

¢P, = 2573 kN > P, = 2250 kN

7 X 3802
4
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9.6 DESIGN OF A COLUMN WITH COMPRESSION LOAD PLUS UNIAXIAL MOMENT

9.6.1 General Guides for Columns Design
e The following guides that related to columns design have been proposed by J. G.
MacGregor in his book “Reinforced Concrete: Mechanics and Design, 4™
Edition):
e Type of Column:

o For eccentricity, e/h, greater than 0.2, a tied column with bars in the faces
farthest from axis of bending is most efficient. Even more efficiency can be
obtained by using of a rectangular column.

o Tied columns with bars in four faces are used for e/h ratios of less than about
0.2 and also when moments exist about both axes. Many designers prefer
this arrangement because there is less possibility of construction error
in the field if there are equal numbers of rebars in each face of the
column.

o Spiral columns are relatively infrequent in non-seismic areas. In seismic areas
or in other situations where ductility is important, spiral columns are used
frequently.

e Estimating the Column Size:
o The initial stage in column design involves estimating the required size of
column. There is no simple rule for doing this, since the axial-load capacity of
a given cross section varies with the moment acting on section. For very small
moments following relations can be used (these relations similar to that
derived in Article 9.3):
o For Tied Columns:
Agrra > ——tl
gTrail = 0-4‘[fc’ + fypg]

o For spiral column:
A w__ Tu

I 05+ fypg)

o Both of these relations will tend to underestimate the column size if there are
moments present.

e Column Thickness “b":

o The Fire Codes usually specified minimum column size as follows:

Table 9.6-1: Minimum column thickness for fire rating requirements, adopted from

Fire Rating (hours)  Minimum Column Thickness (mm)
1 hour b =225mm
2-3 hours | b =300 mm
o Although the ACI Code does not specify a minimum column size, the
minimum dimension of cast-in-place tie column should not be less
than 200mm and preferably not less than 250mm.
o The diameter of a spiral column should not be less than about 300mm.
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9.6.2 Using Interaction Charts in Design Process

Conventional design charts permit the direct design of eccentrically loaded columns
throughout the common range of strength and geometric variables. They may be used
in one of two ways as presented in Article 9.6.2.1 and Article 0 below.

9.6.2.1 Selection of Reinforcement for Column of Given Size

. . .. M . .
For a given factored load P, and equivalent eccentricity e =P—“ and given cross section

u

this direct procedure can be summarized as follows:
Design of Longitudinal Reinforcement:

e (Calculate the ratio y based on required cover distances to the bar centroid, and
select the corresponding column design chart.

P P, . .
e Calculate Kk,, = ijg and R, = @fc,’;‘;h where A, is section gross area.

e Strength reduction value is selected based on type of section (i.e. is the member
a compression controlled member or a tension controlled member or in the
transition region).

e From the graph, for the values found in above, read the required reinforcement
ratio pg.

e (Calculate the total steel area Ag;.

e Compute the required number of longitudinal bars:

No. of Longitudinal Bars =
Bar
e The limitations on the number and arrangement of longitudinal bars are as

discussed in the design of columns for axial loads.

Design of Lateral Reinforcement

Design of lateral reinforcement is exactly as discussed in the design of columns for
axial loads, Article 9.3. For convenience, these procedures have been represented in
below:

Ties:

e Select ties diameter:
o If Prongitudinal = 32™™ then:

Dries = 10mm
Else
Pries = 13mm

e Select ties spacing:
Srequirea < Minimum([16@pq, ,48¢yjcs, Least Column Dimensions]

e Arrange the ties according to requirements of the ACI for maximum spacing
between longitudinal bars (use the standard arrangements of Figure 9.2-2
above).

Spiral:

e Spiral Diameter
¢Spiral = 10™mm
o Compute psyinimum

A f!
PsMinimum = 0.45 (A_g - 1) f_C
c sy
Let ps = psminimum t0 cOmpute the required Sgequirea:
44,

S . =
Required
Dc PsMinimum

¢ Check with Limitation for Clear Spacing
The clear spacing Sgequirea ciear DEtWEEN turns of the spiral must be:
25 < Scieqr < 80™™M
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Example 9.6-1

In a two-story building that shown in Figure 9.6-1 below an exterior column is to be
designed for the following loading:

e First Load Pattern:
Ppeaq = 987 kN
PLive = 1481 kN
Mpega = 220 kN.m
Myiye = 315 kN.m
e Second Load Pattern:
Ppeaq = 987 kN
PLive = 738 kN
Mpeaq = 220 kN.m
MLive =315kN.m
Architectural considerations required that a rectangular column to be used, with
dimensions:
b =500™™ and h = 625™™

Materials:
f; =28 MPa
fy =420 MPa

Reinforcement:

Try ¢ = 32™™ for longitudinal reinforcement (4z,,- = 819 mm?).
Try ¢ = 10™™ for lateral reinforcement.

Based on above data

e Design the column for first load pattern.
e Check to ensure that the column is adequate for the second load pattern.
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Figure 9.6-1: Building and the edge column for the Example 9.6-1.
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Figure 9.6-1: Building and the edge column for the Example 9.6-1. Continued.
Solution

Design of Column for First Load Pattern

The column will be designed initially for full load, then it would be checked for
adequacy when live load is partially removed.

According to the ACI safety provisions, the column must be designed for a factored
load:

P, Maximum = 1.2 X 987 + 1.6 X 1 481 = 3 554 kN

M, =12x%x220+ 1.6 X315 =768kN.m

Design of Longitudinal Reinforcement:

e (Calculate the ratio y based on required cover distances to the bar centroid, and
select the corresponding column design chart.
yh=625—-2Xx40—-2X10—-32 =493 mm

yh 493
Y = 7 = E =0.79
Say y = 0.80 and assume that the reinforcement will be distributed on four faces.
Then the interaction diagram that used in the design is that shown in Figure

9.6-2 below.
Py _ Pye |
e Calculate K, = WAg and R, = Of.Agh’
_Mu _ 768kN.m_0216
°=B "~ 3554kN 0T
e 0.216m — 035
h~ 0.625m

e Based on % ratio, one can see that the tensile strain for this column under

proposed loads is less than 0.002. Therefore the section is compression
controlled section and strength reduction factor is @ = 0.65.
P, 3554 000N

K, = "% = — 0.625
PfcAg 065 x 28 m§12 x (625 X 500)mm?
R = Pe 768 X 10° N.mm — 0216
TOOfAgh 65 % 28N '

—7 % (625 X 500)mm? X 625mm
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e From the graph, the required reinforcement ratio, pg, would be:
pg = 0.04

e Calculate the total steel area Ag;:
Ag = 0.04 x 625 x 500 = 12 500 mm?

e Compute the required number of longitudinal bars:

No. of Longitudinal Bars — st _ 12500mm? _
0.0 Ongl udina ars _ABar = 819 mmz = .

Try 16 ¢ 32.
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Figure 9.6-2: Interaction diagram for Example 9.6-1, first load pattern.
Design of Lateral Reinforcement:

e Ties diameter:
@ =32MM - we can use @ = 10™™ for ties
e Ties spacing:
SRequired = min[16 x 32™M™M 48 x 10™™, 500™™M] = 480™™m
Use 010mm @ 475 mm
e Ties arrangement:
The following arrangement can be used for our column:
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0.50

0.65

16@32mm
Longitudinal Reinforcement

110.098 < 0.150 Ok
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F10mm @ 475mm
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Column Checking for Second Load Pattern

Aim of Checking for the Second Load Pattern:

Chapter 9: Short Columns

Figure 9.6-3: Design section for
the column of Example 9.6-1
based on first load pattern.

Before starting the checking, it is useful to discuss the aim of this checking.

At first sight this checking seems unnecessary as the column that designed with
live load acting on all floors and roofs of course will be adequate when live loads
acting on the floor under consideration only.
Unfortunately, the problem is not so simple as appear, i.e. some columns that
are adequate for full live loads may be not adequate for partially live load, this
strange fact can be explained as follows:
Assume that required reinforcement has been selected based on full live loads

@)

adP,

as was done in previous article and assume that load path for dead and full

live loads will be as shown in Figure below.

As the axial force in a column resulting from accumulation of loads acting on
the floor under consideration and on above floors and roof, then removing live
loads from above floors and roof will decrease the axial force in that column.

For gravity loads, bending moments in a column are mainly resulting from
negative moments of beams that connected directly to the column, the
removing of live loads from above floors and roof does not change the bending
moments in the column. Based on this reasoning, bending moments have been

assumed the same in first and second load patterns.

Then with second load pattern, load path will move vertically in downward
direction (as we have negative AP and zero AM). With this movement, load case
that was inside the interaction diagram may move to be outside it. Therefore, the
section that was pass under full live load may fail under partial live load!

P
1

Design Interaction after

Rounding of Rebars

Number from 15.3 to
/16.

v

/
7
A

Load Path for Dead
Loads with Full Live
Loads

Load Case of Dead and
Full Live Load. As Load
Case is Inside the
Interaction Diagram the

ection is Adequate for
this Load Case.

As Live Load is Removed from

Roof, Axial force in Column
Reduce while Bending Moment
Remain the Same, then Load
Path will Move Vertically in the

DMy

- M Downward Direction to be
Outside the Interaction
Diagram, i.e. Section will Fail.

Figure 9.6-4: Schematic
integration diagram to
show the aim of
checking for the second
pattern.
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The vertical movement of load
path in downward direction is
not too large to transfer the
load case from inside to
outside the interaction
diagram, then our section
stills adequate.

Load Path for Dead
Loads with Full Live
Loads

Figure 9.6-4: Schematic

integration diagram to

show the aim of

oM -M checking for the second
0 pattern. Continued.

Checking Details:

Check to ensure that the column is adequate for the second load pattern:

Py minimum = 1.2 X987 + 1.6 x 738 = 2365 kN M, = 768 kN.m
Say y = 0.80
_Mu_768kN.m_0325 e_0.325m_052
¢ =P, T 2365 kN ™ BT 0625m
" 2365 000N
Kn = oo = N = 0.416
PfeAg 0,65 x 28— x (625 x 500)mm?
mm?
P,e 768 x 10°® N.mm
Rn =37 = N =0.216
OfcAgh 065 x 28— x (625 X 500)mm? X 625mm
From Figure 9.6-5 With pggequired = 0.028 < pprovidgea » ON€ concludes that vertical
movement of load path in downward direction is not too large to transfer the load
case from inside to outside the interaction diagram, then the section stills
adequate.
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o e Pe load pattern for the column of
" TAh - 6EAR Example 9.6-1.
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9.6.2.2 Selecting of Column Size for a Given Reinforcement Ratio
Example 9.6-2

A column is to be designed to carry factored loads of:

P, = 2139 kN

M, = 667 kN.

Assume that:

Bending moment about major or strong axis.

Material strengths f, = 420MPa and f/ = 28 MPa are specified.

Cost studies for the particular location indicate that a reinforcement ratio of
about 0.03 is optimum.

Column depth: h=625mm.

@ = 36mm for longitudinal reinforcements (4z,,- = 1 006 mm?).

Steel with bars concentrated in two layers, adjacent to the outer faces of the
column and parallel to the axis of beading, will be used.

Find the required column width "b” and design the longitudinal lateral reinforcements.

0.625
0.483

Figure 9.6-6: Proposed section for

Example 9.6-2.

Solution
Column Width “b” and Design of Longitudinal Reinforcement

Calculate the ratio y based on required cover distances to the bar centroid, and
select the corresponding column design chart.

yh = 483 mm
_Yh _483 _
" h 625

Say y=0.80 and as steel is assumed to be concentrated in two layers, then the
design interaction diagram will be as Figure 9.6-7 below.

As
M, 667 _ 031
®=P, “2139
and
° - 0'31—0496 0.5
h™ 0625
then (from Figure above)
Pu
K, = =0.51
" ¢fibh 0-5

As we working in the compression controlled region, then the strength reduction

factor ¢ is 0.65.

2139000 N
b= = 369 mm

0.65 x 28 N > X 0.51 X 625mm
mim

Use 375mm by 625mm section.

Ast Required = 0.03 X 625mm x 375mm = 7 031 mm?
_ 7031 mm®
No. of Rebars = 1006 mm? —

Use 8¢36mm rebars.

6.99
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Design of Lateral Reinforcement

Srequired = Min[16 X 36™™,48 x 13™M™,375M™M] = 375™™, Use @13mm @ 375 mm

As can be shown from Figure 9.6-8 below, the proposed distribution does not
satisfy the ACI Code requirements related to minimum spacing between
longitudinal rebars. Then bundled rebars must be used in our design.

e Ties diameter:
w @ = 36MM > 32MM . ywe mustuse @ = 13™™ for ties
e Ties spacing:
¢ Ties arrangement:
0.625
P S AL BT °
0.042<0.054 SRR
Not Ok. b iy |
" 0.625 - 8@36mm
_//Longitudinal Reinforcement
CRy. Oy A
Tl
/

@13mm @ 375mm
Ties

Final
column

Figure 9.6-8:
section for the
Example 9.6-2.

design
of

Figure 9.6-8: Final
section for the column
Example 9.6-2. Continued.

design
of
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9.7 HOMEWORK PROBLEMS: ANALYSIS AND DESIGN OF A COLUMN UNDER AXIAL LOAD

AND UNIAXIAL MOMENT
Problem 9.7-1

Using an appropriate interaction curve, determine the value of B, for the short tied
column shown in Figure 9.7-1 below. Assume that f/ = 28 MPa and f, = 420 MPa.

t

S
7764 .7: \_: . *
‘%‘ I 10.075 0
N 5 “ o
4 -7 - ‘ O
= PR I
(- Q
o 3
o o PR T
© R 6032mm
' +4 ‘{4@075
—
— 030 — Figure 9.7-1: Column for Problem 9.7-1.
Answers
e Compute y:
Yy = 0.70

e As the reinforcement is distributed along two faces only and as y = 0.07, then use
corresponding interaction diagram:
e
Ay =150 000 mm?, Ap,, = 804 mm?, Ag, = 4 824 mm?, . p, = 0.032

K,=——=051=P,=2142kN m

Problem 9.7-2
For the column shown in Figure 9.7-2 below, based on structural calculations a
designer has proposed the attached section. Check the adequacy of this section to ACI

Code requirements and to the applied load. Assume that selfweight can be neglected.
Pu = 2 700 kN Pu = 3 500 kN

[*—2.00 —==—1.50

160332mm

a
i

@10mm @
375mm

Figure 9.7-2: Frame and proposed column section for Problem 9.7-2,
Answers
Checking of Longitudinal Reinforcement:
e Check if p; within acceptable limits:
A, =337 500 mm?, A, = 12 864 mm? = 0.01 < pg = 3.81% < 0.08

e Check minimum number of longitudinal bars:
16 >4 . Ok.
e Check minimum distance between longitudinal bars:
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Suinimum = 48™™, Sprovidea = 47.5 mm = 48mm Ok.
Section Strength
e (Calculate the design axial load strength and bending moment for given
eccentricity (0B, 0M,,):

e
P, = 6200kN,M, =150 kN.-m = e = 0.024m, n= 0.032 < 0.10

e Then this column can be analyzed as an axially loaded column, i.e. the applied
moment can be neglected.
BPmraximum = 6 827 kN > B, Ok.
Checking of Ties:
e Ties diameter:
“ PLongitudinal Bars = 3z2mm
Then using of ¢, = 10™™ is okay.
e Tie spacing
SRequired = 450™™ > Spropigea Ok.
o Ties arrangement:
_____ The proposed distribution is adequate according to ACI requirements. . _____
Problem 9.7-3
The short tied column shown in Figure 9.7-3 below is to be used to support the
following loads and moments:
Py = 556 kN, P, = 623 kN,My, = 102kN.m,and M; = 122 kN.m
Select longitudinal bars to be placed in its end faces only using appropriate ACI column
interaction diagram, and design the ties.
Assume: Short column, @32mm for longitudinal reinforcement, f!=28MPa, and f, =

420 MPa.

4
<
4
PR

|
0.375
0.50

Figure 9.7-3: Column section for Problem
F 0-E5 % 9.7-3.

Answers
Applied Factored Loads:

P, = 1664kN,M, =318kN.m=¢e=0.191m =

Longitudinal reinforcement:
¢ Compute y:
y = 0.75
e Based on %, the strength reduction factor “¢” can assumed to be 0.65:

® —038
h_ .

f o5
n — Q)fc,Ag - Y.
e Steel ratio p, can be computed from interpolation from curves of y = 0.70 and y =
0.80.
Y 0.70 0.75 0.80
Pg 2.2% 2.1% 2.0%

Ay = 3675 mm? = No.of Rebars = 4.57, Try 6 ¢ 32mm.
Design of Lateral Reinforcement (Ties):
e Ties diameter:
@ = 32™M . we can use @ = 10™™ for ties
o Ties spacing:
SMaximum = 350™™
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o Ties arrangement:

SSpacing between longitudinal bars < 150m™
Then, alternate longitudinal bars will be supported by corner bars.

- = 0.077
. e e @10mm @
| s 7 /350mm
0 s 6032mm
o _o o
1 “ s
Figure 9.7-4: Final design section for
—— 085 — Problem 9.7-4.

Problem 9.7-4

Design the spiral column that supports four girders of bridge shown in Figure 9.7-5
below. In your design assume that.
e Each girder has a dead load reaction of 150 kN and has a live load reaction of
100 kN.
e Assume that live load acting on right span only.
o f' =28 MPa and fy, = 420 MPa.
e Rebar No. 25 for longitudinal reinforcement (Apar = 510mm?) and No. 10 for
spiral reinforcement.
Column has a height of 4m, and it is assumed short.
e Column and cap selfweight should be included in your solution.
As was discussed previously, your solution can be based on the equivalent circular
section instead of actual hexagonal section, see Figure 9.4-5.

- .

. e

7

Figure 9.7-5: Bridge girders and
column for Problem 9.7-4.
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Figure 9.4-5: Transformation of an
octagonal column into the equivalent
circular section. Reproduced for
convenience

Answers
Applied Factored Loads:

kN
Pp = (150 kN X 4)Girders Reactions T+ ((302 x 0.75 — 0.3% x 0.6 X 4)m3 X 24m>

10.752 kN
+ X4 |m3 x 24—
4 m3

PD = (600 )Girders Reactions + (157)Cap Selfweight + (4‘2)Column Selfweight — 799 kN
As all dead loads are symmetric, then Mpeaq is zero.

PL = (100 kN x Z)Live Load Reactions from Right Side Span = 200 kN

3.0 0.3
ML = PL X Arm = 200 kN X (T—T)m =270kN.m

Then factored forces will be:
e
B, = 1279kN,M,, =432 kN.m = e = 0.338m = E = 0.45

Longitudinal reinforcement:
e Compute vy:

Cap Selfweight

Column Selfweight

yh 625
yh=750—40><2—10x2—25=625=>y=7=ﬁ=0.83
Say y = 0.8.
e Based on %, the strength reduction factor “¢” can be taken equal to 0.75:
. B, _ 1279000 N — 0.138
" 0fc'Ag 0.75 X 28 X M

4
e Based on interaction diagram shown Figure 9.7-6 below, it seems that required

ratio pg is less than 1%, then ACI minimum reinforcement ratio should adopted:

7502 X 5 4416
pg =0.01 = A, = 0.01 x — - 4 416mm“ = No.of Rebars = =0 - 8.65
Then use 9325mm.
Spiral Design:

e Spiral diameter:
(pSpiral =10™" . Ok.
b ComDUte PsMinimum
D, = 750™™ — 2 X 40™™ = 670™™
X 6702 T X 7502

A = ———— =352386 mm?* Ay = — —— = 441 562 mm”
Ay A 441 562 28 s
Psminimum = 0.45 <A_c - 1)5 = 0.45 (m - 1) X o5 = 7:59 X 10
X 102 5
sp=—f —=785""
44 4 x 78.5Mmm?

= 61.7M™M

Srequired = ———2—— == Speauired =
Required Dc PsMinimum Required 670™™ X 7.59 X 10_3
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Try ¢10™™ @ 60™™
Use @10™™ @ 60™™
e The final section of the column is shown in Figure 9.7-7 below.
e SClear = 50™MM < 80™mm . QOk.
v Sciear = 50mm > 25™M™ - Ok.
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Figure 9.7-6: Inteaction diagram for the equivalent circular column of Problem 9.7-4.

D:b\</ 9@25mm

R, -

Spiral
@10mm @
60mm
] 0.75 g Figure 9.7-7: Final column section for the
’ column of Problem 9.7-4.
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9.8 ANALYSIS OF COLUMNS SUBJECTED TO COMPRESSION FORCE AND BIAXIAL
MOMENTS

9.8.1 A Circular Column under an Axial Force and Biaxial Moments
e Circular columns have polar symmetry and thus the same ultimate capacity in all
directions.
e Then if a circular column is subjected to biaxial moments, these moments can be
transformed into an equivalent uniaxial bending moment that computed based on
the following relations:

\_/ Figure 9.8-1: Circular column under axial

force and biaxial moments.

Example 9.8-1

Use an appropriate interaction diagram to determine B, value that can be supported by
circular column shown in Figure 9.8-2 below.
Assume that: f, = 420MPa, f! = 28 MPa and Ag,, = 645 mm?.

6@29mm

~— 030 —=
0.50

Figure 9.8-2: Circular column of Example
9.8-1.

Solution

e The equivalent eccentricity for the resultant moment can be determined based on
the following relation.

2 \/ﬁ e 0.25
e = €x+€y= 0.15% + 0.20 =025$E=m=05

030

=——=0.6
0.50

14
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Based on y value and as the column is a circular column, then the interaction

[ )
diagram of Figure 9.8-3 below has been adopted.
A 6 X 645 2=13870 2 A ™ X 500° 196 250 2 3 870 mm? 2.0%
= mme = mm?<, == mm- = =— = 2.
st , g 4 . P9 = 196 250 mm? °
K, = 0.25 = —— = P, = 0.25 X 196 250 mm? x 28— = 1374 kN
Agfe mm
2.0 1 1T 1
: E i of H- ‘,’ - Interaction diagram
1.9 of = - £~ 4 ksi
snaapd: i f, = 60 ksi h
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Figure 9.8-3: Interaction diagram adopted for circular column of Example 9.8-1.
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9.8.2 Analysis of a Rectangular Column under an Axial Force and Biaxial
Moments
9.8.2.1 Basic Concepts
e The article aims to analyze a rectangular column under a compression force and
biaxial moments.
e With analysis problem, column is assumed to has known dimensions and known
reinforcement and to be checked for resisting a force set consists of a
compression force and biaxial moments (see Figure 9.8-4 below).

Figure 9.8-4: A Rectangular column under
an axial force and biaxial moments.

e Criterion for Including or Negating the Effect of the Smaller Moment:

e According (Nilson, Design of Concrete Structures, 14th Edition, 2011), following
criterion can be adopted to consider the minor bending moment into
consideration: “In general, biaxial bending should be taken into account
when the estimated ratio of smaller to larger bending moments
approaches or exceed 0.2".

e As for a column with compression force and uniaxial moment, analysis of a
column with a compression force and biaxial moments starts with construction of
column interaction diagram.

e If a specific load set is located inside or on the interaction diagram, then this
column is adequate to resist applied load set safely and vice versa.

e Typical interaction diagram for a rectangular column under a compression force
and biaxial moments is shown in Figure 9.8-5 below.

Case (b) (@) - e,—-{

Plane of : Case (a) |
constant P,

Load contour

Figure 9.8-5: Interaction
diagram for compression

P
c o f - - -
h 7+=r plus biaxial bending: (a)
k 1-\/ J & uniaxial bending about Y
[a) - - -
_ _bgg b,y axis; (b) uniaxial
o | o J}Z | bending about X axis; (c)

Moy (c) ,_EX_J biaxial bending about
diagonal axis; (d)
interaction surface.

e It is difficult to draw or represent of a three-dimension interaction diagram
(especially without a computer program), then for practical applications curve of
Figure 9.8-5 is usually approximated based on one of two methods presented in
Articles 9.8.2.2 and 9.8.2.3 below.
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9.8.2.2

Approximating
plane surface §1.

Reciprocal Load Method

It is a simple approximate design method developed by Bresler.

It has been satisfactorily verified by comparison with results of extensive tests
and accurate calculations.

The method can be summarized as follows:

O

Re-draw the interaction diagram in terms of (Pi, ex, and e)) instead of (B,, M,,

and M,) to obtain the surface “S” that shown in Figure 9.8- 6 below. Based on
the new terms, the main unknown in an analysis problem |s —

Use a plane S; that defined by points A, B, and C to apprOX|mate the original
surface S. Then the approximate value of unknown P— can be computed based

on the following relation:
1 1 1 1

P Puvo ' Payo Py

where

P, is approximate value of nominal load in biaxial bending with eccentricities e,
and e,

P.yo is nominal load when only eccentricity e, is present (e, =0) (can be
computed from a specific interaction diagram for an axial force and uniaxial
bending moment).

P.xo is nominal load when only eccentricity e, is present (e, =0) (can be
computed from a specific interaction diagram for an axial force and uniaxial
bending moment).

P, is nominal load for concentrically loaded column (can be computed from a
specific interaction diagram for an axial force and uniaxial bending moment or
may be computed based on relations given in article 2 but without factors of
0.8 for tied columns and 0.85 for spiral columns).

Finally, column adequacy can be checked based on the following comparison:
If

P, < @P,

Then the column is adequate. Else the column is inadequate to support a
factored applied load of P, acting at eccentricities e, and e, .

1

Pa
4

Actual failure
surface S

-

Pr. approx Figure 9.8-6: Interaction surfaces for the
reciprocal load method.

Notes on Reciprocal Load Method:

The reciprocal load method is very simple to use, but the representation of
the curved failure surface by an approximating plane is not reliable in
the range of large eccentricities, where failure is initiated by steel
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Example 9.8-2

The 300 by 500mm column shown in Figure 9.8-7 below is reinforced with eight No.
29 bars (Ag,s = 645mm?) arranged around the column perimeter. A factored load P, of
1134kN is to be applied with eccentricities e, = 75mm and e, = 150mm. Material

strengths f, = 420MPa and f; = 28 MPa are specified. Check the adequacy of the column
using the reciprocal load method.

Y

T

62.5mm—n [ 375mm ™ | 62.5mm
62.5mm |- | —‘
[+ et
' 75mm
300 mm  175mm ¢ - i - ¢ I—nx
L - - 4| No. 29 bars
62.5mm |+15OMM+
e 500 MM ————— Figure 9.8-7: Column for Example
9.8-2.
Solution

Considering the bending moment about y-axis (To compute P,y):
Ay = 8 X 645mm? =5 160 mmZ,Ag =500 x 300 = 150 000 mm? = pg =344 %

e _150 _ . 375 _
h=500 Y Ts00

As we don’t have an interaction diagram with y = 0.75, then we’ll use the average
value for y =0.70 and y = 0.80, see Figure 9.8-8 below.

Puyo _ 0.62+0.66

K = = 0.64

navg. — Agfc, - 2
Pyyo = 0.64 X 150 000 X 28 = 2 688 kN
Considering the bending moment about x-axis (To compute Pyy):

e_ 7> 025, =2 _gsg
h=300 Y T30
Say y =0.60

K, = 222 =065

" Agfc

Poxo = 0.65 % 150 000 x 28 = 2 730 kN

Consider the case of axially load column (To compute Py):

P, = 0.85 X 28 X (150 000 — 5160) + 420 X 5160 =5 614 kN

Compute the approximate column strength when it is subjected to an axial force

and biaxial moments:

R LS I S  —560x 107
—_ = —_———= - = O. X
By Puxo Pnyo Po 2730 2688 5614

P, =1785kN ?Pypax = 0.80 X Py = 0.8 X 5614 kN = 4491 kN

P, =1785kN < Pypax = 4491 kN Ok.

Finally, check column adequacy based on following comparison:
PP, =0.65x1785kN =1160kN > 1134 kN

The column is adequate according to reciprocal load method.
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Figure 9.8-8: Interaction diagrams adopted in Example 9.8-2.
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9.8.2.3 Load Contour Method

e Checking of a column adequacy for an axial force and biaxial moments (i.e.,
checking if the load state is inside or outside the column interaction diagram) can
also be done based on checking if the load state is inside or outside the Load
Contour for a plane of constant force P,.

P,

'|.

Plane of
constant P,

Load contour

If load state falls within
the load contour, then
the column is safe and
vice versa.

MnyU

Figure 9.8-9:
M . Interaction contours
nx ny
at constant P,,.

e If load state falls within the Load Contour, then the column is safe and vice
versa.

e General form of load contour curve can be approximated by a nondimensional
interaction equation:

al a2
(M”") + <M”y> =1.0
Mnxo Mnyo
where
M,, = Pney
My = My, when M, = 0.0
Mpyo = My, when My, = 0.0
a, and a, are exponents depending on:
Column dimensions.
Amount and distribution of steel reinforcement.
Stress-strain characteristics of steel and concrete.
Amount of concrete cover.
o Size of lateral ties or spiral.
e When o, = a, = «a, the shapes of such interaction contours are as shown in Figure
9.8-10 below for specific values.
e Values of a:
o a values fall in the range from 1.15 to 1.55 for square and rectangular
columns.
o Values near the lower end of that range are the more conservative.

O O O O
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l I ! I

0.2 0.4 06 0.8 1.0
Mnx/MnxO

Figure 9.8-10: Interaction contours at
constant P, for varying a.

e More Useful Form of Load Contour:

@)

Introducing of the ACI factors for reducing nominal axial and flexure strengths
to design strength presents no difficulty. With the appropriate ¢ factors applied
to P,, M,,, and M,,,, a new failure surface is defined:

(¢Mnx>a + <¢MHY>a =1.0
d)MnxO ¢Mny0 .
The above equation can be rewritten in terms of applied moments:

a
(M”" )a+ ( My ) =1.0
d’MnxO ¢Mny0

e How to Use Load Contour:

@)

In practice, the values of P,, My, M,, are known from the analysis of the
structure.

For a trial column section, the values of M,,, and M,,, corresponding to the
load P, can easily be found by the usual methods for uniaxial beading.

It can be confirmed that a particular combination of factored moments falls
within the load contour (safe design) or outside the contour (failure), and the
design modified if necessary.

e Notes on Load Contour Method:

@)

Selection of the appropriate value of the exponent « is made difficult by a
number of factors relating to column shape and bar distribution.
For many cases, the usual assumption that a; = a, is a poor approximation.
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Example 9.8-3

Re-check the column of Example 9.8-2 by the Load Contour Method. Assume that the
exponent « conservatively taken equal to 1.15.

Solution
e Nominal Bending Strength about y-axis (8M,,,):
0.375™ 0.75
V="o5m ~ 7
Ag = 500™™ x 300™™ = 150 000 mm?
Ay = 8 X 645mm? =5 160 mm?
pg =344 %
Based on above definition of (¢M,,,), one must start the solution with K,
value to compute the required R, value based on steel reinforcement
ratio. Required R, can’t be computed based on e/h ratio as this solution will not
be consistent with the definition of (@M,,,). Based on interaction diagrams
presented in Figure 9.8-11 below, column strength ¢M,,,, would be:
B, 1134000
Ky=-——= = 0.41
@f!A, ~ 0.65 x 28 x 150000
oM, 0.21+0.24
y0
R = = —=0.22
navg. (fclAgh 2
avg
@M,y = 0.65(0.22 X 28 X 150 000 X 500) = 300 kN.m
20
t g Interaction diagram 20 —
19 o £ 4 ksi Py K TV Interaction diagram
. R = o fTem —ay
A ] savpee 18 ?' y -~ 0.80 I.F"‘"‘_ﬂ
17 S .V;' e . ., .'" £ : T:.tb.:
e VI ] 7 J_:.u-: 16 °f’|8 JI_: :
i aeeme
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Figure 9.8-11: Interaction diagrams adopted to compute oM, ,, of Example 9.8-3.

Nominal Bending Strength about x-axis (@M,,,):
0175™ _ o

’y =
0.3m
Say y = 0.60, and based on interaction diagram of Figure 9.8-12 below.

B
K, = ———=0.41 (as befor
n = G, = 041 (as befon)

Q)Mnxo
R, = = 0.19
n <f;:IAgh
PM,,0 = 0.65(0.19 x 28 X 150 000 x 300) = 156 kN.m
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Figure 9.8-12: Interaction diagram adopted to compute ¢M,,, of Example 9.8-3.
e Check column adequacy based on Load Contour Method:
My, = 1134 kN x 0.150m = 170 kN.m
My, =1134kN x0.075m =85kN.m

( Mux >1.15 N < Muy )1.15 ) 10
¢Mnx0 ¢Mny0 S

g5 |\ 115 170,115
— — ? 1.
(156) * (300) 0

0.548 + 0.566 = 1.1 = 1.0 Ok.
The column is adequate according to Load Contour Method.
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CHAPTER 10
SLENDER COLUMNS

10.1 INTRODUCTION AND BASIC CONCEPTS

10.1.1 Definition of Slender Columns
e A column is said to be slender if its cross-sectional dimensions are small com-
pared with its length.
e The degree of slenderness is generally expressed in terms of the slenderness
ratio ¢, /r, where ¢, is the unsupported length of the member and r is the radius
of gyration of its cross section, equal to:

r= |— Eq. 10.1-1
A

e According to ACI 6.2.5.1, the radius of gyration r for rectangular column can be
determined from Eq. 10.1-2.

TForaRectangularSection = 0.3h Eq. 10.1-2
while for circular columns it may be taken as in Eq. 10.1-3.
TFor a Circular Section = 0-25D Eq. 10.1-3

e It has long been known that a member of great slenderness will collapse under a smaller
compression load than a stocky member with the same cross-sectional dimension.

Example 10.1-1

With referring to gross homogenous sections, show that Eq. 10.1-2 and Eqg. 10.1-3 are
rational in nature and can be derived from definition of Eq. 10.1-1.

Solution

For rectangular section:

1 @ 1
Trectangular = \E= % = Eh = 0.228h = 0.3h

For circular section:

I
Tcircular = n =

e This article aims to discuss the effects of slenderness on:
o The strength of axially loaded columns,
o The strength of columns that subjected to axial force and bending moment.

10.1.2 Effect of Slenderness Ratio on Strength of Axially Loaded Columns
10.1.2.1 Basic Concepts

e Based on experimentally work, the relation between column strength and its
slenderness ratio is as shown in Figure 10.1-1 below.

Pfail For small values of kl,/r, axial column strength
can be predicated based on relations discussed
in Chapter 9 for Short Columns.

P ~ For large values of kl,/r, axial
n AN column strength shall be
predicated based on Euler
relation that discussed in this
Chapter.

<
o

-

Crushing | Buckling
|

Figure 10.1-1: Effect of slenderness on
(KL )jim keir strength of axially loaded columns.
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It can been shown that, for lower values of kl,/r (values less than (klu/r)imit in
Figure 10.1-1 above) column strength can be predicated by the relation derived in
Chapter 9:

P, = 085/ (A, — Ast) + Asefy Eq. 10.1-4
For larger slenderness ratio, column strength can be predicated based on the
following relation that derived by Euler more than 200 years ago:

n2El
= — Eq. 10.1-5
o= d
where ki, is defined as the effective length and it represents the distance between the
inflection points.

Correspondingly, there is a limiting slenderness ratio (klu/r)mit:

o For values smaller than (kly/r)umit this, failure occurs by simple crushing,
regardless of klu/r;

o For values larger than (klu./r)umit failure occurs by buckling, the buckling load or
stress decreasing for greater slenderness.

10.1.1.1 Physical Meaning of Euler Load or Critical Load

A Temporary
Lateral Force.

An axially loaded column similar to that shown
below should be designed for the dominated Py
acting force (axial force Py in this case). ) d
However, this column is a part from structure

that should be adequate for many decades.
During that long age, this column may be
subjected to a temporary lateral force due to a
minor cause that can't be accounted in the
design process. Then this column will be
displaced laterally as shown below:

P Figure 10.1-2: A
4 column subjected
'@ to dominate axial
\ Column is ’ force.
\ deformed

\ laterally due to
\ the temporary
lateral force.

Figure 10.1-3: A column subjected to dominate axial force and to minor or temporary
lateral forces.

It has been noted experimentally, and has been approved analytically, that each
column has a critical load (P.) that when the column is loaded with an axial load
Pu less than P. and subjected to a lateral temporary force at the same time, it will
return to its undeform shape when this temporary lateral load remove and vice
versa.
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P 2P P,<P

,\<}d Column returns to
i its undeformed

i /'shape with
Column stays in i ’ removing of the
the deformed 1 temporary lateral

position even ': ‘: force

after removing of i

the temporary ! ;

fateral force. Figure 10.1-4: Behavior of
i axially loaded column when
P, is less or/and greater than
7 T P..

e As we have no control on the occurring of such temporary lateral force, then we
cannot accept a column that loaded with an axial force equal to or greater than
its critical load. Such column is classified as unstable column in engineering

ractice.
o 'FI)'hen critical or Euler load represents a very important limit on axial load in
columns:
o For short columns:
Perashing < Fe Eq. 10.1-6
then
Py = Perashing = 0.85f (Ag — Agt) + Aty Eq. 10.1-7
o For long or slender columns:
Perashing 2 Fe Eq. 10.1-8
then
2
P,=F= % Eq. 10.1-9

10.1.2.2 Computing of Buckling Load or Euler Load
e To compute or estimate critical load (or Euler Load) one should compute or
estimate following quantities:
1. Member stiffness or rigidity (EI)
2. Member unsupported length (l.).
3. Effective length factor or k factor.
e Each one of above quantities will be discussed briefly below:
10.1.2.3 ACI Procedure for Computing (EI) to be used in Euler Formula
e In homogeneous elastic members such as steel columns, El is easily obtained
from Young's modulus and the usual moment of inertia.
e Reinforced concrete columns, however, are
o Nonhomogeneous, since they consist of both steel and concrete,
o Steel is substantially elastic, concrete is not and is in addition subject to creep
and to cracking if tension occurs on the convex side of the column.
e All of these factors affect the effective value of (El) for a reinforced concrete
member.
e According to Article 6.6.4.4.4 of the ACI code effective value of (EI) or, Elsf, as
called by the code, can be determined based on any one of the following

relations:
0.4E_1
Elyp =——2 Eq. 10.1-10
(1)2+Eﬂ?ns E,l
: +
lppp =—2 =22 Eq. 10.1-11
1+ ﬁdns
Elyp =—"—— Eq. 10.1-12
eIt 1+ Bdns

where E, is modulus of elasticity of concrete.
o I, is moment of inertia of gross section of column.
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o E, is modulus of elasticity of steel.

o I is moment of inertia of reinforcement about centroidal axis of member cross
section. According to (Wight, 2016), calculation of I, can be simplified with
refereeing to Table 10.1-1.

Table 10.1-1: Calculations of I, adopted from (Wight, 2016).

Type of Column Number of Bars lse
XN ] l— 5
1 vh h — 0.25Ag(yh
AN ”J; L st(vh)
_b.I\Bendlng
iab
| XS 3 bars per face 0.167Ag;(yh)?
- ::: —_?Tf 6 bars per face 0.117Ag (yh)?
oy 8 bars (3 per face) 0.187Ag(yh)?
e “oh 12 bars (4 per face) 0.176Ag(vh)2
o-o-0| — 16 bars (5 per face) 0.172A4;(yh)?
o-9-9
o o T h=2b 0.128A,(yh)2
_le—3 —h h 16 bars as shown
s o About strong axis
.8 L
seeeees L b=2h 0.219A4(yh)2
I D _i‘h About weak axis

@ yh — 0.125Ag;(yh)?

— 0.125A(yh)?

o I is the effective moment of inertial computed based on Table 10.1-2 below.
o PBuns is ratio of maximum factored axial sustained axial load to maximum
factored axial load associated with the same load combination.
Table 10.1-2: Alternative moments of inertia for elastic analysis at factored load, Table
6.6.3.1.1(b) of the ACI code.

Alternative value of I for elastic analysis
Member | Minimum I Maximum
5 .’1 )M P
Columns | 1o/ |l 0804252 || 1-2x_05-= |1 | 0.875]
and walls ? A Ph P)E g
Beams,
flat plates , b
’ ] 0.10+25p)|1.2-02— |1 ;
and flat 0.251, (0.10+ p)( 5 ] A 0.5,
slabs

e Notes on Computing of El ¢f:
o Creep due to sustained loads will increase the lateral deflections of a column
and, hence, the moment magnification.
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O

Creep effects are approximated in design by reducing the stiffness El.ff by
dividing the short-term EI provided by the numerator Eq. 10.1-10 through Eq.
10.1-12 by (1 + Byns)-

For simplification, it can be assumed that 34, = 0.6. In this case Eq. 10.1-10 becomes
Elg;r = 0.25E .

In reinforced concrete columns subject to sustained loads, creep transfers
some of the load from the concrete to the longitudinal reinforcement,
increasing the reinforcement stresses. In the case of lightly reinforced
columns, this load transfer may cause the compression reinforcement to yield
prematurely, resulting in a loss in the effective EI. Accordingly, both the
concrete and longitudinal reinforcement terms in Eq. 10.1-10 through Eq. 10.1-12
are reduced to account for creep.

The equations in Table 10.1-2 above provide more refined values of 1
considering:

= Axial load,

= Eccentricity,

» Reinforcement ratio,

= Concrete compressive strength.

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 10: Page 5



Design of Concrete Structures Chapter 10: Slender Columns

10.1.2.4 Column Unsupported Length (¢,)

The unsupported length of a compression member, ¢,, shall be taken as the clear
distance between floor slabs, beams, or other members capable of providing
lateral support in the direction being considered.

Where column capitals or haunches are present, ¢, shall be measured to the
lower extremity of the capital or haunch in the plane considered."

Direction

of Analysis

As this beam is normal to
direction of analysis, then
it will not be considered
effective in buckling
resistance in the direction
of analysis. Therefore
unsupported length (1)
has been measured from
bottom of slab.

Figure 10.1-5: Unsupported column length, ¢,.
10.1.2.5 Computing of Effective Length Factor (or k Factor)
Meaning of Effective Length Factor (or k Factor):

e

O

Above Euler relation has been derived originally for simple boundary conditions
(i.e. has been derived for a column that has hinge support at both ends). For
this column Euler load or (critical load) is:
P T2EIl

T (w?
For other boundary conditions, k factor (effective length factor) can be used to
transform length of the column under consideration to a length of an
equivalent column with both ends are pinned.
For example, assume that we intend to compute the critical load for a
cantilever column that has 4m height. As cantilever has k = 2 (as will be
discussed below), then form buckling analysis point of view, behavior of this
cantilever column will be similar to behavior of pinned column with length
equal to (klu = 2x4 = 8m). Based on this reasoning, one can conclude that:

Eq. 10.1-14

Eq. 10.1-13

Pc for Cantilever Column = Z Of Pc for the pinned column that has same Length

k Factor for a Isolated Columns with Typical Support Conditions:
Above transformation of the actual column to an equivalent pinned column is

ba

sed on the concept of extending or trimming the length of actual column until

arriving to the inflection points, see Figure 10.1-6 and Figure 10.1-7 below.
Fo \rPC
t
{4
P\ +
k€=1¢ k€=1¢/2 £
Y- IP— 3
£/a
! Figure 10.1-6: Effective length
| I = 1 for isolated columns, braced
Pc k=1 Pe ~— 5 columns.
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& %

IP
IP
14 ¢ F
= V7 k€=2€ vy 77<77 k€=€
3 ‘t
i P
| \
\
II 1
/\7,
II P~ \\
/ \ Figure 10.1-7: Effective length
/ for isolated columns, sway
IP |
N A | k=2 | k=1 columns.

e k Factor for a Column that is Part from a Structure:
o Columns in real structures are rarely either hinged or fixed but have ends
partially restrained against rotation by abutting members. Therefore, the k will
be within limits shown in Figure 10.1-8 below.

Ps lPC
4
e —
7 ! ﬁ
P $
l/2 0> kl>02 ¢ ¢ L< kbl <
IP— y
Y i
757 A 7;;_\“\%
P P,
1
E <k<1 1<k <o
(a) Braced frames. (b) Sway frames.

Figure 10.1-8: Effective length factor for columns that are parts from frames.

o From Figure 10.1-8 above, one concludes that compression members free to
buckle in a sway frame are always considerably weaker than when braced
against sway.

o An approximate but generally satisfactory way of determining (k) is by means
of alignment charts. This method can be summarized as follows:
= Compute the degree of end restraint at each end based on the following

relation:
El

_ TColumns -
Y= —Fr Eq. 10.1-15

l Beam

» Based on y and frame classification (braced against sway or not), effective
length factor (k) can be computed based on alignment charts of Figure 10.1-9

below.
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100.0 —
50.0 o
30.0

20.0 —

10.0 —
9.0
8.0 —

7.0 —
6.0

5.0 -
4.0 —

3.0 —

20 +—

0_

— 1.0

Vg

— 100.0
— 50.0
— 30.0

— 20.0

— 10.0
9.0

— 8.0
— 7.0
— 6.0

— 5.0
— 4.0

— 3.0

— 2.0

(a) Nonsway frames. (b) Sway frames
Figure 10.1-9: Alignment charts for effective length factors k.
e 1 for Hinge Support:
Hinge support can be understood as columns that connected to beams with zero

stiffness:
El
_ . [ Columns __ -
l Beam l Beam.

e In the same approach, Yri..q Can be interpreted as columns that connected to
infinitely rigid beams.

l Columns =0

leixed = hm EI Eq- 10-1'17
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10.1.2.6 Analysis Examples for Euler Loads

Example 10.1-2

Using Eq. 10.1-10 to compute critical load about major axis, i.e. buckling in x-z plane, for
the column shown in Figure 10.1-10 below. In your solution, assume that:

k = 0.83.

f’ = 28 MPa.

Assume the sustained load is only 32.7%.
Column length is 4.88m.

0.375 ml

£
Q
[oo]
@
<~
Z
X S v
3D View. Elevation view.
No.10@250 — — 6No0.20
2 ~ a4 P
o 2 > 4
E '-A.' 4 -: -:'~» “'v‘ _a-:
8 ‘4"4‘{ : as” “A.’
d & L \': 4: S G _:
R e ‘4.7 X
E e e 1 A
0.254 m
0.375 m
Cross sectional of the column
Figure 10.1-10: Column for Example 10.1-2.
Solution
Critical load (or Euler load) can be computed based on following relation:
b= m2El
© (kly)?
According to example statement, the column shall be adopted to compute El(:
0.4E.I,

Elg=—09

¢ 1 +.Bdns
E. =4700v28 = 24870 MPa
300 x 375° o 4

Based on problem information, B;,s = 0.327.
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0.4 x 24870 x 1.32 x 10° 12 2
Ely = 50377 =9.89 x10“ N.mm

Therefore, the critical or Euler load would be:
7% %X 9.89 x 102 N.mm?
= X
¢ (0.83 x 4880)2 mm?2

Exal_nple 10.1-3
Resolve Example 10.1-2 above but with determination of El.;, based on Eq. 10.1-11 to take
reinforcement into account.
Solution
According to Eq. 10.1-11, El.; would be:
0.2E I, + El,
Eleff B 1+ .Bdns
As discussed in Chapter 2,
E, = 200000 MPa
While based on Parallel-Axis Theorem of Engineering Mechanics,
Iy = I_yr + Ad?
The centroidal moment of inertia for each bar, fyr,
general:
Iyr =0

is so small and can be neglected in

2 254 2 9 4
Iye = I, =~ Ad? = | (314 x 3) X (T) X 2 = 0.0304 x 10° mm

It can also be determined directly with refereeing to Table 10.1-1 =

where I, for the indicated case oo

Ise = 0.2545,(yh)* = 0.25 X (314 x 6) x 254” = 0.0304 x 10° mm* 1 _\‘_Vh h
(0.2 x 24870 x 1.32 x 10%) 4 (200000 x 0.0304 x 10°) LALALA Ny w }

Elest = 140327 b

=9.53 x 10'2 N.mm?

% x 9.53 x 1012

(0.83 x 4880)2
1000

=5733kN =m

Example 10.1-4
For frame indicated in Figure 10.1-11 below:

e Using the alignment chart of Figure 10.1-9, calculate the effective length factor for
column AB of the braced frame shown below.
e Compute the slenderness ratio of column AB.

N
Y,
+° A
* Girder 300x450 Girder 300x450
| l o
S
™M
* 1 o T s T % f
*8 Girder 300x600 Girder 300x600
o
o}
All Columns are ©
| 300x500 1 &
0.50 —= | [~
- 6.10 -t 732 -

Figure 10.1-11: Frame for Example 10.1-4.
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Solution

Effective Length Factor:
El

TBeams
As E, for columns and beams can be assumed equal, then:
I

ll)A — ZIColumns

ZBeams
As would be discussed later, according to ACI, I for columns can be taken as 0.71,

and for beams can be taken as 0.35l;. These reductions are mainly due to
cracking in reinforced concrete.

300 x 5003
0.7 x—sos(}z
Ya = 3 = =299
0,35 » 300 >1<2450 0,35 » 300 X 450
6100 . + 7320
07 x 300X 500% 300500
i 12
vy = 3050 3660 _
3 3
035 » 300 >1<2600 0,35 » 300 X 600
6100 t 7320
_ 134x 10° 236
Y5 = 0.568 x 106

From braced alignment chart, k = 0.875.
Slenderness Ratio:
045 0.6

_____ T o203 X 0 e
Example 10.1-5

With referring to Figure 10.1-12, determine the
buckling load for the indicated truss-
supporting column when it bends about its
major axis. Assume braced story and B;,s of
0.7.

Solution

When column extends from the foundation
to the first floor:

ol
According to Euler formula, the buckling 1 § ;
load would be: Sk
m2El £l 8
= —— o ' P
(kly) S o
<

With no information regarding column
reinforcement, its rigidity, EI, can be
estimated based on the following relation:

Ely; = O4Ecly = Hinge Support
1 +,8dns o
As bending is about the major axis, column oS
<

moment of inertia, I;, would be as
indicated in below:

0.4 x (4700 x v28) x %26003 Figure 10.1-12: Truss-supporting
El = column for Example 10.1-5.
eff 1+0.7

=31.5 x 10?2 N.mm?

The effective length factor, k, can be determined based on the alignment chart for
the braced frame:
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El
: T
Yiower = lphinge = g lim W — o
l Beam TBeam .
0.7 x 320X 6007
! 800y < 2
I (4000 -2P)
— — Columns __ 2
l:[Jupper =y, = i = TEETE
L 035 X —/—————
Beams
9000
=4.22

From the alignment chart, one concludes that
the effective length factor is:
k ~ 092
Finally, the unsupported length, [,, for the
column would be:
l, = 4000 —800 = 3200 mm
Therefore, the buckling load would be:

w2 x (31.5 x 10?)
= < (0.95 x 3200)2 > X Too ~ 3641 kN m
When column extends from to the first floor to
the roof:

c

El
- L col
Yupper = Ypin = 5 lim % —
lBeam l Beam
0.7 x 300X 6007
I | 4000 sy %
P - Lcotumns - ( + T) _ 345
lower L 035 300 x 8003 .
Lpeams 35X ————
9000

From the alignment chart, one concludes that
the effective length factor is:
k =~ 0.94
l, = 4000 mm
m? x (31.5 x 10'?) 1
= X
(0.94 x 4000)2 1000

= 21990 kN m

c

A

i
50.0 1~
10.0 -

5.0 -

3.0 —

2.0 —

1.0 -

0.8
0.7

0.6 —
0.5

0.4 —

0.3 —

02

01

(=] \.
50.0 1~
10.0

5.0 -

3.0

2.0 —

1.0 -

0.8
0.7
0.6 —

0.5
0.4

0.3

0.2

01
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Example 10.1-6

With referring to Figure 10.1-13, determine the buckling
load for the indicated truss-supporting column when
it bends about its major axis. Assume braced story

and B;,s of 0.7. Simple
Solution E % Connection
e When column extends from the foundation to the Q of :
first floor: 1 sl b
According to Euler formula, the buckling load
would be: Rl
P = m2E]l e i
Gk f
With no information regarding the column E SN
reinforcement, its rigidity, EI, can be estimated S RN
based on the following relation: @ g T2
0.4E.I f 1173,
Eleff =— "9 & § s b 0*600
1+ .Bdns é :,_\6
As bending is about the major axis, column B - 00,77
moment of inertia, I, is: Oi G -
300 x 600 <N bl
0.4 x (4700 x V28) x —5—— R E Support
EL.. — 12 SRl
eff 1+0.7 oy
= 31.5 x 10'?2 N.mm?
The effective length factor, k, can be determined Figure 10.1-13: Truss-
based on the alignment chart for the braced supporting column for Example
frame: 10.1-6.
El
. l
Yiower = lphinge =g lim W =
L Beam I Beam 5 s
0.7 % 300 x 600 0.7 % 300 x 600
I 12 + 12
Es (4500 -20%) (3500 +2°)
710 — l,[) — Columns — = 6.0
wper AT 51 035 x 300 X 600°
Lpeams ) 12
6000
From the alignment chart, the effective length factor is:
k = 0.96

Finally, the unsupported length, [,, for the column would be:
l, = 4500 — 600 = 3900 mm
Therefore, the buckling load would be:

w2El <n2 x (31.5 x 101?)

Fe =2 = \ (096 x 39002
¢ When column extends from to the first floor to the roof:

1
X =
> 1000 22179 kN m

El
. I col
wupper = ¢pin = El lim % =
lBeam TB
eam 3 3
07 % 300 x 600 07 % 300 x 600
I G0t 600
w — ZColumns — (4500 B T) (3500 + T) =6.0
lower I 0.35 x 300 X 600° '
LBeams ) X
6000
From the alignment chart, the effective length factor is:

k ~ 0.96,
_ (MG X101
=~ \ (096 x 350002 ) * 1000 _ "
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10.1.3 Effects of Slenderness on a Column Subjected to a Compression Force
and a Moment
e Most reinforced concrete compression members are also subject to
simultaneous flexure, caused by transverse loads or by end moments owing to
continuity.
e The behavior of members subject to such combined loading also depends greatly
on their slenderness.

10.1.3.1 Columns Bent into a Single Curvature

Figure 10.1-14 below shows such a member, axially loaded by P and bent by equal end
moments M,.

e If no axial load were present, the moment M, in the member would be constant
throughout and equal to the end moments M,. In this situation, i.e., in simple
bending without axial compression, the member deflects as shown by, the
dashed curve of Figure 10.1-14.

e When P is applied, the moment at any point increases by an amount equal to P
times its lever arm. Then the maximum bending moment due to simultaneous
action of flexure and axial force will be:

Mmax = Mo + PA Eq. 10.1-18

e It can be shown that above summation can be re-written in the following
multiplication:

Myax = Mo X —p Eq. 10.1-19
-7
C
where
1
—F
1-r

is known as the Moment Magnification Factor, which reflects the amount by which the
moment M, is magnified by the presence of simultaneous axial force P.

P<P
Mo

\\ 0due to Mg+ P
e

A due to M,
Mek'ﬁa <P, Figure 10.1-14: Moments in slender
members with compression plus bending,
(@) (b) bent in single curvature.

10.1.3.2 Columns Bent into Double Curvatures
e It clear that the simultaneous effect of the axial force P on the moment
magnification for that column shown in Figure 10.1-15 below that has double
curvature is less than its effect on the moment magnification for a column that has single
curvature (as the column shown Figure 10.1-14 above).
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