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Figure 10.1-15: Moments in slender members with compression plus bending, bent in 

double curvature. 

• Then the moment magnification factor 
1

1 −
𝑃
𝑃𝑐

 

must be modified to be able to represent the difference between a column that 

has single curvature and a column that has double curvature.  

• This can be done by including the 𝐶𝑚 factor: 

𝑀𝑜𝑚𝑒𝑛𝑡 𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐶𝑚

1 −
𝑃
𝑃𝑐

 Eq. 10.1-20 

where 𝐶𝑚 factor can be computed as follows (ACI Code 6.6.4.5.3), see Figure 10.1-16 
below 

• It is very useful to note that in addition to its direct effect on the strength of an axially 
loaded column, Euler or Bucking load Pc has an indirect effect on the strength of a column 
subjected to an axial force and bending moment through its effect on the moment magnification 
factor. 

 

Figure 10.1-16: Computing factor 𝑪𝒎 according to Article 6.6.4.5.3 of the code. 
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10.2 ACI STRATEGIES FOR SLENDER COLUMNS 

This article summary ACI strategy to deal with slender columns based on following 
steps: 

• First step in ACI strategy: 

o A criterion should be imposed to check if the effect of slenderness is important 

and should be included or it is minor and can be neglected (Article 6.2.5 of the 

ACI Code). See Article 10.2.2 below. 

o As this criterion depends on pre-classification of building into sway or non-sway 

building, then this article include a general guide to classify the building into 

sway or non-sway, Article 6.6.4 of the code or Article 10.2.3 below . 

• Second step in ACI strategy: 

o When the effect of slenderness is classified important according to above first 

step, ACI offers following three different methods indicated in Figure 10.2-1 below to 

compute this effect. 

o First and second methods are out the scope of our course. Therefore, the course will focus 
on the third method only (moment magnification method). 

o According to ACI Code (6.2.6), total moment including secondary moment shall not 
exceed 1.4 times the main moment that compute based on first order analysis (i.e., the 

analysis that based on undeformed shape). According to this limitation, ACI 
Code considers secondary moments that have values greater that 40% of the 

corresponding main moments as an indication on the instability of the building. 

 

 
Figure 10.2-1: ACI procedures to deal with the secondary moments in slender 

columns.  

 



Design of Concrete Structures Chapter 10: Slender Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 10: Page 17  
 

 

 
Figure 10.2-1: ACI procedures to deal with the secondary moments in slender 

columns. Continued. 

• As it is clear from above discussions of ACI methods, ACI strategy focuses on the 
effects of slenderness on columns that subjected to an axial force and uniaxial 

moment. Columns that subjected to concentric load will be treated indirectly to 

predicate the effect of slenderness (this will be discussed in Article 10.3). 
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10.2.1 ACI Procedure in a Flowchart Form  
Aforementioned discussed procedures to deal with secondary effects of column 

slenderness have been summarized in a flowchart form as indicated in Figure 10.2-2 
below. 

 
Figure 10.2-2: Flowchart for determining column slenderness effects. 
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10.2.2 ACI Criteria for Neglecting of Slenderness Effects 
• To permit the designer to dispense with the complicated analysis required for 

slender column design for the ordinary cases in which the Slenderness Effect can 

be neglected, ACI Code (6.2.5) provides limits below which the effects of 

slenderness are insignificant and may be neglected.  

• These limits are adjusted to result in a maximum unaccounted reduction in column 
capacity of no more than 5 percent.  

• Separate limits are applied to braced and unbraced frames. The Code provisions 
are as follows: 

• For compression members in nonsway frames, the effects of slenderness may be 

neglected when: 

𝑘𝑙𝑢

𝑟
≤  34 − 12

𝑀1

𝑀2
 Eq. 10.2-1 

where  

34 − 12
𝑀1

𝑀2
≤ 40 Eq. 10.2-2 

• For compression members in sway frames, the effects of slenderness may be 

neglected when: 

𝑘𝑙𝑢

𝑟
≤  22 Eq. 10.2-3 

• In these provisions:  

o k is the effective length factor (computed as Discusses in Article 10.1.2.5). 

o 𝑙𝑢 is the unsupported length, taken as the clear distance between floor slabs, 

beams, or other members providing lateral support. 

o 𝑀1 is the smaller factored end moment on the compression member. 

o 𝑀2 is the larger factored end moment on the compression member.  

o Sign for Ratio 
𝑀1

𝑀2
 is determined based on Figure 10.2-3 below. 

  
Figure 10.2-3: Sign convention for the ratio 𝑴𝟏/𝑴𝟐.  
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Example 10.2-1 

For a hall-braced frame shown in Figure 10.2-4 below, classify indicated column into short 

or slender column when: 

• Working in xz plane. 
• Working in yz plane. 

In your solution, assume that all foundations are behave as perfect hinges. 
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Figure 10.2-4: Hall-braced Frame 

of Example 10.2-1. 

Solutions 

Working in xz plane 
Effective length factor: 
𝜓𝐵𝑜𝑡𝑡𝑜𝑚 ≈  ∞  

𝜓𝑇𝑜𝑝 =
Σ

𝐸𝐼
𝐿 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

Σ
𝐸𝐼
𝐿 𝐵𝑒𝑎𝑚𝑠

=

0.7 ×
0.3 × 0.83

12

8 −
0.8
2

0.35 ×
0.3 × 0.83

12
8

= 2.1 

Based on alignment chart for braced frame, see Figure 10.2-5 below. 
𝑘 = 0.92 

Slenderness Ratio: 
𝑘𝑙𝑢

𝑟
=

0.92 × (8.0 − 0.8)

0.3 × 0.8
= 27.6 

ACI Classification: 
𝑘𝑙𝑢

𝑟
   ?   34 − 12

𝑀1

𝑀2
≤ 40 

With hinge support, 𝑀1 = 0: 
𝑘𝑙𝑢

𝑟
= 27.6 <   34 

Then column is short. 
Working in yz plane: 

Effective length factor: 
With a lower hinge support, column lower part is more critical than upper part.  
𝜓𝐵𝑜𝑡𝑡𝑜𝑚 ≈  ∞  

𝜓𝑇𝑜𝑝 =
Σ

𝐸𝐼
𝐿 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

Σ
𝐸𝐼
𝐿 𝐵𝑒𝑎𝑚𝑠

=
2 ×

0.7 ×
0.8 × 0.33

12
4

2 ×
0.35 ×

0.3 × 0.53

12
5

= 1.44 
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Based on alignment chart for braced frame, see Figure 10.2-5 below. 
𝑘 = 0.88 

Slenderness Ratio: 
𝑘𝑙𝑢

𝑟
=

0.88 × (4.0 − 0.5)

0.3 × 0.3
= 34.2 

ACI Classification: 
𝑘𝑙𝑢

𝑟
   ?   34 − 12

𝑀1

𝑀2
≤ 40 

With hinge support, 𝑀1 = 0: 
𝑘𝑙𝑢

𝑟
= 34.2 >   34 

Then column is slender. 

      
K factor for working with xz plane. K factor for working with yz plane. 
Figure 10.2-5: Effective length factor for Example 10.2-1. 

 

Example 10.2-2 

For the braced column presented in Figure 10.2-6 below, 

• Relative to plane XZ,  

o Is the column classified as short or slender?  
o What is column critical load in this plane? 

• Relative to plane YZ, from foundation to first levels, 
o Is the column classified as short or slender?  
o What is column critical load in this plane? 

In your solution, assume that footing behaves as a perfect hinge, sustained load is 
90% of the total load, the girder has a span of 12m, and beams have spans of 6m. 
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Figure 10.2-6: Braced column 

for Example 10.2-2.   

Solution 

Plane XZ; 
𝜓𝐴 𝑎𝑡 ℎ𝑖𝑛𝑔𝑒 𝑒𝑛𝑑 =  ∞ 

𝜓𝐵 @ 𝑡𝑜𝑝 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 =  

0.7 ×
300 × 10003

12

8300 −
1000

2

0.35 ×
300 × 10003

12
12000

≈ 3.0 

Then, effective length factor, 𝑘, is, see Figure 10.2-7 below: 
𝑘 = 0.94 

Column unsupported length is, 
𝑙𝑢 = 8000 + 300 − 1000 = 7300 𝑚𝑚 

Slenderness ratio is, 
𝑘𝑙𝑢

𝑟
=

0.94 × 7300

0.3 × 1000
= 22.9 ?  34 − 12

𝑀1

𝑀2
 

With hinge support,  
𝑀1 = 0 
𝑘𝑙𝑢

𝑟
= 22.9 < 34 

Then the column could be classified as short.  

Column critical load is, 

𝑃𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(𝜋2𝐸𝐼)

(𝑘𝑙𝑢)2
 

As nothing is mentioned about reinforcement, then 

𝐸𝐼 =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
=

0.4 × (4700 × √28) ×
300 × 10003

12
1 + 0.9

= 131 × 1012 𝑁. 𝑚𝑚4 

𝑃𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(𝜋2 × 131 × 1012)

(0.94 × 7300)2
= 27458 𝑘𝑁 

Relative to plane YZ and from foundation to first levels, 
𝜓𝐴 𝑎𝑡 ℎ𝑖𝑛𝑔𝑒 𝑒𝑛𝑑 =  ∞ 

𝜓𝐵 @ 𝑡𝑜𝑝 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 =  

0.7 ×
1000 × 3003

12
4300

0.35 ×
300 × 4003

12
6000

= 3.9 

Then, effective length factor, 𝑘, is, see Figure 10.2-7 below: 
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𝑘 = 0.95 

Column unsupported length is, 
𝑙𝑢 = 4000 + 300 − 400 = 3900 𝑚𝑚 

Slenderness ratio is, 
𝑘𝑙𝑢

𝑟
=

0.95 × 3900

0.3 × 300
= 41.2 ?  34 − 12

𝑀1

𝑀2
 

With hinge support,  
𝑀1 = 0 
𝑘𝑙𝑢

𝑟
= 41.2 > 34 

Then the column could be classified as slender. Column critical load is, 

𝑃𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(𝜋2𝐸𝐼)

(𝑘𝑙𝑢)2
 

As nothing is mentioned about reinforcement, then 

𝐸𝐼 =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
=

0.4 × (4700 × √28) ×
1000 × 3003

12
1 + 0.9

= 11.8 × 1012 𝑁. 𝑚𝑚4 

𝑃𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
(𝜋2 × 11.8 × 1012)

(0.95 × 3900)2
= 8481 𝑘𝑁 

                         
Figure 10.2-7: Alignment chart applied for Example 10.2-2. 
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Example 10.2-3 

With referring to building of Figure 10.2-8 below, is a typical interior column classified as 

short or slender when analyzed: 

• In a plane along Sec. 1-1. 
• In a plane along Sec. 2-2. 

In your solution, assume braced building and assume footings behave as hinges. 

 

Figure 10.2-8: Building for Example 

10.2-3. 

  

SOLUTION 

IN PLANE ALONG SEC. 1-1 
𝜓𝐴 𝑎𝑡 ℎ𝑖𝑛𝑔𝑒 𝑒𝑛𝑑 =  ∞ 

𝜓𝐵 @ 𝑡𝑜𝑝 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 =  

0.7 ×
400 × 6003

12

6000 −
800

2

0.35 ×
400 × 8003

12
10000

= 1.51 

Then, effective length factor, 𝑘, is, see Figure 10.2-9 below: 
𝑘 = 0.9 

Column unsupported length is, 
𝑙𝑢 = 6000 − 800 = 5200 𝑚𝑚 

Slenderness ratio is, 
𝑘𝑙𝑢

𝑟
=

0.9 × 5300

0.3 × 600
= 26.5 ?  34 − 12

𝑀1

𝑀2
 

With hinge support,  
𝑀1 = 0 
𝑘𝑙𝑢

𝑟
= 26.2 < 34 

Then the column could be classified as short. 
  



Design of Concrete Structures Chapter 10: Slender Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 10: Page 25  
 

IN PLANE ALONG SEC. 2-2 
𝜓𝐴 𝑎𝑡 ℎ𝑖𝑛𝑔𝑒 𝑒𝑛𝑑 =  ∞ 

𝜓𝐵 @ 𝑡𝑜𝑝 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛 =  

0.7 ×
600 × 4003

12

(6000 −
500

2
)

2 × (
0.35 ×

400 × 5003

12
4000

)

= 0.53 

Then, effective length factor, 𝑘, is see Figure 10.2-9 below: 
𝑘 = 0.82 

Column unsupported length is, 
𝑙𝑢 = 6000 − 500 = 5500 𝑚𝑚 

Slenderness ratio is, 
𝑘𝑙𝑢

𝑟
=

0.82 × 5500

0.3 × 400
= 37.6 ?  34 − 12

𝑀1

𝑀2
 

With hinge support,  
𝑀1 = 0 
𝑘𝑙𝑢

𝑟
= 37.6.34 

The column is classified as slender. 

                   
Figure 10.2-9: Alignment chart applied for Example 10.2-3. 
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10.2.3 ACI Criteria for Nonsway versus Sway Frames 
• The previous discussion shows clearly significant difference between the behavior 

of slender columns in nonsway (braced) frames and the corresponding columns 
in sway (unbraced) frames.  

• ACI Code provisions for the approximate design of slender columns reflect this 
difference and there are separate provisions for nonsway versus sway frames. 

• In actual structures, a frame is seldom either completely braced or completely 
unbraced. It is necessary, therefore, to determine in advance if bracing provided 
by shear walls, elevator and utility shafts, stairwells, or other elements is 

adequate to restrain the frame against significant sway effects, see Figure 10.2-10. 

 
Figure 10.2-10: Different arrangement of shear walls that may provide frame bracing. 

• Determination of bracing system effectiveness can be executed based any one of 

the following methods: 

o By Inspection (ACI Commentary 6.6.4.1) 

i. By engineering judgment, the engineer may decide if the stiffness of shear 
wall or a steel bracing system is adequate to classify the frame under 

consideration as a braced frame or not. 

ii. According to previous code provisions, it shall be permitted to consider 

compression members braced against sidesway when bracing elements have a total 
stiffness, resisting lateral movement of that story, of at least 12 times the gross stiffness of 
the columns within the story. 

o Based on Stability Index Concept (ACI code Article 6.6.4.3) 

i. If the effectiveness of a shear wall or bracing system is questionable, a frame 

can be classified to a braced or nonbraced based on the concept of Stability 
Index which computed as follows, see Figure 10.2-11 below. 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
∑ 𝑃𝑢∆0

𝑉𝑢𝑙𝑐
 Eq. 10.2-4 

where: 
∑ 𝑃𝑢 and 𝑉𝑢 are the total factored vertical load and story shear, respectively, 

for the story. 

∆0 is the first-order relative deflection between the top and the bottom of the 

story due to Vu. 

𝑙𝑐 is the length of the compressive member measured center-to-center of 

the joints in the frame. 
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Figure 10.2-11: Parameters adopted in computing of the Stability Index. 

ii. A story that has a stability index not greater 0.05 can be classified as a braced and vice 
versa.  

iii. According to ACI Code 6.6.3.1, section properties may be represented using the 

modulus of elasticity, 𝐸, of: 
𝐸 = 𝐸𝑐 

and section properties as indicated in Table 10.2-1 below. 
Table 10.2-1: Moment of inertia and cross sectional area permitted for elastic analysis 

at factored load level, Table 6.6.3.1.1(a). 
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Example 10.2-4 

For the building frame shown in Figure 10.2-12 below, based on an elastic first order 

analysis with ACI stiffnesses of Table 10.2-1 above and with neglecting of frame 

selfweight, lateral deflections have been computed for ground and first stories and 

summarized in Figure 10.2-13 below. Use ACI stability index method to classify ground and 

first stories as braced or sway. 

 
Figure 10.2-12: Frame for Example 10.2-4. 

 

Figure 10.2-13: Lateral deflections of 

the ground and first stories for the 

frame of Example 10.2-4. 

Solution 

• For first story: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
∑ 𝑃𝑢∆0

𝑉𝑢𝑙𝑐
 

∑ 𝑃𝑢 = the total factored vertical for the story = 120
kN

m
× 6m × 2 = 1440 kN   



Design of Concrete Structures Chapter 10: Slender Columns 
 

Dr. Salah R. Al Zaidee and Dr. Rafaa M. Abbas Academic Year 2018-2019 Chapter 10: Page 29  
 

𝑉𝑢 =  total factored story shear = 200 kN 
∆0=  the first order relative deflection between the top and the bottom of the story due to Vu 
∆0=  0.46 − 0.32 = 0.14 m  
𝑙𝑐 =   the length of the compressive member measured center − to

− center of the joints in the frame 
𝑙𝑐 =   6m 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
1440 𝑘𝑁 × 0.14𝑚

200 𝑘𝑁 × 6𝑚
= 0.168 > 0.05 

Then, the story is unbraced. 

• For the ground story: 

∑ 𝑃𝑢 = the total factored vertical for the story = (120
kN

m
× 6m × 2) × 2 = 2880 kN   

𝑉𝑢 =  total factored story shear = 200 kN × 2 = 400 kN 
∆0=  the first order relative deflection between the top and the bottom of the story due to Vu 
∆0=  0.32 m 
𝑙𝑐 =   the length of the compressive member measured center − to

− center of the joints in the frame 
𝑙𝑐 =   5m 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
2880 kN × 0.32𝑚

400 𝑘𝑁 × 5𝑚
= 0.46 > 0.05 

Then, the story is unbraced. 
 

Example 10.2-5 

Re-solve Example 10.2-4 above, but when the building is stiffened with a shear wall that 

shown in Figure 10.2-14 below. the deformation would be as indicated in Figure 10.2-15 
below. 

 
Figure 10.2-14: Frame for Example 10.2-5. 
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Figure 10.2-15: Lateral deflections of the ground and first stories for the frame of 

Example 10.2-5. 

Solution 

• For First Story: 
∆0=  0.006 − 0.002 = 0.004 m 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
∑ 𝑃𝑢∆0

𝑉𝑢𝑙𝑐
=

1440 𝑘𝑁 × .004𝑚

200 𝑘𝑁 × 6𝑚
= 0.005 < 0.05 

Then, the story is braced. 
• Ground Story: 

∆0=  0.002 m 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑄 =
∑ 𝑃𝑢∆0

𝑉𝑢𝑙𝑐
=

2880 kN × 0.002𝑚

400 𝑘𝑁 × 5𝑚
= 0.003 < 0.05 

Then, the story is braced. 
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10.3 SUMMARY OF ACI MOMENT MAGNIFIER METHOD FOR NONSWAY FRAMES 
• For a column that may be a slender column in a braced story, ACI checking 

procedure can be summarized as follows: 

1. Select a trial column section to carry the factored axial load 𝑃𝑢 and 

moment 𝑀𝑢 =  𝑀2 (where 𝑀2 is that maximum moment that occurs at one 

of column two ends) that computed from a first-order frame analysis (i.e. 
an analysis that based on undeformed shape and that predicate main 

moments only), assuming short column behavior and following the 

procedures of Chapter 9. 
2. Determine if the frame should be considered as nonsway or sway, either 

based on intuition or based on stability index and as discussed in Article 
10.2.3.  

3. Find the unsupported length 𝑙𝑢 (as discussed in Article 10.1.2.4). 

4. For the trial column, check for consideration of slenderness effects using 

the criteria of Article 10.2.2 with k = 1.0. 

5. If slenderness is tentatively found to be important, refine the calculation 

of k based on the alignment chart in Article 10.1.2.5. 

6. If moments from the frame analysis are small, check to determine if the 
following minimum moment controls. 

a. If  

𝑀2 <  𝑀2,𝑚𝑖𝑛 =  𝑃𝑢(15 + 0.03ℎ) Eq. 10.3-1 

where 15 and h are in mm.  
b. Then use:  

𝑀2 =  𝑀2,𝑚𝑖𝑛 =  𝑃𝑢(15 + 0.03ℎ) Eq. 10.3-2 

7. Calculate the equivalent uniform moment factor 𝐶𝑚 (as was discussed in 

Article 10.1.3.2. 

8. Calculate 𝛽𝑑𝑛𝑠, El and 𝑃𝑐 as discussed in Article 10.1. 

9. Calculate the moment magnification factor 𝛿𝑛𝑠 and magnified moment 𝑀𝑐 

based on following relations: 

𝛿𝑛𝑠 =
𝐶𝑚

1 −
𝑃𝑢

0.75𝑃𝑐

≥ 1.0 Eq. 10.3-3 

𝑀𝑐 =  𝛿𝑛𝑠𝑀2 Eq. 10.3-4 

10.Check the adequacy of the column to resist axial load and magnified 

moment using the column design charts of Chapter 9 in the usual way. 

Revise the column section and reinforcement if necessary. 
11.If column dimensions are altered, repeat the calculations for k, 𝐼𝑒𝑓𝑓 . and 

𝑃𝑐 based on the new cross section. Determine the revised moment 

magnification factor and check the adequacy of the new design. 
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Example 10.3-1 

Forces and moments acting on column shown in Figure 10.3-1 have been computed 

based on a First Order Analysis (i.e. equilibrium relations have been written based on un-

deflected shape):  

• Check to see if this column is classified short or slender based on ACI criterion.  

• If the column is slender, magnify the applied moment based on ACI Moment 
Magnification Method. 

In your solution, assume that: 

• Frame is braced. 
• The column has an effective length factor (k) equal to 0.9. 

• Sustained load is 60% of the total load. 

• 𝑓𝑐′ =  21 𝑀𝑃𝑎. 

 
Figure 10.3-1: Frame and column forces for Example 10.3-1. 

Solution 

• Check to see if the column is classified short or slender according to ACI 
criterion: 
𝑘𝑙𝑢

𝑟
   ?   34 − 12

𝑀1

𝑀2
≤ 40 

• Sign of M1/M2 can be conclude as follows: 
o Both ends of the column will rotate in anti-clockwise direction according to 

applied moments. 
o Then based on continuity principle, deflected shape will be as indicated in 

Figure 10.3-2 below. 

o Based on above reasoning, one can conclude that the column is under double 

curvature and sign of M1/M2 should be negative according to ACI sign convention. 
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Figure 10.3-2: Deflected shape for columns of Example 10.3-1, 

deduced based on continuity conditions.  

• Then  
klu

r
=

0.9 × 4.88

0.3 × 0.35
 ?   34 − 12 (−

14

81
)  ≤ 40   

klu

r
= 41.8 > (36.1 ≤ 40 )  

Therefore, column is classified long according to ACI criterion. 

• Moments of first order analysis should be modified to include the slenderness 
effect: 
𝑀𝑐 =  𝛿𝑛𝑠𝑀2  
where: 

𝛿𝑛𝑠 =
𝐶𝑚

1 −
𝑃𝑢

0.75𝑃𝑐

 

𝐶𝑚 = 0.6 + 0.4
𝑀1

𝑀2
= 0.6 + 0.4 (−

14

81
) = 0.53 

𝑃𝑐 =
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
  

𝐸𝐼𝑒𝑓𝑓 =  
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑𝑛𝑠
=

0.4(4700√21) (
3503 × 300

12
)

1.6
  

𝐸𝐼𝑒𝑓𝑓 =  
0.4(21.5 × 103)(1.07 × 109)

1.6
= 5.75 × 1012 𝑁 × 𝑚𝑚2 

𝑃𝑐 =
𝜋2 × 5.75 × 1012

(0.9 × 4 880)2
= 2 939 𝑘𝑁 

𝛿𝑛𝑠 =
0.53

1 −
1 112

0.75 × 2 939𝑐

= 1.07 

• This means that the primary moment that compute based on first order analysis 
should be increased by 7% to include the secondary moment. 
𝑀2 =  81𝐿𝑎𝑟𝑔𝑒𝑟 𝑜𝑛𝑒 𝑜𝑓 𝑒𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑠? 𝑀2𝑀𝑖𝑛 =  𝑃𝑢(15𝑚𝑚 + 0.03ℎ) 

𝑀2 =  81 𝑘𝑁𝐿𝑎𝑟𝑔𝑒𝑟 𝑜𝑛𝑒 𝑜𝑓 𝑒𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑠? 𝑀2𝑀𝑖𝑛 =  1 112 000 𝑁(15𝑚𝑚 + 0.03 × 350) 

𝑀2 =  81 𝑘𝑁. 𝑚 𝐿𝑎𝑟𝑔𝑒𝑟 𝑜𝑛𝑒 𝑜𝑓 𝑒𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 >  𝑀2𝑀𝑖𝑛 =  28.4 𝑘𝑁. 𝑚  

𝑀2 =  81 𝑘𝑁. 𝑚 
𝑀𝑐 =  1.07 × 81 = 86.7 𝑘𝑁. 𝑚 ∎ 
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Example 10.3-2 

Figure 10.3-3 below shows an elevation view of a multistory concrete frame building. 
Assumptions and Data: 

• 1.2m wide by 0.3 deep beams on all column lines. 

• Interior columns are tentatively dimensioned at 0.45m by 0.45m.  
• Exterior columns are 0.40m by 0.40m.  

• The frame is effectively braced against sway by stair and elevator shafts having 
concrete walls that are monolithic with the floors located in the building corners 
(not shown in the figure).  

• Live loads have been subjected based on load pattern shown. This pattern has 
been selected based on a first-order analysis. Full roof live load distribution on 

roof and upper floors has been used.  
• Service internal forces (axial force and bending moments at column two ends) for 

the typical interior column C3 have been computed based on a first order 

analysis (usually done by a computer program) and as shown below: 

 

  
Figure 10.3-3: Frame for Example 10.3-2. 

Based on above data and assumptions, design column C3 using the ACI moment 
magnifier method. Use 𝑓𝑐

′ = 28𝑀𝑃𝑎 and 𝑓𝑦 =  420 𝑀𝑃𝑎. 
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Solution 

• Aim of this example is to show the direct application of ACI procedure for design 
a slender column in a braced frame (the column is not in the ground floor). 

• Select a trial column: dimensions of a trial column have been assumed in the 

problem statement (0.45m by 0.45m).  
• Factored axial force and bending moments on Column C3 can be computed as 

follows: 
𝑃𝑢 =  1.2 × 1 023 𝑘𝑁 + 1.6 × 770 𝑘𝑁 = 2 460 𝑘𝑁 
𝑀𝑢2 =  1.2 × 2.71 𝑘𝑁. 𝑚 + 1.6 × 146 𝑘𝑁. 𝑚 = 237 𝑘𝑁. 𝑚 
𝑀𝑢1 =  1.2 × (−2.71) 𝑘𝑁. 𝑚 + 1.6 × 136 𝑘𝑁. 𝑚 = 214 𝑘𝑁. 𝑚 

• Resultant of factored loads is shown in Figure below. Then column C3 will have 
single curvature due to factored loads. 

 
• Determine if the frame should be considered as nonsway or sway: 

It is clear from problem statement that based on intuition the stiffness of shear 
wall has been assumed to be adequate to classify the building frame as a braced 
frame. If this decision is questionable, it can be checked based on stability index 

Q. 

• Find the unsupported length lu: 
𝑙𝑢 = 4.3𝑚 − 0.3𝑚 = 4.0𝑚  

• For the trial column, check for consideration of slenderness effects using the k = 

1.0. 
𝑘𝑙𝑢

𝑟
=

1.0 × 4.0 𝑚

0.3 × 0.45𝑚
= 29.6  ?   34 − 12

𝑀1

𝑀2
= 34 − 12 ×

214

237
= 23.2 < 40 

𝑘𝑙𝑢

𝑟
= 29.6 >   34 − 12

𝑀1

𝑀2
= 23.2 

Then, the column C3 is a slender column. 
• As slenderness is tentatively found to be important, refine the calculation of k 

based on the alignment chart in Article 10.1.2.5: 

Ψ =
∑

𝐸𝐼
𝑙 𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐸𝐼
𝑙 𝐵𝑒𝑎𝑚

 

Because 𝐸𝑐 is the same for column and beams, it will be canceled in the stiffness 

calculations. 

Ψ =
∑

𝐼
𝑙𝐶𝑜𝑙𝑢𝑚𝑛𝑠

∑
𝐼
𝑙𝐵𝑒𝑎𝑚
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Ψa = Ψb =

0.7 ×
0.454

12
4.3

× 2

0.35 × (
1.2 × 0.33

12
× 2)

7.3
× 2 

=
1.112 × 10−3

0.518 × 10−3
= 2.15 

 

Figure 10.3-4: Alignment chart 

applicable for Example 10.3-2. 

𝑘𝑙𝑢

𝑟
=

0.86 × 4.0 𝑚

0.3 × 0.45𝑚
= 25 >   34 − 12

𝑀1

𝑀2
= 23.2 

𝑘𝑙𝑢

𝑟
= 29.6 >   34 − 12

𝑀1

𝑀2
= 23.2 

This is still above the limit value of 23.2, conforming that slenderness must be 
considered. 

• If moments from the frame analysis are small, check to determine if the following 
minimum moment controls: 
𝑀2? 𝑀2,𝑚𝑖𝑛 =  𝑃𝑢(15 + 0.03ℎ) 
𝑀2 =  237 𝑘𝑁. 𝑚 ? 𝑀2,𝑚𝑖𝑛 =  2 460 000 (15 + 0.03 × 450𝑚𝑚) = 70.1 𝑘𝑁. 𝑚 

𝑀2 =  237 𝑘𝑁. 𝑚 >  𝑀2,𝑚𝑖𝑛 = 70.1 𝑘𝑁. 𝑚  𝑂𝑘. 

• Calculate the equivalent uniform moment factor 𝐶𝑚 (as was discussed in Article 
10.1.3.2). 

𝐶𝑚 =  0.6 + 0.4
𝑀1

𝑀2
= 0.6 + 0.4 ×

214

237
= 0.96 

• Calculate 𝛽𝑑𝑛𝑠, El and 𝑃𝑐 as discussed in Article 10.1. 

𝛽𝑑 =
maximum factored axial sustained load

maximum factored axial load associated
=

1.2 × 1 023

2 460
= 0.50 

𝐸𝐼 =
0.4𝐸𝑐𝐼𝑔

1 + 𝛽𝑑
=

0.4 × 4700 × √28 ×
4504

12
1.5

= 2.27 × 1013 𝑁. 𝑚𝑚2 

𝑃𝑐 =  
𝜋2𝐸𝐼

𝑘𝑙2
=

𝜋2 × 2.27 × 1013 𝑁. 𝑚𝑚2

(0.86 × 4 000 𝑚𝑚)2
= 18 913 kN  

• Calculate the moment magnification factor 𝛿𝑛𝑠 and magnified moment 𝑀𝑐 based 

on following relations: 

𝛿𝑛𝑠 =
𝐶𝑚

1 −
𝑃𝑢

0.75𝑃𝑐

=
0.96

1 −
2 460

0.75 × 18 913

= 1.16 ≥ 1.0 𝑂𝑘. 
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𝑀𝑐 =  𝛿𝑛𝑠𝑀2 = 1.16 × 237 = 275 𝑘𝑁. 𝑚 

• Finally, column C3 can be designed for an axial force of 𝑃𝑢 = 2 460 𝑘𝑁. 𝑚 and a 

bending moment of 𝑀𝑢 = 275 𝑘𝑁. 𝑚 and according to procedures of Chapter 9 to 

obtain the design results that shown in Figure below: 

 

Figure 10.3-5: Final design 

section for Example 10.3-2. 
 

Example 10.3-3 

The frame shown in Figure 10.3-6 below is a part of a building that can be considered 

braced by presence of stiff concrete walls surrounding the elevator shafts.  

The soil under the footings is soft with a relative stiffness of ψ =  51 is considered 

appropriate at the base. Other values of ψ have been computed and are given in Figure 
10.3-6 below.  

Structural factored load for column B between points 0 and 1 is 𝑃𝑢 =  2 000 𝑘𝑁. The 

concrete modulus of elasticity is 𝐸𝑐 =  30 000 𝑀𝑃𝑎. All columns are 400 mm x 400 mm 

square. Assume that 𝛽𝑑𝑛𝑠 = 0.5. 

• Calculate the buckling load; 
• Calculate the moment that should be used to design column B in the ground 

floor. 

 

Figure 10.3-6: Frame for Example 

10.3-3. 

 
  

 

 
1 For more details about computing 𝜓 for foundation, see “Reinforced Concrete: Mechanics and 

Design”, 4th Edition by J. G. Macgregor (Page 568).  
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Solution 
Practical Aspects of the Problem 

• This problem simulates a very common case that faces the structural engineer in 
his daily work with the interior columns. Generally, moment in an interior column 

of a multistory building has a negligible value due to the length and load 
symmetry between different spans. As the approach of structural stability of the 

slender columns is based on the amplification of the actual moments only, then it 
cannot be able to simulate inverse proportionality between the strength of an 

axially loaded column and its slenderness ratio.  
• To extend this approach to include this common and important case, the ACI 

Code states that (as was previously discussed) the design moment in a slender 

column of a braced frame must not be taken less than the following minimum 
value: 

M2,Min =  Pu(15mm + 0.03hmm) 

• When this moment is substituted into the relation of the ACI moment 
magnification method, one will obtain the following relation: 

Mc =
1

1 −
Pu

0.75Pc

  × [Pu(15 mm + 0.03h mm)] 

• If the applied factored load 𝑃𝑢 approaching the Euler Buckling Load 𝑃𝑐, the design 

moment 𝑀𝑐 will approach the infinite. Then the ACI moment magnification 

method has been extended to simulate the well-known fact of the inverse 
proportionality between the strength of the axially loaded column and its 
slenderness ratio (Euler Law). 

Compute the Buckling Load 𝑷𝒄𝒓: 
Compute the effective length factor from the alignment chart of braced frames, with 

ψ0 = 5 and ψ1 = 1, see Figure 10.3-7 below. 
𝑘 = 0.84 
𝑙𝑢 =  5.7𝑚 − 0.6𝑚 = 5.1𝑚 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
=

𝜋2 ×
30 000
1 + 0.5

× 0.4 ×
(4004)

12  

(0.84 × 5 100)2
= 9 169 𝑘𝑁 

 

Figure 10.3-7: Alignment chart applied 

to Example 10.3-3. 
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Compute the Design Moment 

• Check if the column is short or slender column: 
klu

r
=

0.85 × 5.1m

0.3 × 0.4m
= 36.125  ?  34 − 12

 M1

M2
  

As M1 =  0 and M2 =  M2 Min, then the above ratio will be: 
klu

r
= 36.2 > 34 − 12 × 0 

klu

r
= 36.2 > 34 

Then, the column is a slender column.  
Mc =  δnsM2 Min   

δns =
Cm

1 −
Pu

0.75Pc

 

• For member in which M2 Min exceeds M2 (as for our problem), ACI states that the 

Cm can be either taken equal to 1.0 or shall be based on the ratio of the 

computed end moments M1 and M2. Our solution will be based on the more 

conservative value of Cm =  1.0. 

Then: 

δns =
1

1 −
Pu

0.75Pc

 

Pu = 2 000 kN 

δns =
1

1 −
2 000

0.75 × 9 169

= 1.42 

As the magnification factor is in the range of maximum value of 1.4, hence column dimensions 
should be revised or additional bracing should be adopted. 

• Finally: 
Mc = 1.42 × [2 000 × 103 × (15 mm + 0.03 × 400mm)] = 1.42 × 54 kN. m = 76.7 kN. m ∎ 

 

Example 10.3-4 

A column is loaded as shown in Figure 10.3-8 below. Check if the column is short or 

slender, and then compute the moment that must be used in the design. Assume fc’ =
28 MPa and βdns = 0.4.  

 Figure 10.3-8: Column for Example 10.3-4. 
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Solution 

• The problem shows how to use the moment magnification method in a column 

that has no end moments 𝑀1 =  𝑀2 =  0 but has a large mid-span bending 

moment.  

• As ACI design procedure in written in terms of end moment 𝑀2, then this problem 

requires a special consideration.  
• It can be shown that the ACI for procedure for a column with mid-span moment 

can be rewritten in the following form2: 
𝑀𝑐 =  𝑀𝑀𝑖𝑑 𝑆𝑝𝑎𝑛 × 𝛿𝑛𝑠 

• Checking to see if the column is short or slender: 
klu

r
=

1.0 × 6.1m

0.3 × 0.4m
= 50.8  ?  34 − 12

 M1

M2
= 34 

klu

r
= 50.8 >  34 

Then the column is classified as a long column according to ACI Code. 

• Compute the Design Moment 𝑴𝒄: 

δns =
Cm

1 −
Pu

0.75Pc

 

As the column is subjected to transverse loads, then: 
Cm = 1.0 

𝐸𝐼 =
4700√28

1 + 0.4
× (0.4 ×

4003 × 300

12
 ) =  1.14 × 1013 𝑁. 𝑚𝑚2 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝑘𝑙𝑢)2
=

𝜋2 × 1.14 × 1013 𝑁. 𝑚𝑚2

(1.0 × 6 100)2 𝑚𝑚2
= 3 021 𝑘𝑁 

δns =
Cm

1 −
Pu

0.75Pc

=
1.0

1 −
1 334

0.75 × 3 021

= 2.43 

As the magnification factor is significantly larger than the maximum value of 1.4, hence column 
dimensions should be revised or additional bracing should be adopted. 

𝑀𝑐 =  𝑀𝑀𝑖𝑑 𝑆𝑝𝑎𝑛 × 𝛿𝑛𝑠 =
11.7 × 6.12

8
× 2.43 = 132 𝑘𝑁. 𝑚 ∎ 

 

 

  

 
 
2 See “Design of Reinforced Concrete” 7th Edition, by J. C. McCormac (Page 329). 
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10.4 SUMMARY OF ACI MOMENT MAGNIFIER METHOD FOR SWAY FRAMES 

For a column that may be a slender column in a sway story, ACI checking procedure 
can be summarized as follows: 

• Check to see if the story can be classified as sway or braced. This can be done 

either based on inspection or based on the concept of stability index “Q”. 
• Check if the column is short or slender based on the following limitation: 

𝑘𝑙𝑢

𝑟
≤  22 

• Classify the applied loads into: 
o That don’t produce sway (for example dead and live loads), 
o That produces sway (for example wind load, earthquake load, and loads due to 

lateral earth pressure.  

• Based on first order structural analysis compute the axial forces “𝑃𝑢” and bending 

moment (“𝑀𝑠” and “𝑀𝑛𝑠”) due to sway and nonsway loads respectively.  

• Compute the design moments based on the following relation: 
𝑀1 =  𝑀1𝑛𝑠 + 𝛿𝑠𝑀1𝑠                 𝑀2 =  𝑀2𝑛𝑠 +  𝛿𝑠𝑀2𝑠 

where the moment magnification factor for a sway story can be computed based 

on one of the following two approaches: 
o First Method: 

δs =
1

1 − Q
≥ 1.0 Eq. 10.4-1 

If 𝛿𝑠 calculated exceeds 1.4, 𝛿𝑠 shall be re-calculated by second method below. 

o Second Method: 

δs =
1

1 −
∑ Pu

0.75 ∑ Pc

≥ 1.0 
Eq. 10.4-2 

where  
i. ∑ Pu is the summation for all the factored vertical loads in a story, 

ii. ∑ Pc is the summation for all sway-resisting columns in a story,  

iii. 𝑃𝑐 is the Euler load computed as discussed in Article 10.1 with k from alignment 

chart for sway frame and with 𝛽𝑑𝑠 defined as the ratio of the maximum factored 
sustained shear within a story to the maximum factored shear in that story. Lateral forces 

due to wind or earthquake cannot be sustained loads. Then 𝛽𝑑𝑠 for these loads 

is always equal to zero. While lateral forces due to earth pressure can be 

sustained loads and 𝛽𝑑𝑠 for these loads is not equal to zero (See Figures 

below). 

 

Figure 10.4-1: 

Transient lateral force 

with 𝜷𝒅𝒔 = 𝟎. 
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Figure 10.4-2: Sustained lateral force with 𝜷𝒅𝒔 ≠ 𝟎. 

 

Example 10.4-1 

For the sway frame shown Figure 10.4-3 below: 

• Check to see if column AB is classified as short or slender according to ACI 
criterion?  

• If column is found to be slender, use ACI Moment Magnification Method to magnify 

the first order moments to include the slenderness effects. 

 
Figure 10.4-3: Frame for Example 10.4-1. 
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In your solution assume that: 

• All columns are 0.6m by 0.3m with fc' = 28 MPa, 
• All supports are fixed, 
• Columns selfweight can be neglected, 

• First order moment due to gravity loads (nonsway load) and due to lateral loads 

(sway loads) are as indicated in Figure 10.4-4 below, 

• Under sway loads, end B has zero rotation (Shear Building Assumption). 

 

Figure 10.4-4: Moments from a first order 

analysis for Column AB of Example 10.4-1. 

Solution 

• Check to see if the story can be classified as sway or braced. This can be done 
either based on intuition or based on the concept of stability index “Q”: 

Based on problem statement, column is part from unbraced story. 
• Check if the column is short or slender based on the following limitation: 

𝑘𝑙𝑢

𝑟
 ?  22 

𝑙𝑢 = 7.0 −
0.5

2
= 6.75𝑚 

• Based on assuming that end B has zero rotation, column boundary conditions will 

be similar to those presented in Figure 10.4-5 below. 

 

Figure 10.4-5: Column boundary conditions with shear building 

assumption. 
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Then k = 1.0 
𝑟 =  0.3ℎ = 0.3 × 0.6𝑚 = 0.18𝑚  
𝑘𝑙𝑢

𝑟
=

1.0 × 6.75

0.18
= 37.5 >  22 

Then the column is a slender column. 

• Classify the applied loads into a load that don’t produce sway and that produces 
sway: 

Loads are already classified in the problem statement. 
• Compute the design moments based on the following relation: 

𝑀2 =  𝑀2𝑛𝑠 +  𝛿𝑠𝑀2𝑠 

As we have no information about stability index, the 𝛿𝑠 can only be computed 

based on second method: 

δs =
1

1 −
∑ Pu

0.75 ∑ Pc

 

As selfweight of columns can be neglected according to problem statement, then 

resultant of vertical loads ∑ Pu will be computed based on factored loads acting on 

roof and floors: 

∑ Pu = (200
𝑘𝑁

𝑚
 × 10𝑚)

𝑅𝑜𝑜𝑓 𝐿𝑜𝑎𝑑𝑠
+  2 (150

𝑘𝑁

𝑚
× 10𝑚)

𝐹𝑙𝑜𝑜𝑟𝑠 𝐿𝑜𝑎𝑑𝑠
 

∑ Pu = 5000 𝑘𝑁 

Based on assumption of rigid flooring systems, all columns will have same 

boundary conditions, and as all columns have same dimensions, then they will 
have same critical load PC. 

∑ Pc = 3 × 𝑃𝑐 𝑓𝑜𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝐴𝐵  

Pc for column AB =
π2EI

(klu)2
 

𝐸𝐼 =
4700√28

1 + 0𝛽𝑑𝑠 𝑖𝑠 𝑍𝑒𝑟𝑜 𝑓𝑜𝑟 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐿𝑜𝑎𝑑𝑠
× (0.4 ×

6003 × 300

12
 ) 

𝐸𝐼 = 24.9 × 103
𝑁

𝑚𝑚2
(2.16 × 109𝑚𝑚4 ) =  53.8 × 1012 𝑁. 𝑚𝑚2 

Pc for column AB =
π2 × 53.8 × 1012 𝑁. 𝑚𝑚2

(1.0 × 6 750 mm)2
= 11 642 𝑘𝑁 

∑ Pc = 3 × 11 642 𝑘𝑁 = 34 926 𝑘𝑁 

δs =
1

1 −
∑ Pu

0.75 ∑ Pc

=
1

1 −
5000

0.75 × 34 926

= 1.24 < 1.4 ∴ Ok. 

M2 =  M2ns + δsM2s = 117 kN. m + 1.24 × 728 kN. m = 1 020 kN. m 
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CHAPTER 11 
ANALYSIS OF INDETERMINATE BEAMS 

AND FRAMES 
11.1 CONTINUITY 

• Continuity in steel structures: 

o The individual members that compose a steel structure are fabricated or cut 

separately and joined together by rivets, bolts, welds, or nails. 

o Unless the joints are specially designed for rigidity, they are too flexible to transfer 
moments of significant magnitude from one member to another.  

• Continuity in reinforced concrete structures: 

o In contrast, in reinforced concrete structures: 

▪ As much of the concrete as is practical is placed in one single operation.  

▪ Reinforcing steel is not terminated at the ends of a member but is extended 

through the joints into adjacent members. 

▪ At construction joints, special care is taken to bond the new concrete to the 
old by carefully cleaning the latter, by extending the reinforcement through 

the joint, and by other means.  

As a result, reinforced concrete structures usually represent monolithic, or 

continuous, units.  

o A load applied at one location causes deformation and stress at all other 
locations.  

o Even in precast concrete construction, which resembles steel construction in 

that individual members are brought to the job site and joined in the field, 
connections are often designed to provide for the transfer of moment as well 
as shear and axial load, producing at least partial continuity. 

• The effect of continuity: 

o In continuous beams: 

▪ The effect of continuity is most simply illustrated by a continuous beam, as 

shown in Figure 11.1-1a.  

▪ With simple spans, such as provided in many types of steel construction, 

only the loaded member CD would deform, and all other members of the 
structure would remain straight.  

▪ But with continuity from one member to the next through the support 

regions, as in a reinforced concrete structure, the distortion caused by a 

load on one single span is seen to spread to all other spans, although the 
magnitude of deformation decreases with increasing distance from the loaded member.  

▪ All members of the six-span structure are subject to curvature, and thus 

also to bending moment, as a result of loading span CD. 

o In rigid-jointed frame subjected to gravity forces: 

▪ Similarly, for the rigid-jointed frame of Figure 11.1-1b, the distortion caused 

by a load on the single member GH spreads to all beams and all columns, 

although, as before, the effect decreases with increasing distance from the load.  

▪ All members are subject to bending moment, even though they may carry 

no transverse load. 
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o In rigid-jointed frame subjected to horizontal forces:  

▪ If horizontal forces, such as forces caused by wind or seismic action, act on a 

frame, it deforms as illustrated by Figure 11.1-1c.  

▪ Here, too, all members of the frame distort, even though the forces act only 

on the left side; the amount of distortion is seen to be the same for all 
corresponding members, regardless of their distance from the points of loading, in 
contrast to the case of vertical loading.  

▪ A member such as EH, even without a directly applied transverse load, will 
experience deformations and associated bending moment. 

 

Figure 11.1-1: 

Deflected shape of 

continuous beams 

and frames. 

  
• Statically determinate versus statically indeterminate structures: 

o In statically determinate structures, such as simple-span beams, the deflected shape 
and the moments and shears depend only on the type and magnitude of the loads and the 
dimensions of the member.  

o In contrast, inspection of the statically indeterminate structures in Figure 11.1-1 

shows that the deflection curve of any member depends not only on the loads but also on 
the joint rotations, whose magnitudes in turn depend on the distortion of adjacent, rigidly 
connected members.  

o For a rigid joint such as joint H in the frame shown in Figure 11.1-1b or c, all 

the rotations at the near ends of all members framing into that joint must be 
the same.  

o For a correct design of continuous beams and frames, it is evidently necessary 

to determine moments, shears, and thrusts considering the effect of continuity 
at the joints. 

• Analysis of statically indeterminate structures 

o Elastic analysis: 

The determination of these internal forces in continuously reinforced concrete 

structures is usually based on elastic analysis of the structure at factored loads 
with methods that will be described in Sections 11.2 through 11.5.  

o Prerequisite data for an elastic analysis: 

Such analysis requires knowledge of the cross-sectional dimensions of the 

members. 
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• Preliminary estimation of member dimensions for analysis purpose: 

Member dimensions are initially estimated during preliminary design, which is 

described in Section 11.6 along with guidelines for establishing member proportions.  

• Approximate methods and their usefulness:  

o For checking the results of more exact analysis, the approximate methods of Section 
11.7 are useful.  

o ACI coefficient method: 

For many structures, a full elastic analysis is not justified, and the ACI coefficient method 
of analysis described in Section 11.8 provides an adequate basis for design moments and 
shears. 

11.2 LOADING* 
• The individual members of a structural frame must be designed for the worst 

combination of loads that can reasonably be expected to occur during its useful 
life.  

• Internal moments, shears, and thrusts are brought about by the combined effect 

of dead and live loads, plus other loads, such as wind and earthquake, as discussed 

in Chapter 1. 

• Dead versus live loads: 

o While dead loads are constant, live loads such as floor loads from human 
occupancy can be placed in various ways, some of which will result in larger 
effects than others. 

o In addition, the various combinations of factored loads specified in Chapter 1 
must be used to determine the load cases that govern member design. The 

subject of load placement will be addressed first. 

 PLACEMENT OF LOADS 

• Influence lines for maximum positive moments through imagination of deflected 
shape: 

o In Figure 11.2-1a only span CD is loaded by live load. The distortions of the 

various frame members are seen to be largest in, and immediately adjacent 

to, the loaded span and to decrease rapidly with increasing distance from the 
load.  

o Since bending moments are proportional to curvatures, the moments in more 

remote members are correspondingly smaller than those in, or close to, the 
loaded span.  

o However, the loading shown in Figure 11.2-1a does not produce the maximum 

possible positive moment in CD. In fact, if additional live load were placed on 
span AB, this span would bend down, BC would bend up, and CD itself would 

bend down in the same manner, although to a lesser degree, as it is bent by 
its own load.  

o Hence, the positive moment in CD is increased if AB and, by the same 

reasoning, EF are loaded simultaneously.  

o By expanding the same reasoning to the other members of the frame, it is easy to see that the 
checkerboard pattern of live load shown in Figure 11.2-1b produces the largest possible 
positive moments, not only in CD but also in all loaded spans.  

o Hence, two such checkerboard patterns are required to obtain the maximum 

positive moments in all spans. 
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Figure 11.2-1: 

Alternate live 

loadings for 

maximum 

effects.   

• Influence lines for minimum span moments: 

o In addition to maximum span moments, it is often necessary to investigate minimum 
span moments.  

o Dead load, acting as it does on all spans, usually produces only positive span 

moments.  

o However, live load, placed as in Figure 11.2-1a, and even more so in Figure 11.2-1b, 

is seen to bend the unloaded spans upward, that is, to produce negative 

moments in the span.  

o If these negative live load moments are larger than the generally positive dead load moments, 
a given girder, depending on load position, may be subject at one time to positive span 
moments and at another to negative span moments. It must be designed to withstand 

both types of moments; that is, it must be furnished with tensile steel at both 

top and bottom.  

o Thus, the loading of Figure 11.2-1b, in addition to giving maximum span moments 

in the loaded spans, gives minimum span moments in the unloaded spans. 

• Influence lines for maximum negative moments at the supports: 

o Maximum negative moments at the supports of the girders are obtained, on 

the other hand, if loads are placed on the two spans adjacent to the particular support, 
and in a corresponding pattern on the more remote girders.  

o A separate loading scheme of this type is then required for each support for 
which maximum negative moments are to be computed. 

• Influence lines for maximum moments in columns:  

o In each column, the largest moments occur at the top or bottom.  

o While the loading shown in Figure 11.2-1c results in large moments at the ends 

of columns 𝐶𝐶′ and 𝐷𝐷′, the reader can easily be convinced that these moments 

are further augmented (i.e. increased) if additional loads are placed as shown 

in Figure 11.2-1d. 
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 LOAD COMBINATIONS 

• The ACI Code requires that structures be designed for a number of load 

combinations, as discussed in Chapter 1.  

• Thus, for example, factored load combinations might include: 

o Dead plus live load; 

o Three possible combinations that include dead, live, and wind load;  

o Two combinations that include dead load, live load, and earthquake load, with 

some of the combinations including snow, rain, and roof live load.  

• Load Case and Load Combination: 

o While each of the combinations may be considered as an individual loading 

condition, experience has shown that the most efficient technique involves separate 
analyses for each of the basic loads without load factors, that is, a full analysis for 

unfactored dead load only, separate analyses for the various live load 
distributions described in Section 11.2.1, and separate analyses for each of the 

other loads (wind, snow, etc.).  

o Once the separate analyses are completed, it is a simple matter to combine 
the results using the appropriate load factor for each type of load.  

o This procedure is most advantageous because, for example, live load may 

require a load factor of 1.6 for one combination, a value of 1.0 for another, and 
a value of 0.5 for yet another. Once the forces have been calculated for each 
combination, the combination of loads that governs for each member can 

usually be identified by inspection.  

11.3 SIMPLIFICATIONS IN FRAME ANALYSIS* 
• Considering the complexity of many practical building frames and the need to 

account for the possibility of alternative loadings, there is evidently a need to 
simplify.  

• This can be done by means of certain approximations that allow the determination 
of moments with reasonable accuracy while substantially reducing the amount of computation. 

• Simplification for Regular Frames: 

o Definition of Regular Frames: 

Regular frames can be defined as the frames that have no unusual asymmetry 

of loading or shape. 

o Concept of Subframe: 

▪ Definition of Subframe: 

In case of regular frames, moments due to vertical loads can be determined 
with sufficient accuracy by dividing the entire frame into simpler subframes. 

Each of these consists of one continuous beam, plus the top and bottom 
columns framing into that particular beam.  

▪ Load acting on Subframe: 

Placing the live loads on the beam in the most unfavorable manner permits 

sufficiently accurate determination of all beam moments, as well as the 
moments at the top ends of the bottom columns and the bottom ends of 

the top columns.  

▪ Boundary conditions for subframe: 

For this partial structure, the far ends of the columns are considered fixed, 
except for such first-floor or basement columns where soil and foundation 

conditions dictate the assumption of hinged ends.  

▪ Subframe in ACI code: 

Subframe approach is explicitly permitted by ACI Code 6.3.1.2 and 6.4, which allow 

the following assumptions for floor and roof members under gravity load: 

▪ To calculate moments and shears in columns, beams, and slabs, the 
structural model may be limited to the members in the level being 
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considered and the columns above and below that level; the far ends of 
columns built integrally with the structure may be considered fixed. 

▪ The maximum positive moment near midspan occurs with the factored live 

load on the span and on alternate spans, and the maximum negative 
moment at a support occurs with the factored live load on adjacent spans 

only. 

o An example subframe: 

▪ Figure 11.3-1 demonstrates the application of the ACI Code requirements 
for live load on a three-span subframe.  

▪ The loading in Figure 11.3-1a results in: 

• The maximum positive moments in the exterior spans,  

• The minimum positive moment in the center span,  

• The maximum negative moments at the interior faces of the exterior columns.  

▪ The loading shown in Figure 11.3-1b results in: 

• The maximum positive moment in the center span, 

• The minimum positive moments in the exterior spans.  

Figure 11.3-1: Subframe loading as required 

by ACI Code 6.4: Loading for (a) maximum 

positive moments in the exterior spans, the 

minimum positive moment in the center 

span, and the maximum negative moments 

at the interior faces of the exterior columns; 

(b) maximum positive moment in the center 

span and minimum positive moments in the 

exterior spans; (c) maximum negative 

moment at both faces of the interior 

columns; (d) envelope moment diagram; and 

(e) envelope shear diagram. (DL and LL 

represent factored dead and live loads, 

respectively).  

▪ The loading in Figure 11.3-1c results in: 

• The maximum negative moment at both faces of the interior columns.  

• Since the structure is symmetrical, values of moment and shear 

obtained for the loading shown in Figure 11.3-1c apply to the right side of 

the structure as well as the left. 
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▪ Due to the simplicity of this structure, joints away from the spans of interest 
are not treated as fixed. 

o Envelopes versus diagrams: 

▪ Moments and shears used for design are determined by combining the 
moment and shear diagrams for the individual load cases to obtain the 
maximum values along each span length.  

▪ The resulting envelope moment and shear diagrams are shown in Figure 
11.3-1d and e, respectively.  

▪ Critical sections and cutoff points: 

The moment and shear envelopes (note the range of positions for points of 
inflection and points of zero shear) are used not only to design the critical 
sections but also to determine cutoff points for flexural reinforcement and 

requirements for shear reinforcement. 

• Forces in columns: 

About columns, the ACI Code indicates: 

o The factored axial load and factored moment occurring simultaneously for each 
applicable factored load combination shall be considered (ACI Code 10.2.4.1). 

o For frames or continuous construction, consideration shall be given to the effect 
of floor and roof load patterns on the transfer of moment to exterior and interior 
columns and of eccentric loading due to other causes (ACI Code 6.6.2.2). 

o In computing moments in columns due to gravity loading, the far ends of 

columns built integrally with the structure may be considered fixed (ACI Code 
6.3.1.2). 

o Floor or roof level moments shall be resisted by distributing the moment 

between columns immediately above and below the given floor in proportion to 
the relative column stiffnesses considering conditions of restraint (ACI Code 6.5.5 and 

6.6.2.1). 

o Concept of Tributary Areas: 

▪ Although it is not addressed in the ACI Code, axial loads on columns are 

usually determined based on the column tributary areas, which are defined 

based on the midspan of flexural members framing into each column.  

▪ The axial load from the tributary area is used in design, with the exception of first 
interior columns, which are typically designed for an extra 10 percent axial load to 
account for the higher shear expected in the flexural members framing into the exterior 
face of first interior columns.  

▪ The use of this procedure to determine axial loads due to gravity is 
conservative (note that the total vertical load exceeds the factored loads on 
the structure) and is adequately close to the values that would be obtained 

from a more detailed frame analysis. 
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11.8 ACI MOMENT COEFFICIENTS 
 BASIC CONCEPTS 

• ACI Code 6.5 includes expressions that may be used for the approximate calculation of 

maximum moments and shears in: 

o Continuous beams, 

o One-way slabs.  

• The expressions for moment take the form of: 

𝑀𝑢 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑤𝑢ℓ𝑛
2 Eq. 11.8-1 

where: 

𝑤𝑢 is the total factored load per unit length on the span, 

ℓ𝑛 is the clear span from face to face of supports for positive moment, or the average of the 
two adjacent clear spans for negative moment.  

• Shear is taken equal to: 

𝑉𝑢 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑤𝑢ℓ𝑛 Eq. 11.8-2 

• Nondimensional analysis can be adopted to show the validity of Eq. 11.8-1 and Eq. 11.8-2.  

• The coefficients, found in ACI Code 6.5.2 and 6.5.4, are shown in Table 11.8-1 and 

summarized in Figure 11.8-1. 

Table 11.8-1: Moment and shear values using ACI coefficient, Table 6.5.2 of ACI code. 
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Figure 11.8-1: Summary of 

ACI moment coefficients: 

(a) beams with more than 

two spans; (b) beams with 

two spans only; (c) slabs 

with spans not exceeding 

3m; and (d) beams in which 

the sum of column 

stiffnesses exceeds 8 times 

the sum of beam 

stiffnesses at each end of 

the span.  
 DIFFERENT TYPES OF DISCONTINUOUS END 

Three types for discontinues supports of Table 11.8-1 are presented and discussed in 

below. 

• Unrestrained Support: This type of support occurs when beams or slabs are 
supported directly on masonry walls or concrete walls without monolithic casting. 

Figure 11.8-2: Unrestrained 

Discontinuous Ends.   

• Spandrel Support: This type of support occurs when beams or slabs are 
supported on a monolithically casted edge beam or girder. 

Figure 11.8-3: Discontinuous 

ends with spandrel member 

support.   
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• Column Support: This type of support occurs when beams supported directly on 
columns. Slabs that supported directly on columns are out the scope of our course 

(junior course) and will be studied thoroughly in senior course. 

Figure 11.8-4: Discontinuous ends with 

column support.  
 BASES AND CONDITIONS OF ACI COEFFICIENTS 

• The ACI coefficients were derived by elastic analysis. 

• It is considering alternative placement of live load to yield maximum negative or 

positive moments at the critical sections.  

• Limitations for ACI coefficients: 

Following limitations have to be satisfied to ensure that the problem to be analyzed 

is similar to that adopted in the elastic analysis of ACI coefficients method and to avoid 

overestimation of moments and shear forces. 

o Members are prismatic, see Figure 
11.8-5. 

o Loads are uniformly distributed. 

o The unfactored live load does not 
exceed 3 times the unfactored dead 

load. 

o There are two or more spans. 

o The longer of two adjacent spans 
does not exceed the shorter by more 

than 20 percent. 

As indicated in Figure 11.8-6 when 

spans significantly differ, the shortest 

span may be subjected to negative moments. 

 
Figure 11.8-6: A beam with significantly differs spans. 

 MOMENT DIAGRAM AND MOMENT ENVELOPE  

• As alternative loading patterns are considered in applying the Code moment 

coefficients result in an envelope of maximum moments, as illustrated in Figure 11.8-7 
for one span of a continuous frame.  

• For maximum positive moment, that span would carry dead and live loads, while 

adjacent spans would carry dead load only, producing the diagram of Figure 11.8-7 
a.  

• For maximum negative moment at the left support, dead and live loads would be 

placed on the given span and that to the left, while the adjacent span on the right 

would carry only dead load, with the result shown in Figure 11.8-7b. 

 
Figure 11.8-5: Non-prismatic beams. 
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• Figure 11.8-7c shows the corresponding results for maximum moment at the right 

support.  

• The composite moment diagram formed from the controlling portions of those just 

developed (Figure 11.8-7d) provides the basis for design of the span. 

 
Figure 11.8-7: Maximum moment diagrams and moment envelope for a continuous 

beam: (a) maximum positive moment; (b) maximum negative moment at left end; (c) 

maximum negative moment at right end; and ( d ) composite moment envelope. 

• Inflection Points: 

o As observed in Figure 11.8-7, there is a range of positions for the points of 

inflection resulting from alternate loadings.  

o In the region of the inflection point, it is evident from Figure 11.8-7d that there 

may be a reversal of moments for alternative load patterns. However, within the stated 

limits for use of the coefficients, there should be no reversal of moments at the 
critical design sections near midspan or at the support faces. 

 NOTES ON MAXIMUM SHEAR FORCE ACCORDING ACI COEFFICIENTS METHOD 

• As indicated in Figure 11.8-8, the shears at the ends of the spans in a continuous 

frame are modified from the value of 𝑤𝑢ℓ𝑛 2⁄  for a simply supported beam because 

of the usually unbalanced end moments.  

Figure 11.8-8: 

Effect of 

unbalanced 

moment on 

shear of end 

spans.  
• For interior spans, within the limits of the ACI coefficient method, this effect will seldom 

exceed about 8 percent, and it may be neglected, as suggested in Table 11.8-1. 

• However, for end spans, at the face of the first interior support, the additional shear is 

significant, and a 15 percent increase above the simple beam shear is indicated in 

Table 11.8-1. The corresponding reduction in shear at the face of the exterior support is 
conservatively neglected. 
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 ACI COEFFICIENT METHOD VERSUS CLOSED-FROM ELASTIC ANALYSIS 

• Comparison of the moments found using the ACI coefficients with those calculated 

by more exact analysis will usually indicate that the coefficient moments are quite 
conservative. Actual elastic moments may be considerably smaller.  

• Consequently, in many reinforced concrete structures, significant economy can be 
achieved by making a more precise analysis. This is mandatory for beams and slabs with 

spans differing by more than 20 percent, sustaining loads that are not uniformly 

distributed, or carrying live loads greater than 3 times the dead load. 

 ACI COEFFICIENT METHOD AND MOMENTS IN COLUMNS 

Because the load patterns in a continuous frame that produce critical moments in the 

columns are different from those for maximum negative moments in the beams, 
column moments must be found separately.  
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 ANALYSIS EXAMPLES 

Example 11.8-1 

Use ACI coefficients method, if applicable, to determine the factored moments and shear 

for roof and floor beams of interior frame of building indicated in Figure 11.8-9. In your 

solution assume that 𝑊𝑟𝑜𝑜𝑓 𝑙𝑖𝑣𝑒 = 3 𝑘𝑁 𝑚⁄ , 𝑊𝑓𝑙𝑜𝑜𝑟 𝑙𝑖𝑣𝑒 = 10 𝑘𝑁 𝑚⁄ , 𝑊𝑠𝑢𝑟𝑝𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑟𝑜𝑜𝑓 =  9 𝑘𝑁 𝑚⁄ , 

and 𝑊𝑠𝑢𝑟𝑝𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑓𝑙𝑜𝑜𝑟 =  6 𝑘𝑁 𝑚⁄ , and that the support region has a width of 500mm. 

 

3D View. 

 

Support region. 

 

Elevation view for 

interior frame. 

Figure 11.8-9: 

Building frame for 

Example 11.8-1. 

Solution 
Roof Beams: 

𝑊𝑠𝑒𝑙𝑓 𝑜𝑓 𝑏𝑒𝑎𝑚 = 0.5 × 0.3 × 24 = 3.6
𝑘𝑁

𝑚
⇒ 𝑊𝑑𝑒𝑎𝑑 𝑟𝑜𝑜𝑓 = 9 + 3.6 = 12.6

𝑘𝑁

𝑚
 

𝑊𝑢 𝑟𝑜𝑜𝑓 = max(1.4 × 12.6, 1.2 × 12.6 + 1.6 × 3) ≈ 20
𝑘𝑁

𝑚
 

Check applicability of ACI coefficients method for roof beams: 

o Members are prismatic, Okay. 

o Loads are uniformly distributed, Okay. 

o The unfactored live load does not exceed 3 times the unfactored dead load,  

𝑊𝑑𝑒𝑎𝑑 𝑟𝑜𝑜𝑓 = 12.6
𝑘𝑁

𝑚
> 𝑊𝑟𝑜𝑜𝑓 𝑙𝑖𝑣𝑒 = 3

𝑘𝑁

𝑚
∴ 𝑂𝑘. 

o There are two or more spans: 

As there are two spans, therefore okay. 

o The longer of two adjacent spans does not exceed the shorter by more than 20 

percent:  

Adjacent spans are equals, therefore okay.  
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For roof beams, moments 
can be determined with 

referring to Case b of Figure 
11.8-1 above. 

ℓ𝑛 = 6.0 −
0.5

2
× 2 = 5.5 𝑚 

𝑀𝑢−𝑣𝑒 𝑖𝑛𝑡. =
𝑊𝑢ℓ𝑛

2

9
=

20 × 5.52

9
= 67.2 𝑘𝑁. 𝑚 

As the discontinuous end is a column support, hence positive and exterior negative 

moments are: 

𝑀𝑢+𝑣𝑒 =
𝑊𝑢ℓ𝑛

2

14
=

20 × 5.52

14
= 43.2 𝑘𝑁. 𝑚 

𝑀𝑢−𝑣𝑒 𝑒𝑥𝑡. =
𝑊𝑢ℓ𝑛

2

16
=

20 × 5.52

16
= 37.8 𝑘𝑁. 𝑚  

According to Table 11.8-1 above, factored shear force at exterior face of first interior 

support is: 

𝑉𝑢 = 1.15
𝑊𝑢ℓ𝑛

2
= 1.15 ×

20 × 5.5

2
= 63.3 𝑘𝑁 

Floor Beams: 

𝑊𝑠𝑒𝑙𝑓 𝑜𝑓 𝑏𝑒𝑎𝑚 = 0.5 × 0.3 × 24 = 3.6
𝑘𝑁

𝑚
⇒ 𝑊𝑑𝑒𝑎𝑑 𝑓𝑙𝑜𝑜𝑟 = 6 + 3.6 = 9.6

𝑘𝑁

𝑚
 

𝑊𝑢 𝑓𝑙𝑜𝑜𝑟 = max(1.4 × 9.6, 1.2 × 9.6 + 1.6 × 6) ≈ 21.2
𝑘𝑁

𝑚
 

Check applicability of ACI coefficients method for floor beams: 

o Members are prismatic, Okay. 

o Loads are uniformly distributed, Okay. 

o The unfactored live load does not exceed 3 times the unfactored dead load,  

3𝑊𝑑𝑒𝑎𝑑 𝑓𝑙𝑜𝑜𝑟 = 3 × (9.6
𝑘𝑁

𝑚
) > 𝑊𝑓𝑙𝑜𝑜𝑟 𝑙𝑖𝑣𝑒 = 6

𝑘𝑁

𝑚
∴ 𝑂𝑘. 

o There are two or more spans: 

As there are four spans, therefore okay. 

o The longer of two adjacent spans does not exceed the shorter by more than 20 

percent: Adjacent spans are equals, therefore okay. 

For floor beams, moments 
can be determined with 

referring to Case a of Figure 
11.8-1 above. 

ℓ𝑛 = 6.0 −
0.5

2
× 2 = 5.5 𝑚 

For interior spans: 

𝑀𝑢−𝑣𝑒 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =  
𝑊𝑢ℓ𝑛

2

11

=
21.2 × 5.52

11
= 58.3 𝑘𝑁. 𝑚 

𝑀𝑢+𝑣𝑒 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =  
𝑊𝑢ℓ𝑛

2

16
=

21.2 × 5.52

16
= 40.1 𝑘𝑁. 𝑚 

For exterior spans: 

𝑀𝑢−𝑣𝑒 𝑖𝑛𝑡.𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =
𝑊𝑢ℓ𝑛

2

10
=

21.2 × 5.52

10
= 64.1 𝑘𝑁. 𝑚 

As the discontinuous end is simple support, hence positive and exterior negative 

moments are: 

𝑀𝑢+𝑣𝑒 𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =
𝑊𝑢ℓ𝑛

2

11
=

21.2 × 5.52

11
= 58.3 𝑘𝑁. 𝑚 

𝑀𝑢−𝑣𝑒 𝑒𝑥𝑡.𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 = 0  

Finally, the shear at exterior face of first interior support is: 
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𝑉𝑢 = 1.15
𝑊𝑢ℓ𝑛

2
= 1.15 ×

21.2 × 5.5

2
= 67.0 𝑘𝑁 

Factored moments and shear forces for roof and floor beams are summarized in Figure 
11.8-10 below. 

 
Figure 11.8-10: Summary of factored moments and shears for Example 11.8-1. 
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Example 11.8-2 

Resolve Example 11.8-2 above when floor beam are supported on spandrel girder as 

indicated in Figure 11.8-11. 

 

3D View. 

 

Support region. 

 

Elevation view for 

interior frame. 

Figure 11.8-11: 

Building frame for 

Example 11.8-2. 

Solution 
Roof Beams: 

Change of exterior support condition for floor beams has no effect on factored forces of 

roof beams; hence, they would be as indicated in Figure 11.8-10 above.  

Floor Beams: 
Regarding to floor beams, clear spans for exterior and interior spans are: 

ℓ𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =  6.00 −
0.5

2
× 2 = 5.5 𝑚, ℓ𝑛 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 = 6.00 −

0.5

2
−

0.3

2
= 5.60 𝑚 

According to Table 11.8-1 above, ℓ𝑛 shall be average of two adjacent span for negative 

moment: 

ℓ𝑛 𝑎𝑣𝑔. =
5.5 + 5.6

2
= 5.55 𝑚 

With these clear spans, 
factored moments for an 

interior span can be 
determined with referring 

Case a of Figure 11.8-1 above: 

𝑀𝑢−𝑣𝑒 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =  
𝑊𝑢ℓ𝑛

2

11

=
21.2 × 5.552

11
= 59.4 𝑘𝑁. 𝑚 

𝑀𝑢+𝑣𝑒 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =  
𝑊𝑢ℓ𝑛

2

16
=

21.2 × 5.52

16
= 40.1 𝑘𝑁. 𝑚 

While for an exterior span with spandrel exterior support moments would be: 

𝑀𝑢−𝑣𝑒 𝑖𝑛𝑡.𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =
𝑊𝑢ℓ𝑛

2

10
=

21.2 × 5.552

10
= 65.3 𝑘𝑁. 𝑚 
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𝑀𝑢+𝑣𝑒 𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =
𝑊𝑢ℓ𝑛

2

14
=

21.2 × 5.62

14
= 47.5 𝑘𝑁. 𝑚 

𝑀𝑢−𝑣𝑒 𝑒𝑥𝑡.𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 =
𝑊𝑢ℓ𝑛

2

24
=

21.2 × 5.62

24
= 27.7 𝑘𝑁. 𝑚 

It is useful to note that ℓ𝑛 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛  of 5.60 𝑚  is used to determine the 

𝑀𝑢−𝑣𝑒 𝑒𝑥𝑡.𝑓𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑝𝑎𝑛 as it is governed by its exterior span.  

Finally, the shear at exterior face of first interior support is: 

𝑉𝑢 = 1.15
𝑊𝑢ℓ𝑛

2
= 1.15 ×

21.2 × 5.6

2
= 68.3 𝑘𝑁 

Factored moments and shear forces for roof and floor beams are summarized in Figure 
11.8-12 below. 

 
Figure 11.8-12: Summary of factored moments and shears for Example 11.8-2. 
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Example 11.8-3 

For building frame indicated in Figure 11.8-13 below, edge floor beams and floor beams are 

subjected to factored loads of 20 𝑘𝑁/𝑚  and 40 𝑘𝑁/𝑚  respectively. Check if ACI 

coefficients method is applicable to determine factored forces of a typical floor beam and 

of the edge floor beam located along stair. In your checking, assume the unfactored live 
load does not exceed 3 times the unfactored dead load.  

 

3D 

View 

 

Plan 

View 

Figure 11.8-13: Frame for Example 11.8-3. 
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Solution 
Applicability of ACI coefficients method: 

Checking applicability of ACI coefficients method for the edge floor beams and a typical 
floor beam: 

o Members are prismatic, Okay. 

o Loads are uniformly distributed, Okay. 

o The unfactored live load does not exceed 3 times the unfactored dead load: 

This condition is satisfied according to example statement.  

o There are two or more spans: 

▪ There are two spans for the edge floor beam located along stair shaft, oaky. 

▪ There are three spans for a typical floor beam, okay. 

o The longer of two adjacent spans does not exceed the shorter by more than 20 
percent: Adjacent spans are equals, therefore okay. 

Factored Forces for the Edge Floor Beam: 

As the edge beam is directly supported on columns (that have width equal to that of the 
girder), therefore their clear span is: 

ℓ𝑛 𝑓𝑜𝑟 𝑒𝑑𝑔𝑒 𝑓𝑙𝑜𝑜𝑟 𝑏𝑒𝑎𝑚𝑠 = 5.00 −
0.4

2
× 2 = 4.60 𝑚 

With two spans and column 

exterior support, the 
factored moments can be 

determined with referring to 

Case b of Figure 11.8-1 above. 

𝑀𝑢−𝑣𝑒 𝑒𝑥𝑡. =
𝑊𝑢ℓ𝑛

2

16
=

20 × 4.62

16
= 26.5 𝑘𝑁. 𝑚 

𝑀𝑢+𝑣𝑒 =
𝑊𝑢ℓ𝑛

2

14
=

20 × 4.62

14
= 30.2 𝑘𝑁. 𝑚 

𝑀𝑢−𝑣𝑒 𝑖𝑛𝑡. =
𝑊𝑢ℓ𝑛

2

9
=

20 × 4.62

9
= 47.0 𝑘𝑁. 𝑚 

𝑉𝑢 = 1.15
𝑊𝑢ℓ𝑛

2
= 1.15 ×

20 × 4.6

2
= 52.9 𝑘𝑁 

The factored forces for edge beams are summarized in see Figure 11.8-14 below. 

 
Figure 11.8-14: Summary of factored forces for edge floor beams Example 11.8-3. 
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