
Data Structure
Lecture 3: Arrays
and Pointers
Prepared by

Dr. Mohammed Salah Al-Obiadi

Arrays data structures

• Arrays are widely used in any programming language.

• It is extremely useful in cases where we need to store the
similar set of elements.

• It helps in reducing the program complexity.

• increases the programmer’s productivity.

• Arrays can be categorized into the following:

• Single Dimensional array.

• Double Dimensional array.

• Multidimensional array.

• We will not study the Multidimensional array.

Why we use Arrays
• Consider that we need to store grades of five students.

• In a normal way, we have to define five variables of the same type:

int main ()

{

int marks1, marks2, marks3, marks4, marks5;

cout<<”enter marks1”;

cin>>marks1;

cout<<”enter marks2”;

cin>>marks2;

cout<<”enter marks3”;

cin>>marks3;

cout<<”enter marks4”;

cin>>marks4;

cout<<”enter marks5”;

cin>>marks5;

return 0;

}

• Complexity of the above program will grow further upon increment of subjects.

• Consider we have 200 students, how the program will look like? What is the solution?

• Here the solutions lie with the usage of arrays.

Array can be
defined as:

A data
structure

used to store
set of similar
data types.

Elements are
stored in

continuous
memory

locations.

Index, or
subscript

starts with 0.

Size of the
array should
be constant.

One-
Dimensional
Array

Declaration:

• Data type variable_name[bound] ;

Examples:

• Int arr[10]; // an integer array with 10
elements.

• Char arr[20]; // a character array with
20 elements.

• float arr[15]; // a flaot array with 20
elements

Array
Element in
Memory

The array elements are stored in a consecutive manner inside the
memory.

For Example: int x[7];

Let the x[0] be at the memory address 568, then the entire array
can be represented in the memory as:

Two-Dimensional
Array

Declaration:

• Data type variable_name[rows] [columns] ;

Examples:

• Int arr[4][6]; // an integer 2-D array
with 4 rows and 6 columns.

• Char arr[20][20]; // a character 2-D
array with 20 rows and 20 columns.

• float arr[5][10]; // a float 2-D array
with 5 rows and 10 columns

Examples of Two-
dimensional
arrays

int x[3][4]={

{1, 2, 3, 4},

{5, 6, 7, 8},

{2, 4, 6, 3},

};

char x[3][4]={

{'h', 'a', 'f’, '7'},

{'u', 'f’, 'z’, 'l'},

{'y’, '8’, 'j’, 'm'},

};

POINTERS

Holding of addresses of another variable is needed in
various instances that include:

1- To access
the array
element

2- To change
the value of

variable from
function

3- In dynamic
allocation of

memory.

4- In complex
programming,

such as link
list, tree, B

tree etc.

Pointer is a variable that is capable to
hold the address of another variable.

How to know
a variable is a
pointer?

Pointers are preceded with the
symbol *.

For instance:

• int *x, It means that this pointer can hold the
address of integer type variable.

• char *c, , It means that this pointer can hold
the address of char type variable.

• float *w, It means that this pointer can hold
the address of float type variable.

Example of Declaring pointer

int x=8;

int *p;// variable that is pointer of int type

p=&x; //p now holds the address of variable x

cout<<p; // print the address of x;

cout<<*p; // print the value pointed by p;

Explaining Example of Declaring pointer

• Initially, the variable ‟x‟ is declared

• Assumes that it has been allocated the address location 1000.

• when int *p is declared, it is also allocated the address 925.

• When p=&x, this means that p holds the address of variable x which is 1000.

• Printing p will print address while printing *p will print x value.

8 1000

x

1000

p

925

Pointer to pointer

• Sometimes, we need to store the address of a pointer.

• This can be accomplished with the help of pointer to pointer.

• Pointer to pointer is a variable that holds the address of another variable that is
pointer type.

• Declaring pointer to pointer is different from the normal pointer type.

• In pointer to pointer notation two asterisk (**) are preceded before the identifier.

• Example:-

• int **pp;

• int *p;

• pp=&p;

1000 925

p

925

pp

4545

