
Data Structure
Lecture 4: Linked List
Prepared by

Dr. Mohammed Salah Al-Obiadi

What is a Linked List?

A linked list is a data structure used for storing collections of data.

1. Successive elements are connected by pointers.

2. The last element points to NULL.

3. Can grow or shrink in size during execution of a program.

4. Can be made just as long as required (until systems memory exhausts).

5. Does not waste memory space. It allocates memory as list grows.

A linked list has the following properties:

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

Linked List vs Arrays?

Array Linked list

Array elements store in a contiguous memory location. Linked list elements can be stored anywhere in the memory

Array works with a static memory and cannot be changed at
the run time.

The Linked list works with dynamic memory means memory
size can be changed at the run time.

Array elements are independent of each other. Linked list elements are dependent on each other. As each
node contains the address of the next node.

Array takes more time while performing any operation like
insertion, deletion, etc.

Linked list takes less time while performing any operation
like insertion, deletion, etc.

Accessing any element in an array is faster as the element in
an array can be directly accessed through the index.

Accessing an element in a linked list is slower as it starts
traversing from the first element of the linked list.

In the case of an array, memory is allocated at compile-time. In the case of a linked list, memory is allocated at run time.

Memory utilization is inefficient in the array. For example, if
the size of the array is 6, and array consists of 3 elements
then the rest of the space will be unused.

Memory utilization is efficient as the memory can be
allocated or deallocated at the run time.

Arrays take O(1) for access to an element. Linked lists take O(n) for access to an element.

Operation on Linked List

1- Traversal: To traverse all the nodes one after another.

2- Insertion: To add a node at the given position.

3- Deletion: To delete a node.

4- Searching: To search an element(s) by value.

5- Updating: To update a node.

6- Sorting: To arrange nodes in a linked list in a specific order.

7- Merging: To merge two linked lists into one.

Types of Link List

1- Single Link List

2- Double Link List

3- Circular Link List

4- Doubly Circular linked list

Single Link List

Generally “linked list”
means a single linked

list.

This list consists of a
number of nodes in

which each node has
a next pointer to the
following element.

The link of the last
node in the list is

NULL, which indicates
the end of the list.

Data Next

start Node 1

Data Next

Node 2

Data Next

Node 3

Data Next

Node 4

Null

STRUCTURE OF THE NODE OF A LINKED LIST

Struct tagname

{

Data type member1;

Data type member2;

…………………….

……………………

…………………..

Data type membern;

Struct tagname *var;

};

Example:

struct link

{

int info;

struct link *next;

};

LOGIC FOR CREATION
struct link start, *node;

We can’t guarantee addresses will be in a
continues form, so we need pointers to
keep addresses.

Algorithm For Creation Of Single Link List

Struct link start, *node

create(start,node) [start is the structure type of variable][node is the structure type of pointer]

step-1 : node = &start

step-2 : node → next = new link() //allocate memory of size struct link for the node

node = node → next

input : node → info

node → next = null

step-3 : repeat step-2 to create more nodes

step-4 : return

Algorithm For Traversing Of Single Link List

struct link start, *node;

traverse(start,node) [start is the structure type of variable] [node is the structure type of pointer]

step-1 : node = start.next

step-2 : repeat while (node!=null)

write : node → info

node = node → next

end of loop

step-3 : return

Insertion Into Linked List

The insertion process with link list can be discussed in
four different ways:

1. Insertion at Beginning.

2. Insertion at End.

3. Insertion when node number is known.

4. Insertion when information is known.

Algorithm For Insertion At Beginning

struct start, *first, *node,* newnode

insbeg(start,first,node, newnode) [start is the structure variable] [node and first is the structure pointer]

step-1 : first = &start //first saves start’s address

node = start.next

step-2 : newnode = new link()

input : newnode → info

first → next = newnode

newnode → next := node

step-3 : return

Algorithm For Insertion At Last

struct start, *last, *node,* newnode

inslast(start,last,node,newnode)

step-1 : last = &start //last’s pointer saves start’s address

node = start.next

step-2 : repeat while(node != null)

node = node → next

last = last → next

step-3 : newnode →next=new link() //allocate a memory to newnode

input : newnode → info

last → next = newnode

newnode → next = null

step-4 : return

