
Data Structure
Lecture 8: Tree 2

Prepared by

Dr. Mohammed Salah Al-Obiadi



Traversing With Tree

• The tree traversing is the way to visit all the nodes of the tree on a specific order.

• The Tree traversal can be accomplished in four different ways:

• Inorder Traversal

• Pre Order Traversal.

• Post Order Traversal

• Level Order Traversal



Inorder traversal

• Traverse the Left Subtree in INORDER(Left)

• Visit the Root node

• Traverse the Right Subtree in INORDER(Right)



Preorder Traversal

• Visit the Root Node

• Traverse the Right Subtree in PREORDER(Left)

• Traverse the Right Subtree in PREORDER(Right)



Postorder Traversal

• Traverse the Right Subtree in POSTORDER(Left)

• Traverse the Right Subtree in POSTORDER(Right)

• Visit the Root Node



Level Order Traversal

• In this type of traversal the elements will be visited according to level wise but it 
is not so far used.



Examples

1. Inorder : D B H E A F C I G

2. Preorder : A B D E H C F G I

3. Post Order : D H E B F I G C A

4. Level Order : A B C D E F G H I



Conversion Of A Tree From Inorder And Preorder

• INORDER : D B H E A F C I G

• PREORDER : A B D E H C F G I

• Choose the ROOT from the preorder and from inorder find the nodes in left and right and this process will 
continue up to all the elements are chosen from the preorder/inorder.

• STEP1: From preorder A is the root and from inorder we will find that in the left of A (D,B,H,E) and in the 
right (F,C,I,G):

• STEP2: Again from Preorder ‘B’ will be chosen as PARENT and from Inorder in the left of B (D) and in the 
right (H,E):



• STEP3: From Preorder ‘E’ will 
chosen as the PARENT and from 
inorder on its left ‘H’ is present:

• STEP4: From Preorder we will 
choose ‘C’ as the PARENT and from 
inorder we observe that in the left of 
‘C’ (F) will placed and in the right 
(I,G)

• STEP5: From the PREORDR we 
observe that ‘G’ is the parent and from 
the INORDER I will be used as the Left 
child of ‘G’.



Conversion Of A Tree From Inorder And Postorder

• INORDER : D B H E A F C I G

• POST ORDER : D H E B F I G C A

• Choose the ROOT from the postorder (from the right) and from 
inorder find the nodes in left and right and this process will continue up 
to all the elements are chosen from the postorder/inorder.

• STEP1 : From the right of POSTORDER ‘A’ will 

be chosen as the ROOT and from INORDER we 

observe that in the left of A (D,B,H,E,A) and in the 

right (F,C,I,G) will be there.

• STEP2: From the POSTORDER ‘C’ will be chosen 

as the PARENT and from INORDER we observe 

that in the right of ‘C’ (I,G) and to the left (F) will 

be used.



• STEP3: From the right of POSTORDER ‘G’ will be chosen as the 
PARENT and from inorder to the left of ‘G’ (I) will be used.

• STEP4: From the right to postorder ‘B’ will be chosen as the PARENT 
and from the INORDER to we observe that to the right of ‘B’ (H,E,A) 
and to the left (D) will be used.



• STEP5: From the right to postorder we will choose ‘E’ as PARENT and from the Inorder to the left of ‘E’ (H) 
will be used.



Applications of Binary Tree

• Expression Tree

• Binary Search Tree

• Height Balanced Tree (AVL Tree)

• Threaded Binary Tree

• Heap Tree

• Huffman Tree

• Decision Tree

• Red Black Tree



Expression Tree

• An expression tree is a Binary Tree which stores/represents the mathematical 
(arithmetic) expressions.

• The leaves of an expression tree are operands, such as constants or variable names 
and all the internal nodes are the operators.

• Formally we can define an expression Tree as a special kind of binary tree in 
which:

• Each leaf is an operand. Examples: a, b, c, 6, 100

• The root and internal nodes are operators. Examples: +, -, *, /, ^

• Subtrees are subexpressions with the root being an operator.



EXAMPLE

• Represent an Expression Tree

• A + (B*C) – (D^E) / F + G * H

• choose an operator in such a way that the terms 
in parenthesis will be in a side

• Choose a operator having higher precedence.




