
Data Structure
Lecture 11: Hashing

Prepared by

Dr. Mohammed Salah Al-Obiadi



Hash Table
• Hashing is a technique used 

for storing and retrieving 
information as quickly as 
possible.

• It is used to perform optimal 
searches and is useful in 
implementing symbol tables.

• Arrays, linked list, trees 
requires O(N) or log(N) to, 
search, traverse, add or 
delete, while with hashtable
it requires only O(1) time to 
do these operations.

• A hash table is a array with 
mapping function.



Why hash table is important

• If we have a set of names Ahmed, Yaser, Yasien, Mina, Mustafa, Lina.

• Let's suppose that you put these names in an array or a linked list.

• Let’s suppose that you are looking for the name Lina.

• Then, you will need to match all the array or linked list elements to find that name 
because it’s the last name in the list.

• This name costs loop of 6 to find it and if the list of names = n, then it costs O(n) to find it.

• With hash table, you give the name Lina, and you get it immediately in O(1). How is that? 
We will see in the next slides.



Time Complexity in Big O notation



Components of Hashing

• Hashing has four key components:
1.Hash Table
2.Hash Functions
3.Collisions
4.Collision Resolution Techniques



Hash Table

• Hash table or hash map is a data structure that stores the keys and their associated values.

• Hash table is a kind of array.

• It uses a hash function to map keys to their associated values.

• The terms widely used with hash table are Key, value. See Figure down.

Key here can 

be number, 

name, text, 

picture!!



Hash 
Functions

The hash function is used to transform the key into the 
index.

The hash function should map each possible key to a 
unique slot index.

A hash function that maps each item into a unique slot 
is referred to as a perfect hash function.

A hash function can lead to collisions.

Collisions happen when a hash function for two keys 
produce same index.

Our goal is to create a hash function that minimizes the 
number of collisions



How to choose your hash function?

• Example of phone number 436-555-4601.

• Consider the hash function h(x) = sum of numbers % hashtable size. 

• The % is the mode or division reminder and x is the phone number.

• Suppose hashtable size=10.

• So, h(436-555-4601)= (4+3+6+5+5+5+4+6+0+1) %10 = 4

• Another phone (479-345-6537)

• h(479-345-6537)= (4+7+9+3+4+5+6+5+3+7) %10 = 3

0 1 2 3 4 5 6 7 8 9

436-555-4601

0 1 2 3 4 5 6 7 8 9

479-345-6537 436-555-4601

0 1 2 3 4 5 6 7 8 9



• h(564-767-6537)= (5+6+4+7+6+7+6+5+3+7) %10 = 6

• h(565-387-9865)= (5+6+5+3+8+7+9+8+6+5) %10 = 2

• h(343-387-9865)= (3+4+3+3+8+7+9+8+6+5) %10 =6, here we have collision because index 6 already full.

• Problems with hashtable:
1. Number of elements can be larger than hashtable size.
2. An input that can lead to same index which is called collision

479-345-6537 436-555-4601 564-767-6537

0 1 2 3 4 5 6 7 8 9

565-387-9865 479-345-6537 436-555-4601 564-767-6537

0 1 2 3 4 5 6 7 8 9



Characteristics of Good Hash Functions

Minimize 
collision

1

Be easy and 
quick to 
compute

2

Distribute key 
values evenly in 
the hash table

3

Use all the 
information 
provided in the 
key

4



Collisions



Collision Resolution Techniques

• Collision resolution is The process of finding an alternate location.

• There are a number of collision resolution techniques:

• Direct Chaining: An array of linked list application

• Separate chaining

• Open Addressing: Array-based implementation

• Linear probing (linear search)

• Quadratic probing (nonlinear search)

• Double hashing (use two hash functions)



Linear 
probing

The interval between probes is fixed at 1.

In linear probing, we search the hash table 
sequentially, starting from the original hash location.

If a location is occupied, we check the next location.

rehash(key) = (n + 1)% tablesize

Where n is the current location found for key 





Quadratic 
Probing

Linear probing can lead to cluster of keys together.

The problem of Clustering can be eliminated if we use 
the quadratic probing method

In quadratic probing, we start from the original hash 
location n.

If a location is occupied, we check the next location.

rehash(key) = (n + k2)% tablesize

Where n is the current location found for key 

If a location is occupied, we check the locations i + 12 , 
i +22, i + 32, i + 42



Example of 
Quadratic 
Probing

• Let us assume that the table size is 11 (0..10)

• Insert keys

▪ 31 mod 11 = 9

▪ 19 mod 11 = 8

▪ 2 mod 11 = 2

▪ 13 mod 11 = 2 → 2 + 12 mod 11 = 3

▪ 25 mod 11 = 3 → 3 + 12 mod 11 =4

▪ 24 mod 11 = 2 → 2 + 12 mod 11 , 2 + 22 = 6

▪ 21 mod 11 = 10

▪ 9 mod 11 = 9 → 9 + 12, 9 + 22 mod 11, 9 + 32

mod 11=7


