

كلية : التربية للعلوم الصرفة

القسم او الفرع : الرياضيات

المرحلة: الثالثة

أستاذ المادة : أ.م.د. علاء محمود فرحان علي الجميلي

اسم المادة بالغة العربية : التحليل الرياضي

اسم المادة باللغة الإنكليزية : Mathematical Analysis

اسم الحاضرة الرابعة باللغة العربية: بعض الخواص والنظريات حول المجاميع المفتوحة

اسم المحاضرة الرابعة باللغة الإنكليزية :Some Properties Open Sets

المحاضرة العاشرة

Proposition: $[a, b], [a, b), [a, \infty)$ and $(-\infty, b]$ are not open set *Proof:* If S=[a,b], then S is not open set ? Since, if $x = a \rightarrow \forall r > 0$, $B(a, r) = (a - r, a + r) \not\subset [a, b]$

Proposition: The intersection of any tow open set is open set i.e ((the intersection of any finite family of open set is open))

Proof:
Let
$$A = \{S_k : S_k \text{ is open set } k = 1, 2, ..., n\}$$

 $T. p \cap_{k=1}^n S_k \text{ is open set}$
Let $x \in \bigcap_{k=1}^n S_k \to x \in S_k, \forall k$, but S_k is open set $\forall k$, then $\exists r_k > 0$
s.t $B(x, r_k) \subset S_k$
Let $r = \min \{r_1, r_2, ..., r_n\}$
Then $B(x, r) \subset S_k, \forall k$.
 $\therefore B(x, r) \subset \bigcap_{k=1}^n S_k$, therefore $\bigcap_{k=1}^\infty S_k$ is open set.

Theorem: the infinite intersection of open sets is not necessary open set. Ex: let $S_n = \left(x - \frac{1}{n}, x + \frac{1}{n}\right) \forall x \in R$, open interval. $n = 1 \rightarrow s_1 = (x - 1, x + 1)$ $n = 2 \rightarrow S_2 = (x - \frac{1}{2}, x + \frac{1}{2})$ $n = 3 \rightarrow S_3 = (x - \frac{1}{3}, x + \frac{1}{3})$

When $n \to \infty \cap_{k=1}^{\infty} S_k = \{x\}$ is not open

Theorem: the union of any family (finite or infinite) – (countable or uncountable) of open set is open

Proof:

Let $A = \{S_{\alpha}, S_{\alpha} \text{ is open set } \alpha \in \Lambda\}$ T.P: $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set Let $x \in \bigcup_{\alpha \in \Lambda} S_{\alpha} \to \exists \alpha \in \Lambda \text{ s. } t \ x \in S_{\alpha}$ Since S_{α} is open set $\to \exists \alpha > 0 \text{ s. } t$ $B(x, r_{\alpha}) \subset S_{\alpha}$, then $x \in B(x, r_{\alpha}) \subset S_{\alpha} \subset \bigcup_{\alpha \in \Lambda} S_{\alpha}$ This is true $\forall x \in \bigcup_{\alpha \in \Lambda} S_{\alpha}$, therefore $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set

Theorem: S is open iff S is the Union of balls

Definition: let X be anon-empty set and τ is a family of subsets of X, if τ satisfy the following

- 1- $oldsymbol{\phi}$, $X\in au$
- **2- If** G , $H \in \tau \rightarrow G \cap H \in \tau$
- **3-** If $\{G_{\lambda}\} \in \tau \to \bigcup_{\lambda \in \land} G_{\lambda} \in \tau$

Then, the order pair (X, τ) is called topological Space.

Theorem: every metric space is topological space. *Proof:*

Let (X, d) be a metric space and τ = the family of all open subsets of X, then

1-
$$\phi$$
, X open sets $\rightarrow \phi$, $X \in \tau$
2- G_1 , $G_2 \in \tau \rightarrow G_1$, G_2 are open sets
 $\rightarrow G_1 \cap G_2 \in \tau$
3- If $G_\lambda \in \tau$, $\lambda \in \Lambda \rightarrow \forall \lambda$, G_λ open subset of X
 $\rightarrow \bigcup_{\lambda \in \Lambda} G_\lambda$ open set of
 $\rightarrow \bigcup_{\lambda \in \Lambda} G_\lambda \in \tau$
 $\therefore (X, \tau)$ is a topological space

Definition: let d_1 and d_2 be two metric mapping in the set X, then d_1 , d_2 are called Equivalent if every open set in (X, d_1) is open in (X, d_2) and Vice Versa

Definition: let (X, d) be a metric space and $S \subseteq X$, S is called closed set if S^c is open Set where $S^c = X - s$ (Complement of S) **Example:**

- **1-** S = X is closed set. Solution: Since $S^c = X^c = \phi$ open set
- 2- S = φ is closed set Solution: since S^c = φ^c = X is open set
 3- S = [a, b], [a, b), S = (-∞, b] are closed set in R Solution: if S = [a, b] → S^c = (-∞, a) ∪ (b, ∞) open set → S is closed set
 4- In R, S = {x} is closed set Since :S^c = (-∞, x) ∪ (x, ∞) → S^c is open, So S is closed set.
 5- Any finite set in R is closed set Solution: let S = {x₁, x₂, ..., x_n} ⊆ R. S^c = (-∞, x₁) ∪ (x₁, x₂) ∪ ... ∪ (x_{n-1}, x_n) ∪ (x_n, ∞) So, S^c is open, then S is closed set
 6- If S = N, S = Z, then S is Closed set Solution: let S = N then S^c = (-∞, 1) ∪ (1, 2) ∪ (2, 3) ... (∪_{n=4}[∞](n, n + 1))
 - $\rightarrow S^c$ is open $\rightarrow S$ is closed

if
$$S = Z \to S^c = (\bigcup_{n=1}^{\infty} (-(n+1), -n)) \cup (-1, 0) \cup (0, 1) \cup (\bigcup_{n=1}^{\infty} (n, n+1))$$

 S^c is open, then S is closed

7- The Union of finite number of closed sets is closed. Solution: let $A = \{S_i, ; S_i \text{ closed set in } X, i = 1, 2, ..., n\}$ T.P: $\bigcup_{i=1}^n S_i$ is closed set i.e. T.P $(\bigcup_{i=1}^n S_i)^c$ is open set. Since S_i is closed, $\forall i$ then S_i^c is open $\forall i$ and $\bigcap_{i=1}^n S_i^c$ is open So, $(\bigcup_{i=1}^n S_i)^c$ is open $((\bigcup_{i=1}^n S_i)^c = \bigcap_{i=1}^n S_i^c)$ therefore $\bigcup_{i=1}^n S_i$ is closed.