

كلية : التربية للعلوم الصرفة القسم او الفرع :الرياضيات المرحلة: الثالثة أستاذ المادة : أ.م.د. علاء محمود فرحان علي الجميلي اسم المادة بالغة العربية : التحليل الرياضي

اسم المادة باللغة الإنكليزية : Mathematical Analysis

اسم الحاضرة الخامسة باللغة العربية: خواص المجاميع المغلقه والفضاءات المتراصة

اسم المحاضرة الخامسة باللغة الإنكليزية :Properties of closed sets compact spaces

Remark: the infinite union of closed sets is not necessary closed set

Example: let $S_n = \left\{ \left[\frac{-n}{n+1}, \frac{n}{n+1} \right] : n \in N \right\}$, S_n is closed interval, Is $\bigcup_{n=1}^{\infty} S_n$ is closed? Solution: If $n = 1 \rightarrow S_1 = \left[\frac{-1}{2}, \frac{1}{2} \right]$ If $n = 2 \rightarrow S_2 = \left[\frac{-2}{3}, \frac{2}{3} \right]$ \therefore When $n \rightarrow \infty \Rightarrow \lim_{n \rightarrow \infty} \frac{\pm n}{n+1} = \lim_{n \rightarrow \infty} \frac{\pm \frac{n}{n}}{\frac{n}{n} + \frac{1}{n}} = \pm 1$ $\therefore \bigcup_{n=1}^{\infty} S_n = (-1, 1)$ open set

Theorem: The infinite intersection of closed set S is closed?

Definition: let X be a metric space and $S \subseteq X, p \in X$, p is called an accumulation point of S if every open set contain p, contains another point q s.t $p \neq q$, $q \in S$.

i.e.: p is a cc. point of S if $\forall U$, U is open set $p \in U$, then $U - P \cap S \neq \phi$

Remark: Since every open set is Union balls. So, we can define acc. Point as following:

P is acc. Point of **S**, if $\forall r > 0$ $B(p, r) - \{p\} \cap S \neq \phi$

- * S' is the closure of all acc. Point of S (Derived set)
- * \overline{S} is the closure of S and $\overline{S} = S \cup S'$

* P is not acc. Point, if $\exists U$, U is open and $p \in U$ S.t $U - \{p\} \cap S = \phi$. (i.e. $\exists r > 0$, $B(r, p) - \{p\} \cap S = \phi$

Example: let $S = \{1, 5\}$, find S' and \overline{S} Solution: To find S' there are some cases x = 1, x = 5, x < 1, x > 5, 1 < x < 5If $x = 1 \rightarrow x$ is not acc. Point since, $\exists r > 0$ $B(x,r) - \{x\} \cap S = \emptyset$, when r = 1 $B(1,1) - \{1\} \cap \{1,5\} = (0,2) - \{1\} \cap [1,5\} = \emptyset$ If $x = 5 \rightarrow x$ is not acc. Point, since $\exists r > 0$, $B(x,r) - \{x\} \cap S = \emptyset$, when r = 1 $\rightarrow B(5,1) - \{5\} \cap \{1,5\} = (4,6) - \{5\} \cap \{1,5\} = \emptyset$ If $x < 1 \rightarrow x$ are not acc. Point since $x \in (x - 1, 1)$ & $(x - 1, 1) \cap S = \emptyset$ If $x > 5 \rightarrow x$ are not acc. Point, since $x \in (5, x + 1)$ & $(5, x + 1) \cap S = \emptyset$ If 1 < x < 5 are not acc. Point since, $x \in (1,5)$ and $(1,5) \cap S = \emptyset$ So, S has no a acc. Point then $S' = \emptyset$ and $\overline{S} = S \cup S' = S \cup \emptyset = S$. Let $s = \{1, \frac{1}{2}, \frac{1}{3}, ...\} = \{\frac{1}{n}, n = 1, 2, 3, ...\}$ show that $S' = \{0\}$ If S = (a, b), find S'

Solution: If $x = a \rightarrow x$ is

If $x = a \rightarrow x$ is acc. Point since $\forall r > 0$, $a \in B(0,r) = (a - r, a + r)$ and $B(a,r) - \{a\} \cap S \neq \emptyset$ If $x = b \rightarrow x$ is acc. Point, since $\forall r > 0$, $b \in B(b,r)$ B(b,r) = (b - r, b + r) and $B(b,r) - \{b\} \cap (a,b) \neq \emptyset$ If $a < x < b \rightarrow x$ are acc. Point since $\forall r > 0$, $x \in B(x,r) = (x - r, x + r)$ and $B(x,r) - \{x\} \cap S \neq \emptyset$ That is $(x - r, x + r) - \{x\} \cap (a,b) \neq \emptyset$ If $x < a \rightarrow x$ are not acc. Point since $x \in (x - 1, a) \& (x - 1, a) \cap S = \emptyset$ If $x > b \rightarrow x$ are not acc. Point, since $x \in (b, x + 1)$ and $(b, x + 1) \cap$ $(a, b) = \emptyset \therefore S' = [a, b] \rightarrow \overline{S} = S \cup S' = [a, b]$ **Definition:** A sub set A of a metric space X is said to be dense if $\overline{A} = X$ **Example:** prove that $\overline{Q} = R$ (i.e., Q dense set in R)

Solution: If $x \in R$, then x is acc. Point in Q.

Since any open interval Contain x Contains infinitely rational and irrationals Then Q' = R

So
$$\overline{Q} = Q \cup Q' = Q \cup R = R$$

Definition: a metric space is called separable if it has a countable dense subset.

Example: R separable since Q countable and $Q \subseteq R$, with Q dense in R **Theorem:** let X be a metric space, $S \subseteq X$ then

1- S is closed iff $S' \subset X$

- **2-** \overline{S} is closed set
- **3-** $\overline{S} = S$ iff S closed set
- 4- \overline{S} is smallest closed set contains S.

Compact Space

Definition: let (X, d) be a metric space, $\emptyset \neq S \subseteq X$, if the set $\{U_{\lambda}: U_{\lambda} \text{ open set}, \lambda \in \land\}$ is a family of open subsets of X such that $S \subseteq \bigcup_{\lambda \in \land} U_{\lambda}$, then the family $\{U_{\lambda}\}$ is called open cover for S in X.

- If the family $\{U_{\lambda}\}$ is finite and $S \subseteq \bigcup_{\lambda \in \wedge} U_{\lambda}$ then $\{U_{\lambda}\}$ is called finite cover.
- Let $\{U_{\lambda}\}$ and $\{U_{\alpha}\}$ be to open cover for S and $U_{\lambda} \in \{U_{\alpha}\} \forall \lambda$, then $\{U_{\lambda}\}$ is called subcover for $\{U_{\alpha}\}$

Def: let A be a subset of a metric space (X, d), A is called compact set if every open cover for A in X has a finite subcover.

Example: Any finite subset B of matric space (X, d) is compact set

Example: R is not compact

Example: Any open interval A=(a,b) is not compact

Example: Any closed interval A=[a,b] is Compact.

Proof:

Since we can restrict any open cover for A to finite subcover such as :

Let
$$\epsilon > 0, B = \{(a - \epsilon, a + \epsilon, (a, b), (b - \epsilon, b + \epsilon)\}$$

Theorem: ((Bolzano weir strass theorem))

In compact space X, every infinite subset S of X has at least one accumulation point.

Theorem: In compact metric space, every closed subset is compact. *Proof:* X be a compact metric space, and A be a closed subset of X, then A^c is open. T.P A is compact.

Let $B = \{U_{\lambda} : U_{\lambda} \text{ is open set in } X, \forall \lambda \in \land \}$ be open cover for A. Then $A \subseteq \bigcup_{\lambda \in \land} U_{\lambda}$ Sine $X = A \cup A^c \subseteq (\bigcup_{\lambda \in \land} U_{\lambda}) \cup A^c$,

But A^c is open set then $\bigcup_{\lambda \in \uparrow} U_{\lambda} \cup A^c$ is open cover for X, since X is compact set, then there exists a finite member $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$X = A^c \cup \left(\bigcup_{i=1}^n U_{\lambda i}\right)$$

Since that $X = A^c \cup (\bigcup_{i=1}^n U_{\lambda i})$. Since $\cap A^c = \emptyset$, then $A \subseteq \bigcup_{i=1}^n U_{\lambda i}$ \Rightarrow B has a finite subcover $\{U_{\lambda 1}, U_{\lambda 2}, \dots, U_{\lambda n}\}$. For A, \Rightarrow A is compact. Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is

closed

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is bounded

Remark: In metric space

Compact \rightarrow **Closed** + **bounded**

Theorem: Let $\{I_n : n = 1, 2, 3, ...\}$ be a family of closed interval if $I_{n+1} \subset I_n$, $\forall n$, then $\bigcap_{n=1}^{\infty} I_n = \emptyset$

≁

Theorem: (Hien-Bord Theorem)

Every closed and bounded subset of \mathbb{R}^n , $n \ge 1$, is compact.