
كلية : التربية للعلوم الصرفة
القسم او الفرع :الرياضيات
المرحة: الرابعة
أستاذ المادة : ا.م.د.ماجد محمد عبد
اسم المادة بالغة العربية :مقاسات
MODULES : اسم المادة باللفة الإنكليزية
اسم الحاضرة الأولى باللفة العربية: الزمرة والحلقة والمقاس
Group, ring and Module: اسم المحاضرة الأولى باللغة الإنكليزية

Definition 1.2 (Group) Let G be a nonempty set with a binary operation that assigns to each ordered pair ($a b$,) of elements of G an element $a b$ in G. We say G is a group under this operation if the following three properties are satisfied:

1. Associativity The operation is associative, that is (abcabc)=() for all abcG,, \in.
2. Identity There is an element e (called the identity) in G , such that ea ae $\mathrm{a}==$ for all $\mathrm{a} G \in$.
3. Inverse For each element a $G \in$, there is an element $1 \mathrm{a}-$ in G such that 11 aa a a $\mathrm{e}--==$.

Example 1.1 1. The set of integers, the set of rational numbers and the set of real numbers are all groups under ordinary addition. In each case the identity is 0 and the inverse of a is -a .

Definition 3.1 (Modules). Let R be a ring. An R -module is a set M together with two operations
$+: \mathrm{M}_{-} \mathrm{M}$!M and _ : R_M !M
(an "addition" in M and a "scalar multiplication" with elements of R) such that for all m;n 2 M and a;b 2 R we have:
(a) (M;+) is an Abelian group;
(b) (a+b) _m = a _m+b _m and $\mathrm{a}_{-}(\mathrm{m}+\mathrm{n})=\mathrm{a} _\mathrm{m}+\mathrm{a}_{-} \mathrm{n}$;
(c) $\left(\mathrm{a} _\mathrm{b}\right) _\mathrm{m}=\mathrm{a} __{-}\left(\mathrm{b} _\mathrm{m}\right)$;
(d) $1 _m=m$.

We will also call M a module over R , or just a module if the base ring is clear from the context.

Example 3.2.

(a) For a field R, an R-module is by definition exactly the same as an R-vector space [G2, Definition 13.1].
(b) Of course, the zero set f0g is a module, which we often simply write as 0 .
(c) For $\mathrm{n} 2 \mathrm{~N}>0$ the set $\mathrm{Rn}=\mathrm{f}(\mathrm{a} 1 ;::: ;$ an) : a1; : : : ; an 2 Rg is an R-module with componentwise addition and scalar multiplication. More generally, for two R-modules M and N the product M_N with componentwise addition and scalar multiplication is an R-module again.
(d) A Z-module is just the same as an Abelian group. In fact, any Z-module is an Abelian group by definition 3.1 (a), and in any Abelian group (M;+) we can define a multiplication with integers in the usual way by $(\square 1) _\mathrm{m}:=\square \mathrm{m}$ and $\mathrm{a} _\mathrm{m}:=\mathrm{m}+\ldots _+\mathrm{m}$ (a times) for a 2 N and m 2 M .
(e) Any R-algebra M is also an R-module by Remark 1.24, if we just forget about the possibility to multiply two elements of M.

