

Definition 3.3 (Submodules, sums, and quotients). Let M be an R-module.
(a) A submodule of M is a non-empty subset N _ M satisfying $\mathrm{m}+\mathrm{n} 2 \mathrm{~N}$ and am 2 N for all $\mathrm{m} ; \mathrm{n} 2 \mathrm{~N}$ and a 2 R . We write this as $\mathrm{N}_{\mathrm{C}} \mathrm{M}$. Of course, N is then an R-module itself, with the same addition and scalar multiplication as in M .
(b) For any subset $S_{-} M$ the set

of all R-linear combinations of elements of S is the smallest submodule of M that contains S . It is called the submodule generated by S . If $\mathrm{S}=\mathrm{fm1} ;::: ; \mathrm{mng}$ is finite, we write $\mathrm{hSi}=$ $\mathrm{hfm1} ;::: ; \mathrm{mngi}$ also as $\mathrm{hm1} ;::: ; \mathrm{mn}$ i. The module M is called finitely generated if $\mathrm{M}=\mathrm{hSi}$ for a finite set S _ M.
(c) For submodules $\mathrm{N} 1 ;:$: : ; Nn _ M their sum

is obviously a submodule of M again. If moreover every element m $2 \mathrm{~N} 1+_{\ldots} __{+}+\mathrm{Nn}$ has a unique representation as $\mathrm{m}=\mathrm{m} 1+_{-} __{+} \mathrm{mn}$ with mi 2 Ni for all i , we call $\mathrm{N} 1+_{\ldots}{ }_{-}+\mathrm{Nn}$ a direct sum and write it also as N 1 \qquad Nn.
(d) If $N_{-} M$ is a submodule, the set
$\mathrm{M}=\mathrm{N}:=\mathrm{fx}: \mathrm{x} 2 \mathrm{Mg}$ with $\mathrm{x}:=\mathrm{x}+\mathrm{N}$
of equivalence classes modulo N is again a module [G2, Proposition 15.15], the so-called quotient module of M modulo N .

Example 3.4.

(a) Let R be a ring. If we consider R itself as an R -module, a submodule of R is by definition the same as an ideal I of R. Moreover, the quotient ring R=I is then by Definition 3.3 (d) an R-module again.

Note that this is the first case where modules and vector spaces behave in a slightly different way: if K is a field then the K -vector space K has no non-trivial subspaces.
(b) The polynomial ring $\mathrm{K}[\mathrm{x} 1 ;::: ; \mathrm{xn}]$ over a field K is finitely generated as a K -algebra (by $\mathrm{x} 1 ;::: ; \mathrm{xn}$), but not finitely generated as a K-module, i. e. as a K-vector space (the monomials 1;x1;x2
$1 ;::$: are linearly independent). So if we use the term "finitely generated" we always have to make sure to specify whether we mean "finitely generated as an algebra" or "finitely generated as a module", as these are two different concepts.
Exercise 3.5. Let N be a submodule of a module M over a ring R. Show:
(a) If N and $\mathrm{M}=\mathrm{N}$ are finitely generated, then so is M .
(b) If M is finitely generated, then so is $\mathrm{M}=\mathrm{N}$.
(c) If M is finitely generated, N need not be finitely generated.

Definition 3.6 (Morphisms). Let M and N be R-modules.
(a) A morphism of R-modules (or R-module homomorphism, or R-linear map) from M to N is a map $\mathrm{j}: \mathrm{M}!\mathrm{N}$ such that
$j(m+n)=j(m)+j(n)$ and $j(a m)=a j(m)$
for all m;n 2 M and a 2 R . The set of all such morphisms from M to N will be denoted $\operatorname{HomR}(\mathrm{M} ; \mathrm{N})$ or just $\operatorname{Hom}(\mathrm{M} ; \mathrm{N})$; it is an R-module again with pointwise addition and scalar multiplication.
(b) A morphism $\mathrm{j}: \mathrm{M}$! N of R -modules is called an isomorphism if it is bijective. In this case, the inverse map $\mathrm{j} \square 1: \mathrm{N}$! M is a morphism of R-modules again [G2, Lemma 13.25
(a)]. We call M and N isomorphic (written $\mathrm{M}_{-}=$

N) if there is an isomorphism between
them.
3. Modules 29

Example 3.7.

(a) For any ideal I in a ring R, the quotient map $j: R!R=I$; a 7 ! a is a surjective R-module homomorphism.
(b) Let M and N be Abelian groups, considered as Z-modules as in Example 3.2 (d). Then a Z-module homomorphism j : M ! N is the same as a homomorphism of Abelian groups, since $j(m+n)=j(m)+j(n)$ already implies $j(a m)=a j(m)$ for all a $2 Z$.
(c) For any R-module M we have $\operatorname{HomR}(\mathrm{R} ; \mathrm{M})_{-}=$

M: the maps
M ! $\operatorname{HomR}(R ; M) ; m 7!(R!M ; a 7!a m)$ and $\operatorname{HomR}(R ; M)!M ; j 7!j(1)$
are obviously R-module homomorphisms and inverse to each other. On the other hand, the module $\operatorname{HomR}(\mathrm{M} ; \mathrm{R})$ is in general not isomorphic to M : for the Z -module Z 2 we have $\operatorname{HomZ}(\mathrm{Z} 2 ; \mathrm{Z})=0$ by (b), as there are no non-trivial group homomorphisms from Z 2 to Z .
(d) If N1; : : : ; Nn are submodules of an R-module M such that their sum $\mathrm{N} 1 _\ldots \ldots \mathrm{Nn}$ is direct, the morphism
N1__ __Nn !N1__ __Nn; (m1; : : : ; mn $) 7!$ m1+___+mn
is bijective, and hence an isomorphism. One therefore often uses the notation N1 _ _ __Nn for $\mathrm{N} 1 _\ldots \ldots \mathrm{Nn}$ also in the cases where $\mathrm{N} 1 ;::: ; \mathrm{Nn}$ are R-modules that are not necessarily submodules of a given ambient module M .

Example 3.8 (Modules over polynomial rings). Let R be a ring. Then an $\mathrm{R}[\mathrm{x}]$-module M is the same as an R -module M together with an R -module homomorphism $\mathrm{j}: \mathrm{M}$! M :
")" Let M be an $\mathrm{R}[\mathrm{x}]$-module. Of course, M is then also an R-module. Moreover, multiplication with x has to be R-linear, so $\mathrm{j}: \mathrm{M}!\mathrm{M} ; \mathrm{m} 7!\mathrm{x} _\mathrm{m}$ is an R-module homomorphism.
"(" If M is an R -module and $\mathrm{j}: \mathrm{M}$! M an R -module homomorphism we can give M the structure of an $R[x]$-module by setting $x _m:=j(m)$, or more precisely by defining scalar multiplication
where ji denotes the i -fold composition of j with itself, and $\mathrm{j} 0:=\mathrm{idM}$.
Remark 3.9 (Images and kernels of morphisms). Let $\mathrm{j}: \mathrm{M}!\mathrm{N}$ be a homomorphism of R-modules.
(a) For any submodule $\mathrm{M} 0 _\mathrm{M}$ the image $\mathrm{j}(\mathrm{M} 0)$ is a submodule of N [G2, Lemma 13.21 (a)].

In particular, $j(M)$ is a submodule of N, called the image of j.
(b) For any submodule $N 0 _N$ the inverse image $j \square 1(N 0)$ is a submodule of M [G2, Lemma
13.21 (b)]. In particular, $\mathrm{j} \square 1(0)$ is a submodule of M , called the kernel of j .

Proposition 3.10 (Isomorphism theorems).
(a) For any morphism $\mathrm{j}: \mathrm{M}!\mathrm{N}$ of R -modules there is an isomorphism

M=kerj !imj; m 7! j(m):
(b) For R-modules N0 _ N _ M we have
($\mathrm{M}=\mathrm{N} 0)=(\mathrm{N}=\mathrm{N} 0){ }_{-}=$
$\mathrm{M}=\mathrm{N}$:
(c) For two submodules $\mathrm{N} ; \mathrm{N} 0$ of an R -module M we have
$(\mathrm{N}+\mathrm{N} 0)=\mathrm{N} 0$ _ $=$
$\mathrm{N}=(\mathrm{N} \backslash \mathrm{N} 0)$:
Proof. The proofs of (a) and (b) are the same as in [G2, Proposition 15.22] and Exercise 1.22, respectively. For (c) note that $\mathrm{N}!(\mathrm{N}+\mathrm{N} 0)=\mathrm{N} 0 ; \mathrm{m} 7$! m is a surjective R-module homomorphism with kernel $\mathrm{N} \backslash \mathrm{N} 0$, so the statement follows from (a).

Exercise 3.11. Let N be a proper submodule of an R-module M . Show that the following statements are equivalent:

