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Definition 3.3 (Submodules, sums, and quotients). Let M be an R-module.

(@) A submodule of M is a non-empty subset N _ M satisfying m+n 2 N and am 2 N for all
m;n 2 N and a 2 R. We write thisas N _ M. Of course, N is then an R-module itself, with
the same addition and scalar multiplication as in M.

(b) For any subset S _ M the set

hSi:=falml+_ _ _+anmn:n2N;al;:::;an2R;ml;:::;mn2Sg_M



N1+  +Nn=fml+_ _ +mn:mi2Niforalli=1;:::;ng

is obviously a submodule of M again. If moreover every elementm2N1+_ _ +Nnhasa
unique representationas m=ml+__ +mn with mi 2 Ni forall i, wecallN1+_ _ +Nna
direct sum and write italsoasN1__ __ Nn.

(d) If N _ M is a submodule, the set

M=N :=fx : x 2 Mg with x := x+N

of equivalence classes modulo N is again a module [G2, Proposition 15.15], the so-called
quotient module of M modulo N.

Example 3.4.

(@) Let R be aring. If we consider R itself as an R-module, a submodule of R is by definition
the same as an ideal | of R. Moreover, the quotient ring R=1 is then by Definition 3.3 (d) an
R-module again.

Note that this is the first case where modules and vector spaces behave in a slightly different

way: if K is a field then the K-vector space K has no non-trivial subspaces.

1:x1:x2

1; : : : are linearly independent). So if we use the term “finitely generated” we always

have to make sure to specify whether we mean “finitely generated as an algebra” or “finitely
generated as a module”, as these are two different concepts.

Exercise 3.5. Let N be a submodule of a module M over a ring R. Show:

(@) If N and M=N are finitely generated, then so is M.

(b) If M is finitely generated, then so is M=N.

(c) If M is finitely generated, N need not be finitely generated.

Definition 3.6 (Morphisms). Let M and N be R-modules.

(@) A morphism of R-modules (or R-module homomorphism, or R-linear map) from M to N
isamap j: M !N such that

j(m+n) = j(m)+j(n) and j(am) = aj(m)

for all m;n 2 M and a 2 R. The set of all such morphisms from M to N will be denoted
HomR(M;N) or just Hom(M;N); it is an R-module again with pointwise addition and scalar

multiplication.



(b) A morphism j: M ! N of R-modules is called an isomorphism if it is bijective. In this
case, the inverse map j11 : N IM is a morphism of R-modules again [G2, Lemma 13.25
(@)]. We call M and N isomorphic (written M _=

N) if there is an isomorphism between

them.
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Example 3.7.

() For any ideal I inaring R, the quotient map j : R ! R=I; a 7! ais a surjective R-module
homomorphism.

(b) Let M and N be Abelian groups, considered as Z-modules as in Example 3.2 (d). Then a
Z-module homomorphism j : M IN is the same as a homomorphism of Abelian groups,
since j(m+n) = j(m)+j(n) already implies j(am) = aj(m) forall a 2 Z.

(c) For any R-module M we have HomR(R;M)_=

M: the maps

M 'HomR(R;M); m 7! (R'M;a 7! am) and HomR(R;M)!M; j 7! j(1)

are obviously R-module homomorphisms and inverse to each other. On the other hand,
the module HomR(M;R) is in general not isomorphic to M: for the Z-module Z2 we have

HomZ(Z2;Z) = 0 by (b), as there are no non-trivial group homomorphisms from Z2 to Z.

(d) If N1; : : : ;Nn are submodules of an R-module M such that theirsum N1 Nn s direct,
the morphism

N1 _NnIN1_ ~ Nn;(m1;:::;mn)7!'ml+__ _+mn

is bijective, and hence an isomorphism. One therefore often uses the notation N1 Nn
forN1 __ Nnalso in the cases where N1; : : : ;Nn are R-modules that are not necessarily

submodules of a given ambient module M.

Example 3.8 (Modules over polynomial rings). Let R be a ring. Then an R[x]-module M is the same
as an R-module M together with an R-module homomorphism j : M IM:

“)” Let M be an R[x]-module. Of course, M is then also an R-module. Moreover, multiplication
with x has to be R-linear, so j : M IM;m 7! x _m is an R-module homomorphism.

“(” If M is an R-module and j : M M an R-module homomorphism we can give M the structure

of an R[x]-module by setting x _m :=j(m), or more precisely by defining scalar multiplication



where ji denotes the i-fold composition of j with itself, and jO := idM.

Remark 3.9 (Images and kernels of morphisms). Let j :M!N be a homomorphism of R-modules.
(a) For any submodule MO _ M the image j(MO) is a submodule of N [G2, Lemma 13.21 (a)].

In particular, j(M) is a submodule of N, called the image of j.

(b) For any submodule NO _ N the inverse image j[11(NO) is a submodule of M [G2, Lemma
13.21 (b)]. In particular, j11(0) is a submodule of M, called the kernel of j.

Proposition 3.10 (Isomorphism theorems).

(@) For any morphism j : M !N of R-modules there is an isomorphism

M=kerj limj; m 71 j(m):

(b) For R-modules NO _ N _ M we have

(M=NO0)=(N=No0) _=

M=N:

(c) For two submodules N;NO of an R-module M we have

(N +N0)=NO0 =

N=(N \NO):

Proof. The proofs of (a) and (b) are the same as in [G2, Proposition 15.22] and Exercise 1.22,
respectively. For (c) note that N '(N +NO)=NO; m 7! m is a surjective R-module homomorphism
with kernel N \NO, so the statement follows from (a). _

Exercise 3.11. Let N be a proper submodule of an R-module M. Show that the following statements

are equivalent:



