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 الثالثتهحتوى الوحاضرة 

 

Definition  (IM, module quotients, annihilators). Let M be an R-module. 

(a) For an ideal IER we set 

IM := hfam : a   I;m    Mgi 

= fa1m1+_ _ _+anmn : n    N;a1; : : : ;an    I;m1; : : : ;mn    Mg: 

Note that IM is a submodule of M, and M=IM is an R=I-module in the obvious way. 

(b) For two submodules N;N0 +M the module quotient (not to be confused with the quotient 

modules of Definition 3.3 (d)) is defined to be 

N0 :N := fa    R : aN _ N0g ER: 

In particular, for N0 = 0 we obtain the so-called annihilator 

annN := annRN := fa   R : aN = 0g ER 

of N. The same definition can also be applied to a single element m    M instead of a submodule 
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N: we then obtain the ideals 

N0 :m := fa    R : am    N0g and ann m := fa   R : am = 0g 

of R. 

Example  

(a) If M, N, and N0 are submodules of the R-module R, i. e. ideals of R the 

product IM and quotient N0 :N are exactly the product and quotient of 

ideals as in  

(b) If I is an ideal of a ring R then annR(R=I) = I. 

Let us recall again the linear algebra of vector spaces over a field K. At the point where we are 

now, i. e. after having studied subspaces and morphisms in general, one usually restricts to finitely 

generated vector spaces and shows that every such vector space V has a finite basis. This makes V 

isomorphic to Kn with n = dimKV    N]. In other words, we can describe 

vectors by their coordinates with respect to some basis, and linear maps by matrices — which are 

then easy to deal with. 

For a finitely generated module M over a ring R this strategy unfortunately breaks down. Ultimately, 

the reason for this is that the lack of a division in R means that a linear relation among generators of 

M cannot necessarily be used to express one of them in terms of the others (so that it can be dropped 

from the set of generators). For example, the elements m = 2 and n = 3 in the Z-module Z satisfy 

the linear relation 3m+2n = 0, but neither is m an integer multiple of n, nor vice versa. So although 

Z = hmni and these two generators are linearly dependent over Z, neither m nor n alone generates 

Z. 

The consequence of this is that a finitely generated module M need not have a linearly independent 

set of generators. But this means that M is in general not isomorphic to Rn for some n    N, and thus 

there is no obvious well-defined notion of dimension. It is in fact easy to find examples for this: Z  

as a Z-module is certainly not isomorphic to Zn for some n. 

So essentially we have two choices if we want to continue to carry over our linear algebra results on 

finitely generated vector spaces to finitely generated modules: 

Modules  

_ restrict to R-modules that are of the form Rn for some n   N; or 

_ go on with general finitely generated modules, taking care of the fact that generating systems 

cannot be chosen to be independent, and thus that the coordinates with respect to such 
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systems are no longer unique. 

In the rest of this chapter, we will follow both strategies to some extent, and see what they lead to. 

Let us start by considering finitely generated modules that do admit a basis. 

 

Finitely generated R-module 

Definition (Bases and free modules). Let M be a finitely generated R-module. 

(a) We say that a family (m1; : : : ;mn) of elements of M is a basis of M if the R-module 

homomorphism 

 (b) If M has a basis, i. e. if it is isomorphic to Rn for some n, it is called a free R-module. 

Example If I is a non-trivial ideal in a ring R then R=I is never a free R-module: there can be 

no isomorphism 

Exercise Let R be an integral domain. Prove that a non-zero ideal I ER is a principal ideal if 

and only if it is a free R-module. 

Remark (Linear algebra for free modules). Let M and N be finitely generated, free R modules. 

(a) Any two bases of M have the same number of elements: assume that we have a basis with n 

elements, so that M _= 

Rn as R-modules. Choose a maximal ideal I of R  

Then R=I is a field and M=IM is an R=I-vector space  

(a). Its dimension is 

dimR=IM=IM = dimR=I Rn=IRn = dimR=I(R=I)n = n; 

and so n is uniquely determined by M. We call n the rank rkM of M. 

(b) In the same way as for vector spaces, we see that HomR(Rm;Rn) is isomorphic to the Rmodule 

Mat(n _ m;R) of n _ m-matrices over R . Hence, after 

choosing bases for M and N we also have HomR(M;N) _= 

Mat(n_m;R) with m = rkM 

and n = rkN  

(c) An R-module homomorphism j : M ! M is an isomorphism if and only if its matrix A2 

Mat(m_m;R) as in (b) is invertible, i. e. if and only if there is a matrix A+1 2 Mat(m_m;R) 

such that A+1 A = AA+1 = E is the unit matrix. As expected, whether this is the case can be 

checked with determinants as follows. 

(d) For a square matrix A2 Mat(m_m;R) the determinant detA is defined in the usual way 
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It has all the expected properties; in particular there is an adjoint 

matrix A# 2 Mat(m_m;R) such that A# A = AA# = detA_E (namely the matrix with (i; j)- 

With this we can see that A is invertible if and only if detA is a unit 

in R: 

If there is an inverse matrix A�1 then 1 = detE = det(A1 A) = detA1 _ detA, so detA 

is a unit in R. 

 If detA is a unit, we see from the equation A+A = AA# = detA_E that (detA)1 +A is 

an inverse of A. 

So all in all finitely generated, free modules behave very much in the same way as vector spaces. 

However, most modules occurring in practice will not be free — in fact, submodules and quotient 

modules of free modules, as well as images and kernels of homomorphisms of free modules, will in 

general not be free again. So let us now also find out what we can say about more general finitely 

generated modules. 

First of all, the notion of dimension of a vector space, or rank of a free module as in Remark 3.17 

(a), is then no longer defined. The following notion of the length of a module can often be used to 

substitute this. 

 

Definition (Length of modules). Let M be an R-module. 

(a) A composition series for M is a finite chain 

0 = M0 ( M1 + M2 ( _ _ _ ( Mn = M 

of submodules of M that cannot be refined, i. e. such that there is no submodule N of M with 

Mi1 ( N ( Mi for any i = 1; : : : ;n. , this is equivalent to Mi=Mi�1 having 

no non-trivial submodules for all i, and to Mi=Mi1 being isomorphic to R modulo some 

maximal ideal for all i). 

The number n above will be called the length of the series. 

(b) If there is a composition series for M, the shortest length of such a series is called the length 

of M and denoted lR(M) (in fact, we will that then all composition 

series have this length). Otherwise, we set formally lR(M) = ¥. 

If there is no risk of confusion about the base ring, we write lR(M) also as l(M). 

Exercise . Let M be an R-module of finite length, i. e. an R-module that admits a composition 

series. Show that: 
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(a) If N < M is a proper submodule of M then l(N) < l(M). 

(b) Every composition series for M has length l(M). 

(c) Every chain 0 = M0 ( M1 ( M2 ( _ _ _ ( Mn = M of submodules of M can be refined to a 

composition series for M. 

Example  

(a) Let V be a vector space over a field K. If V has finite dimension n, there is a chain 

0 =V0 (V1+Vn) =V 

of subspaces of V with dimKVi = i for all i. Obviously, this chain cannot be refined. Hence it 

is a composition series for V, and we conclude that l(V) = n = dimKV. 

On the other hand, if V has infinite dimension, there are chains of subspaces of V of any 

length. this is only possible if l(V) = Y. 

So for vector spaces over a field, the length is just the same as the dimension. 

(b) There is no statement analogous to (a) for free modules over a ring: already Z has infinite 

length over Z, since there are chains 

0 ( (2n) ( (2n�1) ( _ _ _ ( (2) ( Z 

of ideals in Z of any length. 

(c) Certainly, a module M of finite length must be finitely generated: otherwise there would 

be infinitely many elements (mi)i2N of M such that all submodules Mi = hm1,… ;mi i are 

distinct. But then 0 = M0 +M1 + M2 is an infinite chain of submodules, which by 

Exercise is impossible for modules of finite length. 

On the other hand, a finitely generated module need not have finite length, as we have seen in 

(b). In fact, we will study the relation between the conditions of finite generation and finite 

length in more detail in Chapter 7. 

Exercise. What are the lengths of Z8 and Z12 as Z-modules? Can you generalize this statement 

to compute the length of any quotient ring R=I as an R-module, where I is an ideal in a principal 

ideal domain R? 


