

كلية : التربية للعلوم الصرفة القسم او الفرع :الرياضيات المرحلة: الرابعة أستاذ المـادة : ا.م.د.مـجد محمد عبد

اسم المـادة بالغة العربية :مقاسـات
MODULES : اسم المـادة بـاللغة الإنكليزية اسم الحاضرة الأولى بـاللفة العربية: المقاس المسطح flat Module: اسم المحاضرة الأولى بـاللغة الإنكليزيـة

محتوى المحاضرة الثثامنة

(3) implies (2)

Let $0 \neq \mathrm{x} \in \mathrm{N}$ and consider a maximal ideal m containing $\operatorname{Ann}(\mathrm{x})$. But then $\mathrm{Ax}{ }^{\prime} \mathrm{A} / \operatorname{Ann}(\mathrm{x})$ and then $A x \otimes M=A / A n n(x) \otimes M=M / \operatorname{Ann}(x) M$ which is nonzero because $\operatorname{Ann}(x) M \subset m M \neq M$. Now, we have an R-linear map which is injective $0 \rightarrow \mathrm{Ax} \rightarrow \mathrm{N}$ and by flatness of M we get that $\mathrm{Ax} \otimes \mathrm{M}$ injects into $\mathrm{N} \times \mathrm{M}$, so the latter is nonzero as well.
(2) implies (1)

Let f be an A-linear map between two modules $\mathrm{E} \rightarrow \mathrm{F}$. We claim that $\operatorname{Ker}(\mathrm{f}) \otimes \mathrm{M}=\operatorname{Ker}(\mathrm{f} \otimes 1)$ and $\operatorname{Im}(\mathrm{f}) \otimes \mathrm{M}=\operatorname{Im}(\mathrm{f} \otimes 1)$. Indeed, $\operatorname{Ker}(\mathrm{f}) \rightarrow \mathrm{E} \rightarrow \mathrm{F}$ and $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{F} / \operatorname{Im}(\mathrm{f})$ are exact, so they remain exact after tensoring with M . Consider a sequence of A-modules $\mathrm{N} 0 \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} 00$ such that $\mathrm{N} 0 \otimes \mathrm{M}$ $\mathrm{f} \otimes 1 \rightarrow \mathrm{~N} \otimes \mathrm{Mg} \otimes 1 \rightarrow \mathrm{~N} 00 \otimes \mathrm{M}$ is exact. So $(\mathrm{g} \circ \mathrm{f}) \otimes 1=0$ hence $\mathrm{g} \circ \mathrm{f}=0$. In conclusion $\operatorname{Im}(\mathrm{f}) \subset$
$\operatorname{Ker}(\mathrm{g})$. Consider now $\mathrm{H}=\operatorname{Ker}(\mathrm{g}) / \operatorname{Im}(\mathrm{f})$. Then by flatness $\mathrm{H} \otimes \mathrm{M}=(\operatorname{Ker}(\mathrm{g}) \otimes \mathrm{M}) /(\operatorname{Im}(\mathrm{f}) \otimes \mathrm{M})=0$. Therefore $\mathrm{H}=0$.

Corollary 1.5. Let $\mathrm{f}:(\mathrm{A}, \mathrm{m}) \rightarrow(\mathrm{B}, \mathrm{n})$ a local homomorphism of rings (that is f is a ring homomorphism and $f(m) \subset n)$. Then B is A-flat if and only if B is A-faithfully flat.

Proof. Since $f(m) \subset n$ we get that $m B \subset n \neq B$.
Proposition 1.6.
(1) Let A be a ring and M an A-flat module. Let $\mathrm{N} 1, \mathrm{~N} 2$ be two submodules of M . Then ($\mathrm{N} 1 \cap \mathrm{Ns}$) \otimes $M=(N 1 \otimes M) \cap(N 2 \otimes M)$, where the objects are regarded as submodules of $N \otimes A M$.
(2) Therefore, if $A \rightarrow B$ is flat then for any ideals I, J of A, we have $(I \cap J) B=I B \cap J B$. If J is finitely generated, then $(\mathrm{I}: \mathrm{J}) \mathrm{B}=(\mathrm{IB}: \mathrm{JB})$.
(3) If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is faithfully flat, then for any A-module M the natural map $M \rightarrow M \otimes A B$ is injective. In particular f is injective. In particular, for any ideal $I \subset A, I B \cap A=I$.

Proof. For (1), consider the exact sequence of A-modules $0 \rightarrow \mathrm{~N} 1 \cap \mathrm{~N} 2 \rightarrow \mathrm{~N} \rightarrow \mathrm{~N} / \mathrm{N} 1 \oplus \mathrm{~N} / \mathrm{N} 2$, and tensor with M . The resulting exact sequence gives the statement. For (2), let $\mathrm{N}=\mathrm{A}, \mathrm{N} 1=\mathrm{I}, \mathrm{N} 2=\mathrm{J}$, and $\mathrm{M}=\mathrm{B}$. For the second part, let $\mathrm{J}=(\mathrm{a} 1, \ldots, \mathrm{ak})$. But then $\mathrm{I}: \mathrm{J}=\cap \mathrm{k} \mathrm{i}=1$ (I : Aai). Fix i , and let $0 \rightarrow$ (I : Aai) $\rightarrow \mathrm{A} \rightarrow$ ai A / I which is exact. Since B is A -flat we get that the sequence stays exact after tensoring with B . This gives us $0 \rightarrow(\mathrm{I}:$ Aai) $\mathrm{B} \rightarrow \mathrm{B} \rightarrow$ ai B / IB. Therefore, ($\mathrm{I}:$ Aai) $\mathrm{B}=(\mathrm{IB}:$ Bai) by computing the kernels in two ways. Therefore, $(\mathrm{I}: \mathrm{J}) \mathrm{B}=\left(\cap_{\mathrm{k}} \mathrm{i}=1(\mathrm{I}: A a i)\right) \mathrm{B}$ which equals $\left(\cap_{\mathrm{k}} \mathrm{i}=1(\mathrm{I}:\right.$ Aai)B$)$ by the first part of (2). But this last term equals $\cap_{k} \mathrm{i}=1$ (IB : Bai) $=I B: J B$. Finally, let $m \in M$ such that $m \otimes 1$ $=0$ in $\mathrm{M} \otimes \mathrm{AB}$. We need $\mathrm{m}=0$, so let us assume that $\mathrm{m} 6=0$. But then $06=\mathrm{Am} \subset \mathrm{M}$ and therefore, since B is A-faithfully flat, we get that $0 \neq A m \otimes A B$ in $M \otimes A B$. On the hand $m \otimes 1=0$ so $A m \otimes A$ $\mathrm{B}=0$ as well. Contradiction. The final statement is obtained by letting $\mathrm{M}=\mathrm{B}$.

Lemma 1.7. Let i : $\mathrm{E} \rightarrow \mathrm{F}$ be an injective A -linear map. Let M be an A-module and consider $\mathrm{u} \in$ $\operatorname{ker}(1 \mathrm{M} \otimes \mathrm{i}) \subset \mathrm{E} \otimes \mathrm{AM}$, where $1 \mathrm{M} \otimes \mathrm{i}: \mathrm{E} \otimes \mathrm{AM} \rightarrow \mathrm{F} \otimes \mathrm{A} M$. Then there exists N finitely generated submodule of M and $\mathrm{v} \in \operatorname{ker}(1 \mathrm{~N} \otimes \mathrm{i})$ such that v maps to u under the canonical map $\mathrm{E} \otimes \mathrm{N}$ $\rightarrow \mathrm{E} \otimes \mathrm{M}$.

Proposition 1.8. A module M is flat over A if all its finitely generated submodules are flat over A .

Proof. This is a straightforward application of the Lemma. If there exists an R-linear injection i:E $\rightarrow \mathrm{F}$ and for any element $u \in \operatorname{Ker}(i \otimes A 1 M)$, we can find a finitely generated submodule N of M and $v \in$ $\operatorname{ker}(\mathrm{i} \otimes \mathrm{A} 1 \mathrm{~N})$ such that v maps onto u under the canonical map. But N is flat so $\mathrm{v}=0$ which gives $\mathrm{u}=$ 0 .

Proposition 1.9. Let A be a domain. Then every flat A-module is torsion free. The converse holds, if A is a PID. Proof. Let a $6=0$ in A. Then multiplication by a is injective on A (

