

كلية : التربية للعلوم الصرفة القسم او الفرع :الرياضيات المرحلة: الرابعة أستاذ المادة : ا.م.د.ماجد محمد عبد اسم المادة باللغة العربية : MODULES اسم المادة باللغة الإنكليزية : MODULES اسم الحاضرة الأولى باللغة العربية: المقاس المسطح اسم المحاضرة الأولى باللغة العربية: المقاس المسطح

محتوى المحاضرة الثامنة

(3) implies (2)

Let $0 \neq x \in N$ and consider a maximal ideal m containing Ann(x). But then Ax ' A/Ann(x) and then $Ax \otimes M = A/Ann(x) \otimes M = M/Ann(x)M$ which is nonzero because $Ann(x)M \subset mM \neq M$. Now, we have an R-linear map which is injective $0 \rightarrow Ax \rightarrow N$ and by flatness of M we get that $Ax \otimes M$ injects into $N \times M$, so the latter is nonzero as well.

(2) implies (1)

Let f be an A-linear map between two modules $E \to F$. We claim that Ker(f) \otimes M = Ker(f \otimes 1) and Im(f) \otimes M = Im(f \otimes 1). Indeed, Ker(f) \to E \to F and E \to F \to F/Im(f) are exact, so they remain exact after tensoring with M. Consider a sequence of A-modules N0 \to N \to N00 such that N0 \otimes M f \otimes 1 \to N \otimes M g \otimes 1 \to N00 \otimes M is exact. So (g \circ f) \otimes 1 = 0 hence g \circ f = 0. In conclusion Im(f) \subset

Ker(g). Consider now H = Ker(g)/Im(f). Then by flatness $H \otimes M = (Ker(g) \otimes M)/(Im(f) \otimes M) = 0$. Therefore H = 0.

Corollary 1.5. Let $f: (A, m) \rightarrow (B, n)$ a local homomorphism of rings (that is f is a ring homomorphism and $f(m) \subset n$). Then B is A-flat if and only if B is A-faithfully flat.

Proof. Since $f(m) \subset n$ we get that $mB \subset n \neq B$.

Proposition 1.6.

(1) Let A be a ring and M an A-flat module. Let N1, N2 be two submodules of M. Then (N1 \cap Ns) \otimes M = (N1 \otimes M) \cap (N2 \otimes M), where the objects are regarded as submodules of N \otimes A M.

(2) Therefore, if $A \rightarrow B$ is flat then for any ideals I,J of A, we have $(I \cap J)B = IB \cap JB$. If J is finitely generated, then (I : J)B = (IB : JB).

(3) If $f: A \to B$ is faithfully flat, then for any A-module M the natural map $M \to M \otimes A B$ is injective. In particular f is injective. In particular, for any ideal $I \subset A$, $IB \cap A = I$.

Proof. For (1), consider the exact sequence of A-modules $0 \rightarrow N1 \cap N2 \rightarrow N \rightarrow N/N1 \bigoplus N/N2$, and tensor with M. The resulting exact sequence gives the statement. For (2), let N = A, N1 = I, N2 = J, and M = B. For the second part, let J = (a1,...,ak). But then $I : J = \cap k = 1(I : Aai)$. Fix i, and let $0 \rightarrow (I : Aai) \rightarrow A \rightarrow \cdot ai A/I$ which is exact. Since B is A-flat we get that the sequence stays exact after tensoring with B. This gives us $0 \rightarrow (I : Aai)B \rightarrow B \rightarrow \cdot ai B/IB$. Therefore, (I : Aai)B = (IB : Bai) by computing the kernels in two ways. Therefore, $(I : J)B = (\cap k = 1(I : Aai))B$ which equals $(\cap k = 1(I : Aai)B)$ by the first part of (2). But this last term equals $\cap k = 1(IB : Bai) = IB : JB$. Finally, let $m \in M$ such that $m \otimes 1 = 0$ in $M \otimes A B$. We need m = 0, so let us assume that m = 0. But then $0 = Am \subset M$ and therefore, since B is A-faithfully flat, we get that $0 \neq Am \otimes A B$ in $M \otimes A B$. On the hand $m \otimes 1 = 0$ so $Am \otimes A B = 0$ as well. Contradiction. The final statement is obtained by letting M = B.

Lemma 1.7. Let $i : E \to F$ be an injective A-linear map. Let M be an A-module and consider $u \in ker(1M \otimes i) \subset E \otimes A$ M, where $1M \otimes i : E \otimes A$ M $\to F \otimes A$ M. Then there exists N finitely generated submodule of M and $v \in ker(1N \otimes i)$ such that v maps to u under the canonical map $E \otimes N \to E \otimes M$.

Proposition 1.8. A module M is flat over A if all its finitely generated submodules are flat over A.

Proof. This is a straightforward application of the Lemma. If there exists an R-linear injection $i : E \to F$ and for any element $u \in \text{Ker}(i \otimes A \ 1M)$, we can find a finitely generated submodule N of M and $v \in \text{ker}(i \otimes A \ 1N)$ such that v maps onto u under the canonical map. But N is flat so v = 0 which gives u = 0.

Proposition 1.9. Let A be a domain. Then every flat A-module is torsion free. The converse holds, if A is a PID. Proof. Let a 6= 0 in A. Then multiplication by a is injective on A (