

كلية: التربية للعلوم الصرفة

القسم او الفرع: الرياضيات

المرحلة: الرابعة

أستاذ المادة : ا.م.د.ماجد محمد عبد

اسم المادة بالغة العربية :مقاسات

اسم المادة باللغة الإنكليزية: MODULES

اسم الحاضرة الأولى باللغة العربية: المقاس الحر

اسم المحاضرة الأولى باللغة الإنكليزية: Free Module

محتوى المحاضرة الثامنة

Free Modules Fix a ring R.

Definition 7.1. A free module is one which is isomorphic to a direct sum of copies of R. That is, M is a free module if M \sim = M i \in I R (=: R I if I = {1, 2, ..., n} .) Proposition 7.1. Let R be a commutative ring, and G a group. Let RG = M g \in G gR be the free right (or left) R-module with "basis" the elements of G. The R-module structure on RG extends to an R-algebra structure with multiplication induced by group multiplication, that is, \square X g \in G grg \square X h \in G hsh! := X l \in G l \square X gh=l rgsh \square , and unit map ι : R \rightarrow RG; r 7 \rightarrow 1r. This is called the group algebra.

Proof. Generating Submodules Let M be a module, I an index set. Recall there is a group isomorphism (from the universal property) HomR M i \in I R, M! \sim = Y i \in I HomR (R, M) prop5.2 \sim = Y i \in I M. We then ask, what is the homomorphism in HomR RI , M corresponding to (mi)i \in I \in Q i \in I M? The answer is called the universal property for free modules, and is (mi)i \in I : (ri)i \in I 7 \rightarrow X i \in I miri . Such an expression of element of M is called a (right) R-linear combination of the mi 's.

Example 7.1. We see HomR (R m, Rn) \sim = Ym i=1 R n = (R n) m = Mnm(R). Homomorphisms corresponding to n \times m matrices are given by left multiplication. Example 7.2. Let R be a commutative ring, and G a group. Let H be a subgroup of G. Exercise. Show RH is an R-subalgebra of RG. Hence RG is also a (right) RH-module. In fact, it is a free RH-module. Why? For each left coset C of H in G, we pick a representative gC so C = gCH. The universal property of free modules gives a homomorphism (gC)C \in G/H : M C \in G/H (RH) \longrightarrow RG (aC)C \in G/H $7 \longrightarrow$ X C \in G/H gCaC. Exercise. This is clearly bijective so gives an isomorphism.

Proposition 7.2. Let M be a (right) R-module, and L a subset. The submodule generated by L is the set of all R-linear combinations of elements of L. It is a submodule of M, and is denoted $X \in L$ lR.

Proof. XIR is a submodule as it is the image of the R-linear map (l)l \in L : M l \in L R \longrightarrow M given by the universal property of free module