

2. Projective Module

Definition

An R-module P is called projective if $P \oplus Q$ is a free R-module where Q is any module over R

Remark

Let M be an R-module and $P \subseteq M$ is a submodule. Then P it is not necessarily free when M=P \bigoplus N. For example, suppose R is the quotient module (R = Z/6Z), so Z/6Z \cong Z/2Z \bigoplus Z/3Z such that Z/2Z and Z/3Z are Z/6Z-modules with an isomorphism of Z/6Z-

modules. See Z/2Z and Z/3Z are non-free modules isomorphic to direct summands of the free module Z/6Z.

Lemma

Every free R-module is projective.

Example

Z/2Z and Z/3Z are non-free projective Z/6Z-modules.

Remark

If R is a PID, Let M be a free module over principal ideal domain with M has a finite rank, and $N \subseteq M$ is a submodule. So, N is a free module and rank $N \leq \text{rank } M$.

Corollary

Every finitely generated projective module over principal ideal domain is free.

Proof. Suppose P is a finitely generated projective R-module. Then an onto mapping h: $R^n \rightarrow P$; n > 0. Hence there is an isomorphism $P \bigoplus \text{Ker}(f) \cong R^n$. Now we can identify P with a submodule of R^n , and by Remark 44.1 P is a free module.

Definition

An A-module P is projective if for every surjective mapping h: $M_1 \rightarrow M_2$ and another mapping g: $P \rightarrow M_2$;

 $\exists h : P \rightarrow M_1 \ni g = f h,$

Proposition

For a projective A-module P, the following are equivalent:

(a) P is finitely generated.

(b) P is a direct summand of a free module of finite rank.

(c) There exists an exact sequence $A^n \to A^n \to P \to 0$ for some n. P here is finitely presented.

Proof. (a) \Rightarrow (b). Let P be generated by k elements. then there is a onto mapping π from Aⁿ into P. So, $\bigoplus Q \cong A$ n with $Q \cong \text{Ker } \pi$.

(b) \Rightarrow (c). Let $P \bigoplus Q \cong A^n$ for some n and some A-module Q. Let g: $A^n \to A^n$ be the composition of $A^n \to Q$ with $Q \to A^n$. Then $\text{Im}(g) = \{(0, q) \in P \bigoplus Q : q \in Q\}$, and also the kernel of the projection $A^n \to P$. So, $A^n \to A^n \to P \to 0$ is an exact sequence.

(c) \Rightarrow (a). Immediate

Lemma

I. Every direct summand of a projective module is projective.

ii. Every direct summand of a free module is projective.

iii. Let M be a module and P a projective module. If P is a quotient of M then P is a direct summand of M. iv. Every projective module is a direct summand of a free module

Lemma

Let P and P ' be projective indecomposable modules, at least one of which is finitely generated. If some nonzero module is a quotient of both P and P ' then $P \cong P'$.

Proof. Suppose that P is finitely generated, and that there exist a nonzero module M and epimorphisms π : P \rightarrow M, π' :P' \rightarrow M. Since P and P ' are projective, there exist homomorphisms