

MODULES :

Projective Module:

2. Projective Module

Definition

An R -module P is called projective if $\mathrm{P} \oplus \mathrm{Q}$ is a free R -module where Q is any module over R

Remark

Let M be an R -module and $\mathrm{P} \subseteq \mathrm{M}$ is a submodule. Then P it is not necessarily free when $\mathrm{M}=\mathrm{P} \oplus \mathrm{N}$. For example, suppose R is the quotient module $(\mathrm{R}=\mathrm{Z} / 6 \mathrm{Z})$, so $\mathrm{Z} / 6 \mathrm{Z} \cong$ $\mathrm{Z} / 2 \mathrm{Z} \oplus \mathrm{Z} / 3 \mathrm{Z}$ such that $\mathrm{Z} / 2 \mathrm{Z}$ and $\mathrm{Z} / 3 \mathrm{Z}$ are $\mathrm{Z} / 6 \mathrm{Z}$-modules with an isomorphism of $\mathrm{Z} / 6 \mathrm{Z}$ -
modules. See $\mathrm{Z} / 2 \mathrm{Z}$ and $\mathrm{Z} / 3 \mathrm{Z}$ are non-free modules isomorphic to direct summands of the free module Z/6Z.

Lemma

Every free R-module is projective.

Example

$\mathrm{Z} / 2 \mathrm{Z}$ and $\mathrm{Z} / 3 \mathrm{Z}$ are non-free projective $\mathrm{Z} / 6 \mathrm{Z}$-modules.

Remark

If R is a PID, Let M be a free module over principal ideal domain with M has a finite rank, and $\mathrm{N} \subseteq \mathrm{M}$ is a submodule. So, N is a free module and $\operatorname{rank} \mathrm{N} \leq \operatorname{rank} \mathrm{M}$.

Corollary

Every finitely generated projective module over principal ideal domain is free.
Proof. Suppose P is a finitely generated projective R-module. Then an onto mapping h : $R^{n} \rightarrow P ; n>0$. Hence there is an isomorphism $P \oplus \operatorname{Ker}(f) \cong R^{n}$. Now we can identify P with a submodule of R^{n}, and by Remark 44.1 P is a free module.

Definition

An A-module P is projective if for every surjective mapping $\mathrm{h}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ and another mapping g : $\mathrm{P} \rightarrow \mathrm{M}_{2}$;
$\exists \mathrm{h}: \mathrm{P} \rightarrow \mathrm{M}_{1} \ni \mathrm{~g}=\mathrm{f} \mathrm{h}$,

Proposition

For a projective A -module P , the following are equivalent:
(a) P is finitely generated.
(b) P is a direct summand of a free module of finite rank.
(c) There exists an exact sequence $\mathrm{A}^{\mathrm{n}} \rightarrow \mathrm{A}^{\mathrm{n}} \rightarrow \mathrm{P} \rightarrow 0$ for some n . P here is finitely presented.

Proof. (a) $\Rightarrow(b)$. Let P be generated by k elements. then there is a onto mapping π from A^{n} into P. So, $\oplus \mathrm{Q} \cong \mathrm{An}$ with $\mathrm{Q} \cong \operatorname{Ker} \pi$.
(b) \Rightarrow (c). Let $\mathrm{P} \oplus \mathrm{Q} \cong \mathrm{A}^{\mathrm{n}}$ for some n and some A -module Q . Let $\mathrm{g}: \mathrm{A}^{\mathrm{n}} \rightarrow \mathrm{A}^{\mathrm{n}}$ be the composition of $A^{n} \rightarrow Q$ with $Q \rightarrow A^{n}$. Then $\operatorname{Im}(g)=\{(0, q) \in P \oplus Q: q \in Q\}$, and also the kernel of the projection $A^{n} \rightarrow P$. So, $A^{n} \rightarrow A^{n} \rightarrow P \rightarrow 0$ is an exact sequence.
(c) \Rightarrow (a). Immediate

Lemma

I. Every direct summand of a projective module is projective.
ii. Every direct summand of a free module is projective.
iii. Let M be a module and P a projective module. If P is a quotient of M then P is a direct summand of M. iv. Every projective module is a direct summand of a free module

Lemma

Let P and P^{\prime} be projective indecomposable modules, at least one of which is finitely generated. If some nonzero module is a quotient of both P and P^{\prime} then $\mathrm{P} \cong \mathrm{P}^{\prime}$.

Proof. Suppose that P is finitely generated, and that there exist a nonzero module M and epimorphisms $\pi: P \rightarrow M, \pi^{\prime}: P^{\prime} \rightarrow M$. Since P and P^{\prime} are projective, there exist homomorphisms

