

كلية: التربية للعلوم الصرفة

القسم او الفرع: الرياضيات

المرحلة: الثانية

أستاذ المادة: ميمون ابراهيم اسماعيل

اسم المادة بالغة العربية :التفاضل المتقدم

Advance Calculus : اسم المادة باللغة الإنكليزية

اسم المحاضرة الحادية عشر باللغة العربية: الرسم في الاحداثيات القطبية (الاشكال الورد)

اسم المحاضرة الحادية عشر باللغة الإنكليزية: (Graphing in Polar Coordinates (Rose curve

Rose curve if the polar equation has form as

• $r = a \cos n\theta$ or $r = a \sin n\theta$ where $a \in R - \{0\}$, $n \ne 1$, and $n \in N$ Note that: if n is an odd number then the number of leaves equal n. If n is an even number then the number of leaves equal 2n.

Examples:

1) Graph the Curve $r = \cos 2\theta$

Solution:

- The curve is symmetric about the *x*-axis because (r, θ) on the graph then $r = \cos(-2\theta) \rightarrow r = \cos 2\theta$, So $(r, -\theta)$ on the graph
- •The curve is symmetric about the y-axis because (r,θ) on the graph then $r=\cos 2(\pi-\theta) \to r=\cos 2\pi\cos 2\theta+\sin 2\pi\sin 2\theta \to r=\cos 2\theta$, So $(r,\pi-\theta)$ on the graph

Together, these two symmetries imply symmetry about the origin point

θ	r	(r,θ) $(1,0)$
0	1	(1,0)
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(0.5, \frac{\pi}{6}\right)$
$\frac{\pi}{4}$ $\frac{\pi}{3}$	0	$\left(0,\frac{\pi}{4}\right)$
$\frac{\pi}{3}$	$\frac{-1}{2}$	$\left(-0.5, \frac{\pi}{3}\right)$
$\frac{\pi}{2}$	-1	$\left(-1,\frac{\pi}{2}\right)$

$$r = \cos 2\theta$$

because the curve is symmetric about the x-axis and the y-axis

2) Graph the Curve $r = \sin 2\theta$

Solution:

- The curve is symmetric about the *x*-axis because (r,θ) on the graph then $-r=\sin 2(\pi-\theta) \to -r=\sin 2\pi\cos 2\theta -\sin 2\theta\cos 2\pi \to -r=-\sin 2\theta \ ,$ $r=\sin 2\theta$ So $(r,\pi-\theta)$ on the graph
- •The curve is symmetric about the *y*-axis because (r,θ) on the graph then $-r=\sin{-2\theta} \rightarrow -r=-\sin{2\theta} \rightarrow r=\sin{2\theta}$, So $(-r,-\theta)$ on the graph Together, these two symmetries imply symmetry about the origin point

		()
θ	r	(r,θ)

0	0	(0,0)
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\left(0.8, \frac{\pi}{6}\right)$
$\frac{\pi}{4}$	1	$\left(1,\frac{\pi}{4}\right)$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\left(0.8, \frac{\pi}{3}\right)$
$\frac{\pi}{2}$	0	$\left(0,\frac{\pi}{2}\right)$

$$r = \sin 2\theta$$

3) Graph the Curve $r = \sin 3\theta$

Solution:

• The curve is symmetric about the y-axis because (r, θ) on the graph then

$$-r = \sin(-3\theta) \rightarrow -r = -\sin 3\theta \rightarrow r = \sin 3\theta$$
 So $(-r, -\theta)$ on the graph

There is not symmetric about the x-axis and the origin point

<i>θ</i> r	(r,θ)
------------	--------------

0	0	(0,0)
$\frac{\pi}{18}$	$\frac{1}{2}$	$\left(0.5, \frac{\pi}{18}\right)$
$\frac{\pi}{6}$	1	$\left(1,\frac{\pi}{6}\right)$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\left(0.7, \frac{\pi}{4}\right)$
$\frac{\pi}{3}$ 7π	0	$\left(0,\frac{\pi}{3}\right)$
$\frac{7\pi}{18}$	$\frac{-1}{2}$	$\left(-0.5, \frac{7\pi}{18}\right)$
$\frac{18}{\pi}$	-1	$\left(-1,\frac{\pi}{2}\right)$

 $r = \sin 3\theta$

4) Graph the Curve $r = \cos 3\theta$

Solution: The curve is symmetric about the x-axis because (r, θ) on the graph then $r = \cos(-3\theta) \rightarrow r = \cos 3\theta \rightarrow (r, -\theta)$ on the graph

There is not symmetric about the y-axis and the origin point

θ	r	(r,θ)
0	1	(1,0)
$\frac{\pi}{18}$	$\frac{\sqrt{3}}{2}$	$\left(0.8, \frac{\pi}{18}\right)$
$\frac{\pi}{6}$	0	$\left(0,\frac{\pi}{6}\right)$
$\frac{\pi}{4}$	$-\frac{1}{\sqrt{2}}$ -1	$\left(-0.7, \frac{\pi}{4}\right)$
$\frac{\pi}{3}$ 7π	-1	$\left(-1,\frac{\pi}{3}\right)$
18	$\frac{-\sqrt{3}}{2}$	$\left(-0.8, \frac{\pi}{18}\right)$
$\frac{\pi}{2}$	0	$\left(0,\frac{\pi}{2}\right)$
$\frac{2\pi}{3}$	-1	$\left(-1,\frac{2\pi}{3}\right)$
π	-1	$(-1,\pi)$

 $r = \cos 3\theta$

