

كلية: التربية للعلوم الصرفة

القسم او الفرع: الفيزياء

المرحلة: الثالثة

أستاذ المادة: م.د. مصطفى ابراهيم حميد

اسم المادة بالغة العربية: الدوال المركبة

اسم المادة باللغة الإنكليزية: Complex Functions

اسم الحاضرة السابعة باللغة العربية: معادلتا كوشي ريمان

اسم المحاضرة السابعة باللغة الإنكليزية: Cauchy Riemann Equations

Lecture 7

معادلتا كوشي ريمان Cauchy Riemann Equations

Theorem: Suppose that f(z) = u(x,y) + iv(x,y) and that f'(z) exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0) , and they must satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
 and $u_y = -v_x$

there. Also, f'(z) can be written

$$f'(z) = u_{x} + iv_{x}$$

Where these partial derivatives are to be evaluated at (x_0, y_0) .

Example: Use Cauchy-Riemann equations to find f'(z) where $f(z) = z^2$ Solution:

We know that the function f(z) is differentiable everywhere

$$f(z) = z^2 = (x + iy)(x + iy)$$

$$= (x^2 - y^2) + 2ixy$$

$$u(x,y) = x^2 - y^2 \quad and \quad v(x,y) = 2xy$$

$$u_x = 2x \quad and \quad v_x = 2y$$

$$u_y = -2y \quad and \quad v_y = 2x$$

$$u_x = 2x = v_y \quad and \quad u_y = -2y = -v_x$$

$$f'(z) = u_x + iv_x$$
$$= 2x + 2iy$$
$$= 2(x + iy) = 2z$$

Theorem: Let the function f(z) = u(x,y) + iv(x,y) be defined at some ϵ neighborhood of a point $z_0 = x_0 + iy_0$, and suppose that

- a. The first- order partial derivatives of the functions u and v with respect to x and y exist everywhere in the neighborhood.
- b. Those partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
 and $u_y = -v_x$ at (x_0, y_0) .

Then $f'(z_0)$ exists and $f'(z_0) = u_x + iv_x$ where the right-hand side is to be evaluated at (x_0, y_0)

Example: Use Cauchy-Riemann equations to discuss the derivative of the function $f(z) = |z|^2$

Solution:

$$f(z) = |z|^2$$

$$f(z) = \left|\sqrt{x^2 + y^2}\right|^2$$

$$f(z) = x^2 + y^2$$

$$\Rightarrow f(z) = x^2 + y^2 + i.0$$

$$u(x,y) = x^2 + y^2 \quad and \quad v(x,y) = 0$$

$$u_x = 2x$$
 and $v_x = 0$
 $u_y = 2y$ and $v_y = 0$
if $u_x = v_y$ $\Rightarrow 2x = 0$ $\Rightarrow x = 0$
if $u_y = -v_x$ $\Rightarrow 2y = 0$ $\Rightarrow y = 0$

f'(z) does not exist at any nonzero point

$$f'(z) = u_x + iv_x$$
 $= 2x + i.0$ $f'(z) = 2x$ $if \ z = 0 \implies f'(0) = 2(0) = 0$ $f'(0) = 0$ وقيمتها هي $f'(z) = 0$ وغيمتها هي $f'(z) = 0$ وغيمتها هي $f'(z) = 0$

Exercises

- 1. Use Cauchy-Riemann equations to show that f'(z) does not exist at any point if
 - a. $f(z) = \bar{z}$
 - b. $f(z) = z \bar{z}$
 - c. $f(z) = 2x + ixy^2$
 - d. $f(z) = e^{x}e^{-iy}$

Solution:

a.
$$f(z) = \bar{z} = x - iy$$

$$u(x,y) = x$$
 and $v(x,y) = -y$
If $u_x = v_y \implies 1 = -1$

The Cauchy-Riemann equations are not satisfied anywhere.

b.
$$f(z) = z - \overline{z} = x + iy - x + iy$$

 $f(z) = 2iy$
 $u(x,y) = 0$ and $v(x,y) = 2y$
If $u_x = v_y \implies 0 = 2$

The Cauchy-Riemann equations are not satisfied anywhere.

c.
$$f(z) = 2x + ixy^2$$

 $u(x,y) = 2x$ and $v(x,y) = xy^2$
If $u_x = v_y \implies 2 = 2xy$
 $\implies xy = 1$
If $u_y = -v_x \implies 0 = -y^2$
 $\implies y = 0$

Substituting y = 0 into xy = 1 we have 1 = 0

The Cauchy-Riemann equations do not hold anywhere.

d.
$$f(z) = e^x e^{-iy}$$

 $f(z) = e^x (\cos(y) + i\sin(-y))$
 $f(z) = e^x (\cos y - i\sin y)$
 $u(x,y) = e^x \cos y$ and $v(x,y) = -e^x \sin y$
If $u_x = v_y \implies e^x \cos y = -e^x \cos y$

$$\Rightarrow e^{x} \cos y + e^{x} \cos y = 0$$

$$\Rightarrow 2e^{x} \cos y = 0$$

$$\Rightarrow \cos y = 0 \Rightarrow y = \frac{\pi}{2} + n\pi , \quad n = 0, \pm 1, ...$$
If $u_{y} = -v_{x} \Rightarrow -e^{x} \sin y = e^{x} \sin y$

$$\Rightarrow -e^{x} \sin y - e^{x} \sin y = 0$$

$$\Rightarrow -2e^{x} \sin y = 0$$

$$\Rightarrow 2e^{x} \sin y = 0$$

$$\Rightarrow \sin y = 0 \Rightarrow y = n\pi , \quad n = 0, \pm 1, ...$$

$$\Rightarrow v = \frac{\pi}{2} + n\pi , \quad v = n\pi , \quad het = \frac{\pi}{2} + n\pi \neq n\pi , \quad n = 0, \pm 1$$

$$y = \frac{\pi}{2} + n\pi$$
, $y = n\pi$, but $\frac{\pi}{2} + n\pi \neq n\pi$ $n = 0, \pm 1, ...$

The Cauchy-Riemann equations do not hold anywhere.

2. Use Cauchy-Riemann equations to show that f'(z) and its derivative f''(z) exist everywhere and find f''(z) when

a.
$$f(z) = iz + 2$$

b.
$$f(z) = e^{-x}e^{-iy}$$

c.
$$f(z) = z^3$$
 H.W

d.
$$f(z) = \cos x \cosh y - i \sin x \sinh y$$
 H.W.

Solution:

a.
$$f(z) = iz + 2$$

 $f(z) = i(x + iy) + 2$
 $f(z) = ix - y + 2$
 $f(z) = (2 - y) + ix$

$$u(x,y) = 2 - y$$
 and $v(x,y) = x$
 $u_x = v_y \implies 0 = 0$
 $u_y = -v_x \implies -1 = -1$

- f'(z) exist everywhere
- $f'(z) = u_x + iv_x$
- f'(z) = 0 + i.1 = i

Now, show that f''(z)

$$f'(z) = u_1 + iv_1 = 0 + i.1$$

$$u_1 = 0$$
 and $v_1 = 1$

$$(u_1)_x = (v_1)_y \implies 0 = 0$$

$$(u_1)_y = -(v_1)_x \implies 0 = 0$$

- f''(z) exist everywhere
- $f''(z) = (u_1)_x + i(v_1)_x = 0 + i.0 = 0$

b.
$$f(z) = e^{-x}e^{-iy}$$

$$f(z) = e^{-x}(\cos(y) + i\sin(-y))$$

$$f(z) = e^{-x}(\cos y - i\sin y) = e^{-x}\cos y - ie^{-x}\sin y$$

$$u(x,y) = e^{-x} \cos y$$
 and $v(x,y) = -e^{-x} \sin y$

$$u_x = -e^{-x}\cos y$$
 , $v_x = e^{-x}\sin y$

$$u_y = -e^{-x}\sin y$$
 , $v_y = -e^{-x}\cos y$

$$u_x = -e^{-x}\cos y = v_y$$

and
$$u_v = -e^{-x}\sin y = -v_x$$

f'(z) exist everywhere

$$\therefore f'(z) = u_x + iv_x$$

$$f'(z) = -e^{-x}\cos y + i e^{-x}\sin y$$

Now, show that f''(z)

$$f'(z) = u_1(x, y) + iv_1(x, y)$$

$$u_1 = -e^{-x}\cos y$$
 and $v_1 = e^{-x}\sin y$

$$(u_1)_x = e^{-x} \cos y$$
 , $(v_1)_x = -e^{-x} \sin y$

$$(u_1)_y = e^{-x} \sin y$$
 , $(v_1)_y = e^{-x} \cos y$

$$\therefore (u_1)_x = e^{-x} \cos y = (v_1)_y$$

$$u_1 = e^{-x} \sin y = -(v_1)_x$$

$$f''(z)$$
 exist everywhere

$$f''(z) = (u_1)_x + i(v_1)_x$$

$$= e^{-x} \cos y + i(-e^{-x} \sin y)$$

$$= e^{-x} (\cos y + ie^{-x} \sin(-y))$$

$$= e^{-x} e^{-iy} = f(z)$$

Then

$$f''(z) = f(z) = e^{-x}e^{-iy}$$