

كلية: التربية للعلوم الصرفة

القسم او الفرع: الفيزياء

المرحلة: الثالثة

أستاذ المادة: م.د. مصطفى ابراهيم حميد

اسم المادة بالغة العربية: الدوال المركبة

اسم المادة باللغة الإنكليزية: Complex Functions

اسم الحاضرة الحادية عشر باللغة العربية: المرافق التوافقي

اسم المحاضرة الحادية عشر باللغة الإنكليزية: Harmonic Conjugate

## **Lecture 11**

# المرافق التوافقي Harmonic Conjugate

### **Definition:**

If two given functions u and v are harmonic functions in a domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations  $(u_x = v_y \ and \ u_y = -v_x)$  in D, then v is said to be a harmonic conjugate of u.

(harmonic اذا كانت v,u دالتين توافقيتين في المنطلق v فانه يقال للدالة v بالمرافق التوافقي v,u دالتv,u دالته v,u دالته v,u

#### Theorem:

A function f(z) = u(x, y) + iv(x, y) is analytic function in a domain D if and only if v is a harmonic conjugate of u.

## **Proof:**

Suppose that v is a harmonic conjugate of u in D.

Then u and v are harmonic functions in D and their first-order partial derivatives satisfy Cauchy-Riemann equations.

Then f is analytic in D.

Conversely,

if f is analytic in D, then u and v are harmonic functions in D and the Cauchy-Riemann equations are satisfied.

So we have v is a harmonic conjugate of u in D.

Example: Suppose that

$$u(x,y) = x^2 - y^2$$
 and  $v(x,y) = 2xy$ 

1. Show u(x, y) and v(x, y) are harmonic functions.

### Solution:

$$u_x = 2x$$
 ,  $u_{xx} = 2$  and  $u_y = -2y$  ,  $u_{yy} = -2$ 

$$\therefore \quad u_{xx} + u_{yy} = 2 - 2 = 0$$

$$v_x = 2y$$
 ,  $v_{xx} = 0$  and  $v_y = 2x$  ,  $v_{yy} = 0$ 

$$v_{xx} + v_{yy} = 0 + 0 = 0$$

Then u(x, y) and v(x, y) are harmonic functions.

2. Show v is a harmonic conjugate of u.

## **Solution**:

$$u_x = 2x = v_y$$
 and  $u_y = -2y = -v_x$ 

By theorem (A function f(z) = u(x,y) + iv(x,y) is analytic function in a domain D if and only if v is a harmonic conjugate of u.)

$$f(z) = u(x, y) + iv(x, y)$$
$$= (x^2 - y^2) + 2ixy$$

 $f(z) = z^2$  is analytic function.

Then v is a harmonic conjugate of u.

3. Show u cannot be a harmonic conjugate of v.

### Solution:

Since the function  $2xy + i(x^2 - y^2)$  is not analytic function anywhere. Then u cannot be a harmonic conjugate of v.

Example: Show that u(x,y) is harmonic function and find a harmonic conjugate v(x,y) when  $u(x,y) = y^3 - 3yx^2$ 

## Solution:

$$u_x=-6xy$$
 ,  $u_{xx}=-6y$  and  $u_y=3y^2-3x^2$  ,  $u_{yy}=6y$  
$$u_{xx}+u_{yy}=-6y+6y=0$$

u(x,y) is a harmonic function in xy -plane.

Now, find a harmonic conjugate v(x, y)

Then

$$u_x = v_y$$
 and  $u_y = -v_x$   $v_y(x,y) = -6xy$   $v_y(x,y) = -6xy$  نكامل بالنسبة لـ  $v_y(x,y) = -6xy$ 

$$\int v_y(x,y)dy = \int -6xydy$$

$$\Rightarrow v(x,y) = -3xy^2 + \emptyset(x) \leftarrow x$$
دالة اختيارية  $\phi(x)$  ,  $\phi(x)$ 

$$v_x(x,y) = -3y^2 + \emptyset'(x)$$

Since  $u_v(x,y) = -v_x(x,y)$ 

$$\therefore 3y^2 - 3x^2 = -(-3y^2 + \emptyset'(x))$$

$$\Rightarrow 3y^2 - 3x^2 = 3y^2 - \emptyset'(x)$$

$$\Rightarrow$$
  $-3x^2 = -\emptyset'(x)$ 

$$\Rightarrow \emptyset'(x) = 3x^2 \leftarrow$$
نگامل

$$\Rightarrow \int \emptyset'(x)dx = \int 3x^2 dx$$

$$\Rightarrow \emptyset(x) = x^3 + c$$

ثابت اختیاری ر

 $v(x,y) = -3xy^2 + x^3 + c$  is a harmonic conjugate of u(x,y).

So that f(z) = u(x, y) + iv(x, y) is analytic function.

 $f(z) = (y^3 - 3yx^2) + i(-3xy^2 + x^3 + c)$  is analytic function.