

كلية: التربية للعلوم الصرفة

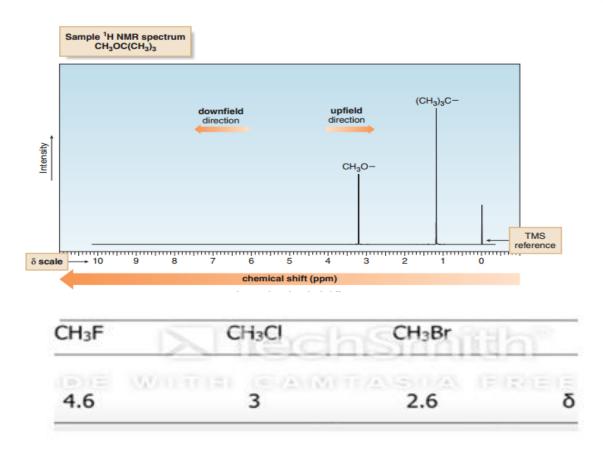
القسم او الفرع: الكيمياء

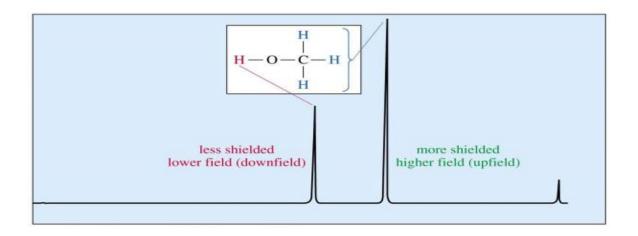
المرحلة: الرابعة

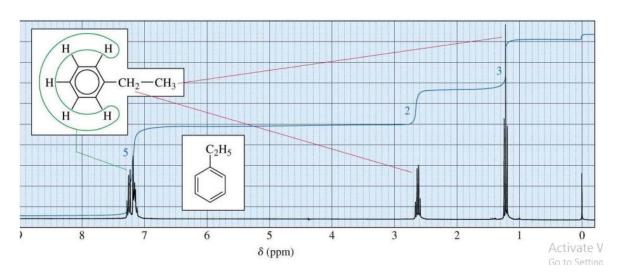
أستاذ المادة : أ.م.د. نبيل ياسين جمعة الهيتي

اسم المادة باللغة العربية: التشخيص العضوي

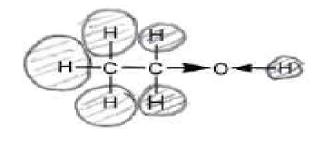
Organic Identification : اسم المادة باللغة الإنكليزية

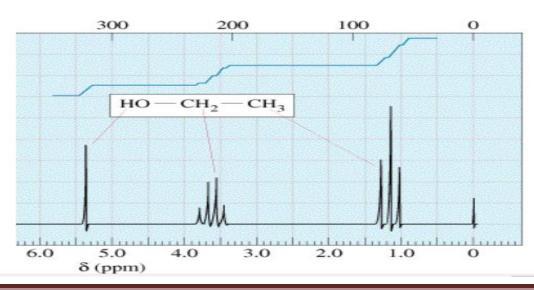

اسم المحاضرة السابعة باللغة العربية : ملاحظات مهمة في مطيافية H-NMR


<sup>1</sup>H-NMR Spectroscopy: اسم المحاضرة السابعة باللغة الإنكليزية


#### المحاضرة السابعة

## ملاحظات مهمة في مطيافية H-NMR:-


- 1 المجاميع الدافعة للالكترونات تزيد من الكثافة الالكترونية حول البروتون وبالتالي تجعله اكثر حجباً ( shielding) اي يظهر على يمين الطيف في المجال الواطىء ( down field ) اي تكون قيمة الازاحة الكيميائية له واطئة وقريبة من اشارة TMS .
- 2 المجاميع الساحبة للالكترونات تقلل من الكثافة الالكترونية حول البروتون و تجعله اقل حجباً
   ( deshielding ) اي يظهر على يسار الطيف في المجال العالي ( up field ) اي تكون قيمة الازاحة الكيميائية له عالية وبعيدة عن اشارة TMS .
- 3 بشكل عام فان البروتونات الاليفاتية تظهر على يمين الطيف اما البروتونات الاروماتية فإنها تظهر على يسار الطيف.
- 4 يتم استخدام مذيبات لاتحتوي على بروتونات لكي لاتتداخل اشارة المذيب مع اشارات المركب العضوي او استخدام مذيبات تحتوي على ذرات الديتريوم ( $D^2$ ) نظير الهيدروجين بدلا" من الهيدروجين ( $H^1$ ) لان العدد الكتلي للديتريوم زوجي 2 وبالتالي ليس له عزم مغناطيسي أي انه غير فعال في طيف NMR.
- $(14-0)~{
  m ppm}$  في الأجهزة الحديثة 1H-NMR في الأجهزة الحديثة تتراوح بين  $(\delta)$  .







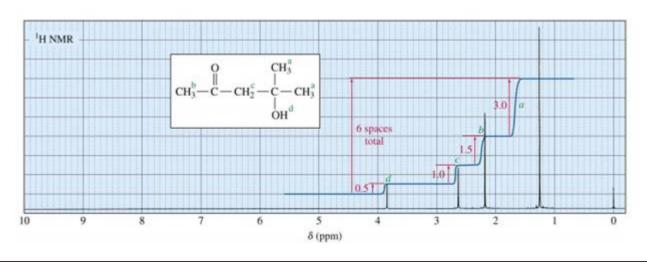

مثال : ما هي توقعاتك لطيف ( NMR ) للإيثانول ؟





### الفوائد والاستنتاجات من الاشارات في طيف H-N.M.R:-

1 - 1 ان عدد الاشارات في الطيف تدل على عدد ذرات الهيدروجين المختلفة بالبيئة الموجودة في المركب .


2 – موقع الاشارة للبروتون يدل على نوع المجموعة الموجودة في المركب العضوي والمجاورة للبروتون من خلال الحجب واللاحجب ومن خلال جداول خاصة وموقع الاشارة وشكلها نستدل على نوع وطبيعة البروتون .

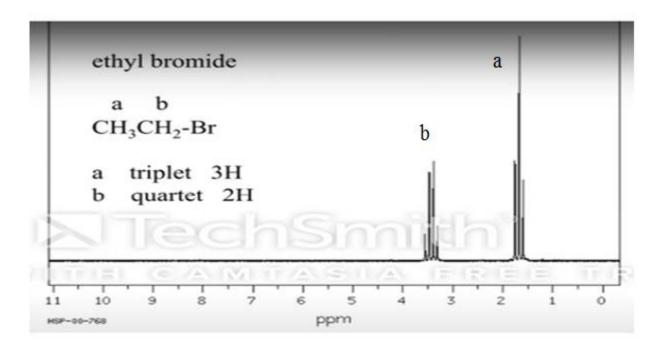
ن الموجود في الطيف يفيد في التعرف على عدد ذرات الهيدروجين في -3 المركب العضوي .

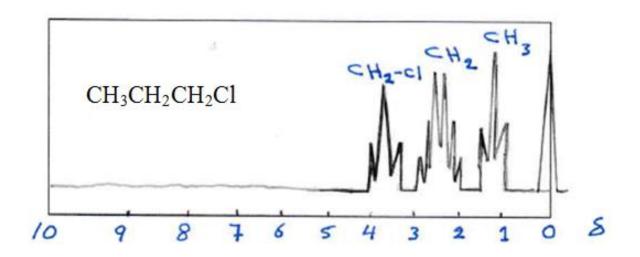
4 – عدد الانشطارات في الاشارة تدلنا على عدد ذرات الهيدروجين المجاورة للبروتون قيد الدراسة الذي اعطى هذه الاشارة .

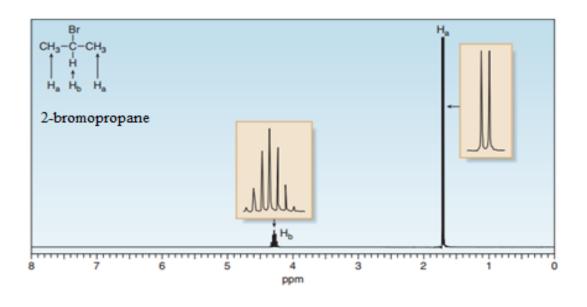
# NMR Signals

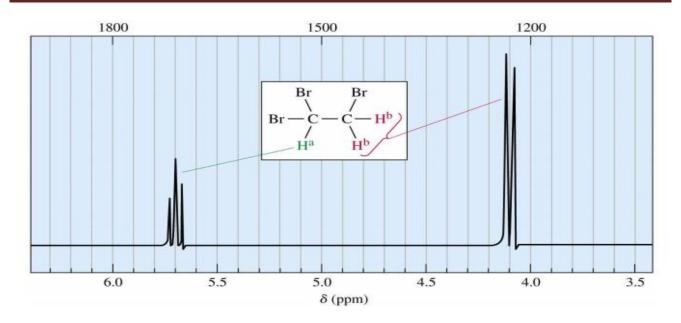
- The *number* of signals shows how many different kinds of protons are present.
- The *location* of the signals shows how shielded or deshielded the proton is.
- The *intensity* of the signal shows the number of protons of that type.
- Signal splitting shows the number of protons on adjacent atoms.

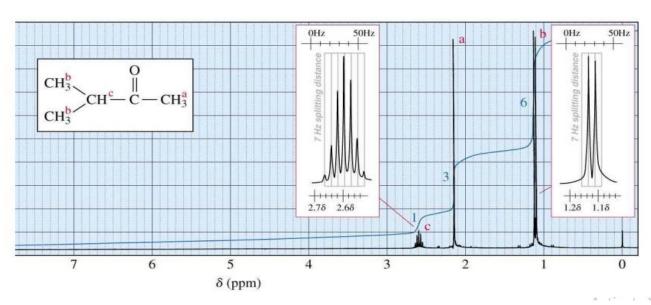



### انشطار إشارات الرنيان و أسبابه:


ان البروتونات المتجاورة في جزيئة المركب العضوي يؤثر بعضها على البعض الآخر عن طريق ظاهرة ازدواج البرم ( Spin coupling ) وتؤدي هذه الظاهرة الى انشطار اشارة البروتونات و هذا الانشطار يخضع للعلاقة التالية ( n+1 ) حيث (n) يمثل عدد البروتونات المجاورة للبروتون قيد الدراسة , اما المقدار ( n+1 ) فيمثل عدد الانشطارت في البروتون قيد الدراسة . ويتم تطبيق العلاقة ( n+1 ) في حالة البروتونات المختلفة في البيئة الالكترونية فقط , اما البروتونات المتشابهة بالبيئة الالكترونية فلا يحصل فيها ظاهرة ازدواج البرم ولا يتم تطبيق العلاقة ( n+1 ) عليها لذلك تعطي اشارة احادية اي لايحصل فيها انشطار في اشارتها . و تستخدم هذه العلاقة للانشطارات البسيطة و هناك انشطار ات معقدة و لكنها ليست في مجال در استنا حالياً .


### وهذه الانشطارات تكون بالشكل التالى:


| نسبة الانشطار      | نوع الاشارة          | عدد الانشطار ات<br>( n + 1 ) | عدد البروتونات<br>المجاورة<br>( n ) |  |
|--------------------|----------------------|------------------------------|-------------------------------------|--|
| 1                  | Singlet (S) احادية   | 1                            | 0                                   |  |
| 1 1                | doublet (d) ثنائية   | 2                            | 1                                   |  |
| 1 2 1              | triplet (t) ثلاثية   | 3                            | 2                                   |  |
| 1 3 3 1            | quartet (q) رباعية   | 4                            | 3                                   |  |
| 1 4 6 4 1          | quintet خماسية       | 5                            | 4                                   |  |
| 1 5 10 10 5 1      | سداسية sextet        | 6                            | 5                                   |  |
| نسبة انشطار متعددة | multiplet (m) متعددة | 9,8,7                        | 6                                   |  |


| Example                                                                        | Pattern                       | Pattern Analysis (H <sub>a</sub> and H <sub>b</sub> are not equivalent.)                                        |  |                            |          |                         |
|--------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--|----------------------------|----------|-------------------------|
| [1]                                                                            | H <sub>4</sub> H <sub>5</sub> | H <sub>a</sub> : one adjacent H <sub>b</sub> proton     H <sub>b</sub> : one adjacent H <sub>a</sub> proton     |  | two peaks<br>two peaks     | <b>-</b> | a doublet<br>a doublet  |
| [2] -C-CH <sub>2</sub> -                                                       | Н. Н.                         | H <sub>a</sub> : two adjacent H <sub>b</sub> protons     H <sub>b</sub> : one adjacent H <sub>a</sub> proton    |  | three peaks<br>two peaks   |          | a triplet<br>a doublet  |
| [3] —CH <sub>2</sub> CH <sub>2</sub> —<br>† †<br>H <sub>a</sub> H <sub>b</sub> | H <sub>a</sub> H <sub>b</sub> | H <sub>a</sub> : two adjacent H <sub>b</sub> protons     H <sub>b</sub> : two adjacent H <sub>a</sub> protons   |  | three peaks<br>three peaks |          | a triplet<br>a triplet  |
| [4] —CH <sub>2</sub> CH <sub>3</sub><br>† † † † † † † † † † † † † † † † † † †  | H <sub>a</sub> H <sub>b</sub> | H <sub>a</sub> : three adjacent H <sub>b</sub> protons     H <sub>b</sub> : two adjacent H <sub>a</sub> protons |  | four peaks<br>three peaks  |          | a quartet*<br>a triplet |
| [5] —C-CH <sub>3</sub>                                                         | H, H,                         | H <sub>a</sub> : three adjacent H <sub>b</sub> protons     H <sub>b</sub> : one adjacent H <sub>a</sub> proton  |  | four peaks<br>two peaks    |          | a quartet*<br>a doublet |

