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2 Geophysical data processing

2.1 Indroduction

Geophysical sorveys mesure the varation of =ome
physical qoantity, with respect either to postion ar to
time. The gaantty may, for example, be the srength of
the Harths magnetic feld along a profile acos an
ignenas miresion. [t may be the motion of the grownd
surface a 2 fanction of time: asocated with the pasage
af sEmic wawes. In sither case, the amplest way to pee-
sentthedaiz is toplota graph (Fg. 2.1} showng the vari-
ation of the measared quantty with respect to distance
ar time s aopropriate. The graph will show same mone
ar lem complex waveform shape, which will reflect
phyzical variabons in the anderying geclogy, superim-
paoed on urwanted varGtions from non-gealogicl #2a-
tures [sach as the effect of electmical power cables in the
magnetic example, or vibmbion fom pasing traffic for
the seismic casz), instrumental inaccuracy and data ool-
lzctiom arrors. The detiled shape of the waweform may
e uncertin due to the dfficulty in interpolating the
curve between widaly saced sizticns. The peophysicit’s
task s toseparate the “dgral' fom the “noise”and inbarpret
the signal in terms of ground sructere.

Anahysis of waveforms much a5 these ceprsents an es-
semtial aspect of geophysicl data processing and inter-
pretation. The fundamental physacs and mathematics of
such analysis & not novel, most having been disooveresd
in the 19 or early 2P centuries. The wse of these ideas
& akeo widespread in cther technological ares anch as
radin, televigan, sound and video mcording, mdio-
atromanmy, meteccnlogy and medical imaging, a5 well
az miliary applications such s mdar, sonar and mtelkie
imagmg. Before the genenl availability of digital com-
pating, the quantty of dam and the complexity of the
procemmy seversy nsinced the me of the Enown tech-
migques. This no longer appliss and neardy all the tech-
miques dsseribed in this chapter may be implemented in
standard computer spreadshest programs.

The fundamental princples on which the varions

methods of datz analyss are hased zre broaght together
in this chapter. These are accompaniad by a dsorsion of
the techpiqoes of digital data procesang by compater
chapter, waveforms ame referred to as functions of Gme,
but all the princples disoesed are egually applicable to
fanctions of dsiance. In the hiter case, fequency (mam-
ber of wawedorm cycles per anit time) is replaced by
spais] frequency or soremsmber (momber of waveform
cycles peranit distance).

1.7 [hgihirabion of geophyscal data

Waveforms of geoplyysical interest are genelly contin-
waous {zmalogue} Banctioms of time or disance. To apply
the power of Sigital computers to the task ofanalysis, the
tata need to be expresed in digitz] form, whatever the
farmin which they were origmally recomded.

A continmous, smooth fanction of time or disance
can ke expressd digitally by samplbng the finction at z
fixed mierval and reconding the instananesas vale of
the fanction it ech smpling point. Thus, the analogos
fanction of dme {Uf} shown in Fig. 2.2} can be mpe-
sented a5 the digi] fanction 2{t) shown in Fag. 2Xh} in
wiach the contimeous fimdaon has been replaced by 2
series of discrete valoes at fived, equal, intemalk of me.
This proces & inhernt in many geophbyscal surveys,
wiisere readings are zken of the valoe ofsome parameter
(e g magnetic Geld srength) 22 points along sarvey lines.
The extent to which the dipial valizes faxthfally epe-
sent the ariginal waveform will depend an the accumcy
ofthe amplitude measorement and the interalk between
measuredmmples. Stzted morne formally, these two pam-
meters af 2 digitizing system are the =mpling precision
{dymamic mange]) and the mmpling fequency.

ymawnr mmge i an expresion of the mba of the largest
messurzble amplitde A #o the srallst measorahls
amplitade A__ W 2 sampled finction. The higher the
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dymamic ange, the more Gxbflly the amplinsds
wariations in the analogue waveinrm will be repreented
in ther digitized version of the waveform. Dynamic range
i marmally expresed in the deagbel (1) wale used to de-

finz alactrical power rtios: the ratio oftwo power values
P, and P, s gen by 100og, (P AP B, Since poer 5
proporanal to the spoare of npwal ameplinede A

10log, (F, /By )= 10ag, (4, /4,)
- Mlogyl A, 4) @

Thus, 1 a digial mmpling wcheme meansmes ampli-
twdes aver the mnge from 1 to 1024 units of amphinede,
the dynarmic range is given by

20 logp LA Ay b= 200, 1024 = G043

In digral comgeaters, digitz] amples are expressd in
hinary form (Le. they are composed of 2 ssqoence of dig-
its that hawe the valise of either 0 or 1). Fach binary digit
i knoewn 2 biland the seqoence of hits cepresenting the
mample value & known & 2 wornd. The nomber of buts in
each word determines the Symamic ange of 2 dgatized
waveform. For example, 3 dymamoc moge of 048
requares 11-bit wornds since the appropriate amphitnds
mtio of 1024 = 2'% i rendered as 10000000000 in
hirary form. & dynamic mnge of 5448 represents an
armplitede mtio of 3 and, hence, requires ampling
with 15-bit word. Thus, increasing the number of hits
in each word in digital @mplng increasss the dymamac
range of the digital fanction.

Sarepiing freguemcy & the mamber of @mpling points in
unat time or anit ds@nce. natively, it may appear that
the digital mmpling of 2 continoons finchion ineviably
leads tn a lees ofinformatan mn the resskant digatal func-
tixm, since the latter & only speafied by discrete values
at 2 =eries of paints. Agzin nmitwely, there will be no



significant los of informetion content 2 long s the e
qoency of wmplng is much higher than the highest
frequency component in the ampled fenction. Mathe-
maticalhy it can be proved that, if the waveform s 2 sine
curve, this can abways be reconstructed provided that
there are 2 mindmom of two samples per period af the
e wWave

Thes, ifa waveformissmpled svery two milliseconds
Emmpling ntenval), the ampling frequency i 500 sam-
ples per second (ar 500 Hz). Sampling at this rate wall
preserve 2l frequenciess op o 230 Hz in the smpled
function. Ths freguency of halithe amplbing freguency
& known as the Nyquint fequency () and the Spqaist
imterinl & the frequency mnge fromzero up ta f,

Ty = Yi2at 22
where At= sampling mterval.

If freqoencies abose the Mygust fireguency are pee-
sentm the mmpled fsnction, 2 serioes form of detortion
resuls known 2 dlianng, in which the higher frequency
components are “olded back’ into the Myqust intenal.
Canmder the sxample illusrated in Fg. 13 in which
sime wanes ab different fequendes are ampled. The
Tower fregoency wave (g 233} & accurately repro-
doced, but the bigher fremuancy wave (Fig. 2 3(b]), sobid
Ene) is repdered = 2 ficibmes freqoency; shown by the
dihied Bine, within the Myquist interval. The relation-
ship betwesen input and catpat frequenciesin the cse of
amampling frequency of 500 Heis shown in Fig. Z.3(c). 1
& apparent that an mput frequency of 125 He, for mam-
ple, I retmnied m the catpet bat that an inpat freguency
af&X5 Hr is fodded hack to e ontpmt at 125 Hraleo.

T overcomi the problem of alising, the mmplng
frequency must be 2t least twice as high asthe highesct fre-
gqoency component present in the smpled fmction. I
the function does contain freguencis above the Nygost
frequency determined by the amping, it most be pased
thmough an aariokor fillr prior to digitimtion. The
antmlias filker i 2 kow-pass frequency flter with 2 sharp
cut-off that removes frequency companents above the
Myqust frequency, or attenuabes them bo an megpaficant
amplitnde level.

2.3 Speciral analy=is

An important mathematical disincbon exisis hetween
pemiodlic wveferms (Fig. 2.44al), that repet themsedves ata
fixerd time perind T, and masne! pasgformer (Fg. 2.80)],
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that are nom-mepetitive. By means of the mathematial
techniqoe of Fauner analyn: any penodic waveform,
however complex, may be decomposed inbo 2 series of
sine for oosne) waves whose ffequencies are integer
mmaltiples of the basic repetition freguency 17T, known
5 the fundemenial frequency. The higher feqoency com-
ponents, at fequences of T (n=1, 2, 3, ..}, are
known as harmonics. The complex waveform of g
2543} iz bailt up from the addtion of the twa individnal
sine wawe components shown. To expres any wavefiorm
im terms of ils constituent Sne wave components, it i
necesary todefine not ooy the frequency of sach com-
ponent but akao its ampliiede ind phase. I in the abowe
exarmple the relative amplitude and phae relations of
the individmal sine weves are skersd, sammation can



[——

Mﬂ)\ﬂv
- W

i

it

F‘.Ll (3] Perndic and| (k] tranoen waveftormm F‘Er rpd
Fiveg j..:u_r mmmm
mmﬂgﬂm’rh ::r-nnF:qm].l.qih&:ldm P: I'h]'l.'hr
begzer Bocp R pwicc the ampl e lerwer
hg.l:u:r::-pan::::ld /2t of phoe. (Ao Aoy [975.]
@l o
r r L]
] i
& 1 =z 1
! T n Fraquancy ! T n Fraquancy
el =2} a
. ¥
Fig- 1.6 Pepnuoiation mthe g I ] T ] -
I vd afithe E = T Fi Fraquancy ! T ar Fraquancy
iluxiraicd m Fag. 13, sheowrng ther ol
armphinde nd phase specira. -=2F -
prodice the goite different waveform ilustmisd in Tranzent waveforms do not repeat themsedves; that
Iag. 2.5(h}. i, they have am infimitely long period. They may be re-

From the zhawe it follows that 2 penndic wawform
can be expresed in two difernt ways: in the familiar
ime doman, expresing wave amplitade & 2 function of
ome, or in the fragumcy doman, expresing the ampliteds
and phawe of its constitment Sne waves & a fimction of
fresgoency. The waveforms shown in Fig. 2.5(3) and (b}
are represented in Fig. 2. 63} and (b} in berome of theitzm-
plitde and phase mpectra. Thes: spacim, known = Ene
specin, are composed of 2 series of dscrete walues of the
amplitods and phase components of the waveform at
set eqoency valoes dstmbuted between OHz and the

Myquist frequency.

garded, by analogy with a periodic waveform, as having
an infingesimmally small findameni] frequency {15 T—
I} and, comsegoently, harmonics that oocwrat infinites -

mally small fequency interalks to give contimoous zm-

plitade and phase specia mther than the Ene spectra of
perindic waveforms. However, it & impsshle to cope
arahytically with 2 spectmam contaiming an infinste noem-
ber of sing wave components. Digitization of the wave-
form in the time domain (Section 1.2) provides 2 means
ofdealng with the continoous specina of bamsient wave-
forms. A digially smpled transient waveform has s
amphtede and phase spectm subdivided intoa number of
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thin frequency dices, with each slice having a freguency
equal to the mean fregoency of the shoe and am ampli-
inde and phas: proportional to the area of e shice of the
apprapriatz spectram {Fig. 2.7). This digital expresion
af 3 conbiTraows spectnam in t2rms of a finite cumber of
discrete feqaency companents provides an approximate
representation in the frequency domain of 2 endent
waweform in the ime domain. Incresmg the amplng
frequency m the Gme dommin mot only improves the
time-domaim represeniation of the waveform, bat aso
mcrees the nmber of frequency shees in the fequen-
cy domeim and mmproves the accumcy of te approdme-
tinm here too

Founer mngoneatien may be used to coovert 2 Bme
function gl into is eganvalent amplitade and phae
spectra A(f] and @), or into 2 complex fanction of
frequency G ] known s the frequency specm, whes
Cifr= A fe*l (23
The time- and frequency-domain epreseptatans of a
waweform, 2l and G ), are Enown as a Fowrder par,
represented by the notabon

2 Gl (2.4}

Components of 2 Fourier pair are interchangeahle,
such that, if (3} & the Fourier tansform of g}, then
A i the Fourter mamsiorm of & 7). Fignee 2.8 ilks-
trates Fourier pairs for vari oo wavedorms of geophyscal
significance. All the examples ihodrted have @ phose
spectxr; that is, the indnvidnal sire wave components of
the waveforms are in phase at rero tme. In this case ] 7}
= I fior all valises af . Figere 2.8(z) shows 2 spike fimc-
tom{ako knoren ama D fimcton], which is the shartest
posmble tmnsient waveform. Foarier tmpsformation
shirws that the spike finction has 2 contdnucas frequency
spectrim of constant amphtude from zem ko infmiky;
thus, a spike function comtzams a1l frequencies from zemo
to infinity at egaal amplitade. The T biss"waveform of
Fag. 2.5{h} has, = would be experied, a line spectram
COmpTEng 2 Sngle component at rero freguency. Mote
that Fig. 2.Bia} and {b} demomsrats the principle of
imterchangrabibity of Fourier pairs stated ahove {sqoa-
ton (24} Fgums 25{c) and (d} ilisimte transient
waveforms approamating the shape of wismic pokes,
tagether with their amplinede spectra. Both kawe 2 band-
lirmited zmplitade spactrum, the spectmam of rarrower
bandwidth being amociated with the longer transient
waveform [n genemal, the shortera time puke the wider
is itz frequency bandwidth and in the Emiting cse aspike
puke ke an infmite bandwidth.

Wanveforms with zem phase spectra sach s those alks-
trated m Fig. 2.8 amr symmetrical sboat the ome axi
and, for any given amplitude spectrem, prodoce the
maxirmam peak amplitede in the rselant weeedorm. IF
phase varies linearly with frequency, the wavedform re-
mains unchanged m shape baat is dsplaced in ime; ifthe
phase variation with feqoency is pon-linear theshape of
the waveform is dbersd & particukady impontant csein
seisrmc data procesing is the phase spectmm assodciabed
with mimisum frizy in whach there is 2 maximem con-
centration of energy at the front end of the waveform
Anzlyse of serrmc polses sometimes: assames that they
exhibit minimum delay (see Chaper 4).

Fourier tamformation of dgftized woelbrme &
readily programmed for compaters, wming a far Fourir
temgorm’ (FFT} algorithm as im the Cooley—"Tokey
method [Brgham 1974}, FFT subrovtines can thos be
routinely buik o deta procssing programes in oodet o
carry cat spectral ambyss of geophyscl wavelorme
Fourier tmnsformabion & supphed & a finction o
stancdard spreadshests such & Micrsoff Fxcel. Foarier
tmmsformation @n be extendsd mio two dimensions
{Raymer 1571}, and cam thow be applied to areal ditribo-
tons of data wach as gravity and megpetic comtoar maps
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In this cass, the time variable is replaced by hominontal
distance and the freqoency variable by wavenumber
{mumber of waweform cycles per onit dsence). The
apphcation of two—dmemsonal Foarier technigoes o
the interpretabian of potental feld datz is dmoowesd in
Chapters band 7.

4 Wavelorm processing

The principles of commlnbon, decomeakation amd cor-
relation form the comman bass for many methads of
geophysical data processmg, especially m the fisld ofses-
muc mffection sureeying. They are introdoced here in
general terms and are refermed o extenseely in hier
chapters Theitimportance & that they quantitatively de-
scribe how 2 waveform i affectsd by a filker. Filbering
maddifies 2 waveinrm by dsoriminating betwesn its can-
stibnent sime wave companents toalter therr relatve am-
plitudes or phase relations, or both. Mot audio systems
are privided with simple fikers to cot down on high-

frequency ‘hi=', or to emphasize the low-Feqoency
"hass”. Fltering wan inherent characteristic of amy system
throwgh which 2 Sgnal is ranemittsd.

2.4.1 Cosvolution

Comwlubon (Kanasewich 1981} = 1 mathemabical
operation defining the change of shape of 2 waveform
resalting from its pasags through a filker. Thus, for ex-
ample, 3 seismic pube generated by an explosion =
altered m shape by fikermg effects, both i the groand
and in the eoonding system, 5o that the seismogram (the
fikered cotput) diffes sigmficantly fom the initial
wreismic puke (the imput).

As 3 smple example of filtering, consider @ weight
aspended from the end of 2 vertic] spring, [fthe top of
the spring is pertarbed by 2 sharp up-and-down move-
meent {the ingeat), the motion of the weight (the Gltered
putpot] & 3 series of damped ocilhbons oot of phae
with the inztial perturhaton (Fag. 2.9).

The effect of a filter may be ctegorized by it imepaia
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In this came, the time variable is replaced by bomnontal
distance and the fesquency variable by wavenumhber
{numiber of waweform cycles per anit dsance]. The
apphcation of two-dimemnsional Foarier technigos o
the interpretabon of potenbal Geld data is dsoosed in
Chapiers é and 7.

24 Wavelorm processing

‘The principles of commlubon, decomealaotion and cor-
relation form the commaon bass: for many methaods of
geaphysical data procesamg, especially i the fisld ofses-
mic refection murveying. They are intradoeed bere in
general terms and ace referred to extemnedy in hier
chapters. Theirimportance & that they quamitatively de-
scribe how @ waveform & affected by a fiker. Filtering
mioddifies 2 waveform by decriminating betwesn 15 con-
stibent sime wave companents toalter ther relabve zm-
plitndes or phase rehtions, or both. Mot audio systems
are privided with simple fikers to cut down an high-

feguency ‘him', ar to emphasize the low-Eeqoency
*hass’. Fltering wan inherent chamcteristic of amy system
through whach a sgnal is ramamiteed.

2.4.1 Comvolutdon

Commlugon (Kanasawich 1981} = a2 rmathermatical
nperation defining the change of shape of 2 waveform
resalting from it pamage through a filker. Thuos, for ex-
armple, 1 seismic poke generated by an explosion =
altemed in shape by fikering «fiects, both m the groond
andin the recomding system, so that the ssismogram (the
fikered ootput) difers sgmficantly fom the initial
wrismic puke (the imput).

Az 3 simple example of fillering, consider 2 weaght
mspended from the end of 2 verticl] spring, [ the top of
thee spring is pertarbed by 2 sharp pp-and-down move-
ment {te inpat), the motion of the weight (the Glened
output] & 2 series of damped mcilbbons oot of phae
with the imstial perturhabion (fag. 29).

‘The effect ofa filter may be categorizad by its impalsr
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el aep=mded wright oysten.

rexpanss which & defined & the outpat of the filter when
the mput is a spike fanction {Fg. 210 The impukbe r=-
sponse is a waveform in the time domain, but may be
transformed intn the fesquency domain as for any ather
wavedorm. The Foumer temform of the impulee re-
sponse & kmown as the: temgfer fimdion and this specifies
the amplitnde and phase response of the filter, thos
defining its operation completely The effect of a fiker is
described mathemabiclly by a comsiubsn operation sach
that, ithe imprut siznal ¢{f tothe filter is comlved with
the impuke response ] of the filker, known = the con-
volstion oqerabor, the filbemd owtpot y{f is obzmed:

W= gt fin (2.5}

where the astemsk denotes the comvolation cpenbon
Fgure 2.11{2) shows 2 spilke finction inpat to a filber
whos impuobe respome & given in Fag. 21 1{b). Clearty
the latter is alsa the filtered catput smeoe, by defination,
the impuke msponse represents the oatpa for a spike
mput. Figere 2.11{c) shows an input comprsing twa
separate spike finctons and the filkemd ootput (Fag
2 11{f} & now the superpositian of e two impake e-
sponse fimcoons offet in ime by the separation of the

Spika Inprst

L=

imgrut spilkes and scaled socandig to the mdividus] spike
amplitodes. Since any tansient wave can be represented
5 2 zeries of spike fonctions (Fig. 2.11(e}), the general
farmofa fkered catpet (Fg. 211} can beregarded
the summation of 2 s2i of impabe responses relted oz
successian of spikes simmalating the overall shape of the
Tt wae.

The mathematicz] implementztion of convolution
imvnlves ime imvergian for folding) of one of the fimc-
tons and is progressve didmg past the other fimcdion,
the mdividial terms m the convohved owtpot beng de-
rived by zammation of the cros-maltiphcation prodocs
ower the overlapping pars of the two fomcSons. In gen-
el ifgli=1.2,.. ...n’.liun'iq:-nlﬁm:l:i-:mm-:]_fj’ﬁ-
1.2, .. .. ¢lisaconvolution operator, then the convalu-
Bon output iemction y, B given by

B b afa k=12 men-1) (2.6}

=1

In Fag. 212 the indnadoal seps m the comvolution
proces zre shown for two digital fmctions, 2 doahle
spike fumction given by g = g 2. g, = 2 0, 1 and an im-
pube response Emction given by =0 L 0. (=4, 3.1,
1, where the numbers refer to discrete amplibode vl
at the mmpling point of the two functions. Fom Fg
211 it cam be seen that the comealved output F= . i
Fr Vo Fue Fy= 5. 6, B, 3, 2, 1. Motz that the convolved
cutput is longer than the inpat wavedorms; if the fimnc-
tions to be comvolved have lengths of m and &, the con-
vobved otpot hes a length of (m+ n—1).

‘The comealutan of twa fanctions m the tme domain
becomes increasingly laborious 2= the functicms become
longer. Typical geophysical applications may have fimnc-
tons which are each from 250 o 2 few thosand ampls
lomg. The same mathematical msult may be obizined by
tramformang the fanctiomns to the frequency doomin,
then mukiplying together eqaivalent frequency terms of
thear amplitnde spectra and adding terms of their phase
spectra The resultng oatpat amphitede and phawe spec-
tra can then be tmnsformed back to e time doomain.
This, digital flkering can be enacted in sther the time

Fig. .M Theimpubs napoa ofa filier.
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domain or the fequency domain. With hrge data seix,
fikering by compater & more efficently Grried out in
the frequency domain since fewer mathermatical open
Bans are involved

Comvolstion, or #s equivalent in the fequency

domain, finds very wide appicabion in peoplyscal data
procesing, notably m the digital Gliering of =ismic and
potential fisld datm and the constnection of synthetc
wrismogrames far comparson with field sesmog ames (see
Chapters 4 and &)
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