

الكلية: التربية للعلوم الصرفة

القسم او الفرع: الرياضيات

المرحلة: الثالثة

أستاذ المادة: أ.م.د. فراس شاكر محمود

اسم المادة باللغة العربية: نظرية احتمالية 1

اسم المادة باللغة الإنكليزية: Probability Theory 1

اسم المحاضرة الأولى باللغة العربية: طرق العد (مبادئ العد)

اسم المحاضرة الأولى باللغة الإنكليزية: Counting Techniques

## محتوى المحاضرة الأولى

**Chapter one** 

طرق العد (مبادئ العد) (Counting Technique)

Fundamental principle of counting

المبادئ الأساسية لطرق العد

## Multiplication principle

If set's A1 and A2 have n1 and n2 element respective there are n1 x n2 ways in which one select from A1 and then one select from A2

# Example:

Suppose that a person has a choice of five shirts and the three trousers then he has  $5\times3=15$  different choice of warning a dress

## Additional principle

If set's A1 and A2 have n1 and n2 element respectively there are n1 + n2 ways in which either select from A1 or A2 we assume that no two selections can be carried out simultaneously.

For  $n \in I^+$ , r=0,1,...,n where  $I^+$  is the set of positive Integers  $P(n,r) = \frac{n!}{(n-r)!}$ ,

If  $r=n \Rightarrow P(n,n)=n!$  should order with select

Example: How many there chigit numbers can be formed from the six chigits 1,3,5,6,7 and 9

Solution:  $P(6,3) = \frac{6!}{(6-3)!} = 6 \times 5 \times 4 = 120$ 

## A permutation of elements with Repetitions

The number of permutation of n (elements)(objects, things symbols) of which n1 are alike n2 others are alike ,...one  $n_k$  are alike Is given by  $p(n,n1,n2,...,n_k)$  provided  $n1+n2+....+n_k=n$ 

In notation  $p(n,n1,n2,...,n_k) = \frac{n!}{n_1!n_2!,...,n_k!}$  When  $\sum_{i=1}^k n_i = n$ 

Example: A committee consisting of ten numbers of visits a metro polin city to investigate the changing scenario with respect to traffic problem

Example: three books are recommended for basic course in mathematics (Andysis) and five books for the probability theory. The total number of ways a student can choose the book Is 3+5=8 ways

We can generalization of addition principle as if sets  $A_i$  (i=1,2,...,k) have respectively  $n_i$ (i=1,2,...,k) elements there are n1+n2+...+nk= $\sum_{i=1}^k n_i$  Ways.