Solution 109

For wire $A B$:
By sine law (from the force polygon):

$$
\begin{aligned}
& \frac{T_{A B}}{\sin 40^{\circ}}=\frac{W}{\sin 80^{\circ}} \\
& T_{A B}=0.6527 \mathrm{~W} \\
& \sigma_{A B A} A_{A B}=0.6527 \mathrm{~W} \\
& 30(0.4)=0.6527 \mathrm{~W} \\
& W=18.4 \mathrm{kips}
\end{aligned}
$$

FBD of knot A

Force polygon of
forces on knot A

For wire $A C$:
$\frac{T_{A C}}{\sin 60^{\circ}}=\frac{W}{\sin 80^{\circ}}$
$T_{A C}=0.8794 \mathrm{~W}$
$T_{A C}=\sigma_{A C} A_{A C}$
$0.8794 W=30(0.5)$
$W=17.1 \mathrm{kips}$
Safe load $W=17.1$ kips

Problem 110

A 12 -inches square steel bearing plate lies between an 8 -inches diameter wooden post and a concrete footing as shown in Fig. P-110. Determine the maximum value of the load P if the stress in wood is limited to 1800 psi and that in concrete to 650 psi.

Figure P-110

Solution 110

For wood:
$P_{w}=\sigma_{w} A_{w}$

$$
\begin{aligned}
& =1800\left[\frac{1}{4} \pi\left(8^{2}\right)\right] \\
& =90477.9 \mathrm{lb}
\end{aligned}
$$

From FBD of Wood:
$P=P_{w}=90477.9 \mathrm{lb}$

For concrete:

$$
\begin{aligned}
P_{c} & =\sigma_{c} A_{c} \\
& =650\left(12^{2}\right) \\
& =936001 \mathrm{~b}
\end{aligned}
$$

From FBD of Concrete:
$P=P_{c}=93600 \mathrm{lb}$
Safe load $P=90478 \mathrm{lb}$

Problem 111

For the truss shown in Fig. P-111, calculate the stresses in members CE, DE, and DF.
The crosssectional area of each member is $1.8 \mathrm{in}^{2}$. Indicate tension (T) or compression (C).

Solution 111
From the $F B D$ of the truss:

$$
\begin{aligned}
& \sum M_{A}=0 \\
& 24 R_{B}=16(30) \\
& R_{F}=20^{\mathrm{k}} \\
& \text { At joint } F: \\
& \Sigma F_{V}=0 \\
& \frac{3}{5} D F=20 \\
& D F=33 \frac{1 \mathrm{k}}{3}(C)
\end{aligned}
$$

$$
\begin{aligned}
& \text { At joint } D \text { : (by symmetry) } \\
& B D=D F=33 \frac{1}{3} \mathrm{k}(C) \\
& \Sigma \mathrm{F}_{\mathrm{v}}=0 \\
& D E=\frac{3}{5} B D+\frac{3}{5} D F \\
& =\frac{3}{5}\left(33 \frac{1}{3}\right)+\frac{3}{5}\left(33 \frac{1}{3}\right) \\
& =40^{\mathrm{k}}(T)
\end{aligned}
$$

At joint E :
$\Sigma \mathrm{F}_{\mathrm{V}}=0$
$\frac{3}{5} C E+30=40$
$C E=16 \frac{2}{3} \mathrm{k}(T)$
Stresses:
Stress = Force/Area
$\sigma_{C E}=\frac{16 \frac{2}{3}}{1.8}=9.26 \mathrm{ksi}(T)$

Joint D

Joint F

$$
\begin{aligned}
& \sigma_{D E}=\frac{40}{1.8}=22.22 \mathrm{ksi}(T) \\
& \sigma_{D F}=\frac{33 \frac{1}{3}}{1.8}=18.52 \mathrm{ksi}(C)
\end{aligned}
$$

Problem 112

Determine the crosssectional areas of members AG, BC, and CE for the truss shown in Fig. P-112 above. The stresses are not to exceed 20 ksi in tension and 14 ksi in compression. A reduced stress in compression is specified to reduce the danger of buckling.

Solution 112

$$
\begin{aligned}
\Sigma F_{V} & =0 \\
R_{A V} & =40+25 \\
& =65^{\mathrm{k}} \\
& \Sigma M_{A}
\end{aligned}=0 .
$$

Check:

$$
\Sigma M_{D}=0
$$

$$
12 R_{\mathrm{AV}}=18\left(R_{\mathrm{AH}}\right)+4(25)+8(40)
$$

$$
12(65)=18(20)+4(25)+8(40)
$$

$$
780 \mathrm{ft} \cdot \mathrm{kip}=780 \mathrm{ft} \cdot \mathrm{kip}(\mathrm{OK}!)
$$

Joint A

For member $A G$:
At joint A :
$\Sigma F_{V}=0$
$\frac{3}{\sqrt{13}} A B=65$
$A B=\frac{65 \sqrt{13}}{3}$
$=78.12 \mathrm{k}$
$\Sigma F_{H}=0$
$\begin{aligned} A G & +20=\frac{2}{\sqrt{13}} A B \\ A G & =\frac{2}{\sqrt{13}}(78.12)-20 \\ & =20.33^{\mathrm{k}} \text { Tension }\end{aligned}$
$A G=\sigma_{\text {tersion }} A_{\text {AG }}$
$20.33=20 A_{\text {AG }}$
$A_{A G}=1.17 \mathrm{in}^{2}$

Section through MN

For member $B C$:
At section through $M N$
$\Sigma M_{F}=0$
$6\left(\frac{2}{\sqrt{13}} B C\right)=12(20)$
$B C=20 \sqrt{13}$
$=72.11^{\mathrm{k}}$ Compression
$B C=\sigma_{\text {compression }} A_{\mathrm{BC}}$
$72.11=14 A_{\mathrm{BC}}$
$A_{B C}=5.15 \mathrm{in}^{2}$
For member $C E$:
At joint D :
$\Sigma F_{H}=0$
$\frac{2}{\sqrt{13}} C D=20$
$C D=10 \sqrt{13}$
$=36.06^{\mathrm{k}}$

$$
\begin{aligned}
& \text { Joint } \begin{aligned}
{[\mathrm{F}} & =0 \\
D E & =\frac{3}{\sqrt{13}} C D \\
& =\frac{3}{\sqrt{13}}(36.06) \\
& =30^{\mathrm{k}}
\end{aligned}
\end{aligned}
$$

Joint E

At joint E :
$\Sigma F_{V}=0$
$\frac{3}{\sqrt{13}} E F=30$
$E F=10 \sqrt{13}=36.06^{k}$
$\Sigma F_{H}=0$
$C E=\frac{2}{\sqrt{13}} E F$
$=\frac{2}{\sqrt{13}}(36.06)$
$=20^{\mathrm{k}}$ Compression
$C F=\sigma_{\text {compression }} A_{C E}$
$20=14 A_{C E}$
$A_{\mathrm{CE}}=1.43 \mathrm{in}^{2}$

Problem 113

Find the stresses in members $B C, B D$, and $C F$ for the truss shown in Fig. P-113. Indicate the tension or compression. The cross sectional area of each member is $1600 \mathrm{~mm}^{2}$.

Solution 113

FBD 01

For member BD: (See FBD 01)

$$
\Sigma M_{C}=0
$$

$$
3\left(\frac{4}{5} B D\right)=3(60)
$$

$B D=75 \mathrm{kN}$ Tension
$B D=\sigma_{B D} A$
$75(1000)=\sigma_{B D}(1600)$
$\sigma_{B D}=46.875 \mathrm{MPa}$ (Tension)
For member CF: (See FBD 01)
$\Sigma M_{D}=0$
$4\left(\frac{1}{\sqrt{2}} C F\right)=4(90)+7(60)$
$C F=195 \sqrt{2}$
$=275.77 \mathrm{kN}$ Compression
$C F=\sigma_{C F} A$
$275.77(1000)=\sigma_{C F}(1600)$
$\sigma_{C F}=172.357 \mathrm{MPa}$ (Compression)
For member $B C$: (See FBD 02)
$\Sigma M_{D}=0$
$4 B C=7(60)$
$B C=105 \mathrm{kN}$ Compression
$B C=\sigma_{B C} A$
$105(1000)=\sigma_{B C}(1600)$
$\sigma_{B C}=65.625 \mathrm{MPa}$ (Compression)

Problem 114

The homogeneous bar $A B C D$ shown in Fig. $\mathrm{P}-114$ is supported by a cable that runs from A to B around the smooth peg at E, a vertical cable at C, and a smooth inclined surface at D. Determine the mass of the heaviest bar that can be supported if the stress in each cable is limited to 100 MPa . The area of the cable $A B$ is $250 \mathrm{~mm}^{2}$ and that of the cable at C is $300 \mathrm{~mm}^{2}$.

