Torsion

Consider a bar to be rigidly attached at one end and twisted at the other end by a torque or twisting moment T equivalent to $F \times d$, which is applied perpendicular to the axis of the bar, as shown in the figure. Such a bar is said to be in torsion.

TORSIONAL SHEARING STRESS, τ

For a solid or hollow circular shaft subject to a twisting moment T, the torsional shearing stress τ at a distance ρ from the center of the shaft is

$$
\tau=\frac{T \rho}{J} \text { and } \tau_{\max }=\frac{T r}{J}
$$

where J is the polar moment of inertia of the section and r is the outer radius.

For solid cylindrical shaft:

$$
\begin{aligned}
& J=\frac{\pi}{32} D^{4} \\
& \tau_{\max }=\frac{16 T}{\pi D^{3}}
\end{aligned}
$$

For hollow cylindrical shaft:

$$
\begin{aligned}
& J=\frac{\pi}{32}\left(D^{4}-d^{4}\right) \\
& \tau_{\max }=\frac{16 T D}{\pi\left(D^{4}-d^{4}\right)}
\end{aligned}
$$

ANGLE OF TWIST

The angle θ through which the bar length L will twist is

$$
\theta=\frac{T L}{J G} \text { in radians }
$$

where T is the torque in $N \cdot m m, L$ is the length of shaft in $m m, G$ is shear modulus in MPa, J is the polar moment of inertia in $\mathrm{mm}^{4}, \mathrm{D}$ and d are diameter in mm , and r is the radius in mm.

POWER TRANSMITTED BY THE SHAFT

A shaft rotating with a constant angular velocity ω (in radians per second) is being acted by a twisting moment T . The power transmitted by the shaft is

$$
P=T \omega=2 \pi T f
$$

where T is the torque in $N \cdot m$, f is the number of revolutions per second, and P is the power in watts.

Solved Problems in Torsion

Problem 304

A steel shaft 3 ft long that has a diameter of 4 in . is subjected to a torque of $15 \mathrm{kip} \cdot \mathrm{ft}$.
Determine the maximum shearing stress and the angle of twist. Use $G=12 \times 10^{6} \mathrm{psi}$.

Solution 304

$$
\begin{aligned}
& \tau_{\max }=\frac{16 T}{\pi D^{3}}=\frac{16(15)(1000)(12)}{\pi\left(4^{3}\right)} \\
& \tau_{\max }=14324 \mathrm{psi} \\
& \tau_{\max }=14.3 \mathrm{ksi} \\
& \theta=\frac{T L}{J G}=\frac{15(3)(1000)\left(12^{2}\right)}{\frac{1}{32} \pi\left(4^{4}\right)\left(12 \times 10^{6}\right)} \\
& \theta=0.0215 \mathrm{rad} \\
& \theta=1.23^{\circ}
\end{aligned}
$$

Problem 305

What is the minimum diameter of a solid steel shaft that will not twist through more than 3° in a $6-\mathrm{m}$ length when subjected to a torque of $12 \mathrm{kN} \cdot \mathrm{m}$? What maximum shearing stress is developed? Use G $=83$ GPa.

Solution 305

$$
\begin{aligned}
& \theta=\frac{T L}{J G} \\
& 3^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{12(6)\left(1000^{3}\right)}{\frac{1}{32} \pi d^{4}(83000)} \\
& d=113.98 \mathrm{~mm} \\
& \tau_{\max }=\frac{16 T}{\pi d^{3}}=\frac{16(12)\left(1000^{2}\right)}{\pi\left(113.98^{3}\right)} \\
& \tau_{\max }=41.27 \mathrm{MPa}
\end{aligned}
$$

Problem 306

A steel marine propeller shaft 14 in . in diameter and 18 ft long is used to transmit 5000 hp at 189 rpm . If $\mathrm{G}=12 \times 10^{6} \mathrm{psi}$, determine the maximum shearing stress.

Solution 306

$$
\begin{aligned}
& T=\frac{P}{2 \pi f}=\frac{5000(396000)}{2 \pi(189)} \\
& T=1667337.5 \mathrm{lb} \cdot \mathrm{in} \\
& \tau_{\max }=\frac{16 T}{\pi d^{3}}=\frac{16(1667337.5)}{\pi\left(14^{3}\right)} \\
& \tau_{\max }=3094.6 \mathrm{psi}
\end{aligned}
$$

Problem 307

A solid steel shaft 5 m long is stressed at 80 MPa when twisted through 4°. Using $\mathrm{G}=$ 83 GPa, compute the shaft diameter. What power can be transmitted by the shaft at 20 Hz ?

Solution 307

$$
\begin{aligned}
& \theta=\frac{T L}{J G} \\
& 4^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{T(5)(1000)}{\frac{1}{32} \pi d^{4}(83000)} \\
& T=0.1138 d^{4} \\
& \tau_{\max }=\frac{16 T}{\pi d^{3}} \\
& 80=\frac{16\left(0.1138 d^{4}\right)}{\pi d^{3}} \\
& d=138 \mathrm{~mm} \\
& T=\frac{P}{2 \pi f} \\
& 0.1138 d^{4}=\frac{P}{2 \pi(20)} \\
& P=14.3 d^{4}=14.3\left(138^{4}\right) \\
& P=5186237285 \mathrm{~N} \cdot \mathrm{~mm} / \mathrm{sec} \\
& P=5186237.28 \mathrm{~W} \\
& P=5.19 \mathrm{MW}
\end{aligned}
$$

Problem 308

A 2-in-diameter steel shaft rotates at 240 rpm. If the shearing stress is limited to 12 ksi, determine the maximum horsepower that can be transmitted.

Solution 308

$$
\tau_{\max }=\frac{16 T}{\pi d^{3}}
$$

$12(1000)=\frac{16 T}{\pi\left(2^{3}\right)}$
$T=18849.56 \mathrm{lb} \cdot \mathrm{in}$
$T=\frac{P}{2 \pi f}$
$18849.56=\frac{P(396000)}{2 \pi(240)}$
$P=71.78 \mathrm{hp}$

Problem 309

A steel propeller shaft is to transmit 4.5 MW at 3 Hz without exceeding a shearing stress of 50 MPa or twisting through more than 1° in a length of 26 diameters. Compute the proper diameter if $\mathrm{G}=83 \mathrm{GPa}$.

Solution 309

$$
\begin{aligned}
& T=\frac{P}{2 \pi f}=\frac{4.5(1000000)}{2 \pi(3)} \\
& T=238732.41 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Based on maximum allowable shearing stress:

$$
\begin{aligned}
& \tau_{\max }=\frac{16 T}{\pi d^{3}} \\
& 50=\frac{16(238732.41)(1000)}{\pi d^{3}} \\
& d=289.71 \mathrm{~mm}
\end{aligned}
$$

Based on maximum allowable angle of twist:

$$
\begin{aligned}
& \theta=\frac{T L}{J G} \\
& 1^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{238732.41(26 d)(1000)}{\frac{1}{32} \pi d^{4}(83000)} \\
& d=352.08 \mathrm{~mm}
\end{aligned}
$$

Use the bigger diameter, $d=352 \mathrm{~mm}$

Problem 310

Show that the hollow circular shaft whose inner diameter is half the outer diameter has a torsional strength equal to $15 / 16$ of that of a solid shaft of the same outside diameter.

Solution 310

Solid circular shaft:

$$
\begin{aligned}
\tau_{\text {max-solid }} & =\frac{16 T}{\pi D^{3}} \\
& =\frac{15}{16}\left[\frac{16^{2} T}{15 \pi D^{3}}\right] \\
& =\frac{15}{16} \times \tau_{\text {max-hollow }} \text { ok! }
\end{aligned}
$$

Problem 311

An aluminum shaft with a constant diameter of 50 mm is loaded by torques applied to gears attached to it as shown in Fig. P-311. Using G $=28 \mathrm{GPa}$, determine the relative angle of twist of gear D relative to gear A.

Solution 311

Rotation of D relative to A :

$$
\begin{aligned}
& \theta_{D / A}=\frac{1}{J G} \sum T L \\
& \theta_{D / A}=\frac{1}{\frac{1}{32} \pi\left(50^{4}\right)(28000)}[800(2)-300(3)+600(2)]\left(100^{2}\right) \\
& \theta_{D / A}=0.1106 \mathrm{rad} \\
& \theta_{D / A}=6.34^{\circ}
\end{aligned}
$$

Problem 312

A flexible shaft consists of a 0.20 -in-diameter steel wire encased in a stationary tube that fits closely enough to impose a frictional torque of $0.50 \mathrm{lb} \cdot \mathrm{in} / \mathrm{in}$. Determine the maximum length of the shaft if the shearing stress is not to exceed 20 ksi . What will be the angular deformation of one end relative to the other end? $G=12 \times 10^{6} \mathrm{psi}$.

Solution 312

$\tau_{\max }=\frac{16 T}{\pi d^{3}}$

$$
20(1000)=\frac{16 T}{\pi(0.20)^{3}}
$$

$T=10 \pi \mathrm{lb}-\mathrm{in}$
$L=\frac{T}{0.50 \mathrm{lb} \cdot \mathrm{in} / \mathrm{in}}=\frac{10 \pi \mathrm{lb} \cdot \mathrm{in}}{0.50 \mathrm{lb} \cdot \mathrm{in} / \mathrm{in}}$
$L=20 \pi$ in $=62.83 \mathrm{in}$
$\theta=\frac{T L}{J G}$
If $\theta=d \theta, T=0.5 L$ and $L=d L$

$$
\begin{aligned}
& \int d \theta=\frac{1}{J G} \int_{0}^{20 \pi}(0.5 L) d L \\
& \theta=\frac{1}{J G}\left[\frac{0.5 L^{2}}{2}\right]_{0}^{20 \pi}=\frac{1}{J G}\left[0.25(20 \pi)^{2}-0.25(0)^{2}\right] \\
& \theta=\frac{100 \pi^{2}}{\frac{1}{32} \pi\left(0.20^{4}\right)\left(12 \times 10^{6}\right)} \\
& \theta=0.5234 \mathrm{rad}=30^{\circ}
\end{aligned}
$$

Problem 313

Determine the maximum torque that can be applied to a hollow circular steel shaft of $100-\mathrm{mm}$ outside diameter and an $80-\mathrm{mm}$ inside diameter without exceeding a shearing stress of 60 MPa or a twist of $0.5 \mathrm{deg} / \mathrm{m}$. Use G $=83 \mathrm{GPa}$.

Solution 313

Based on maximum allowable shearing stress:

$$
\begin{aligned}
& \tau_{\max }=\frac{16 T D}{\pi\left(D^{4}-d^{4}\right)} \\
& 60=\frac{16 T(100)}{\pi\left(100^{4}-80^{4}\right)} \\
& T=6955486.14 \mathrm{~N} \cdot \mathrm{~mm} \\
& T=6955.5 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Based on maximum allowable angle of twist:

$$
\begin{aligned}
& \theta=\frac{T L}{J G} \\
& 0.5^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{T(1000)}{\frac{1}{32} \pi\left(100^{4}-80^{4}\right)(83000)} \\
& T=4198282.97 \mathrm{~N} \cdot \mathrm{~mm} \\
& T=4198.28 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Use the smaller torque, $T=4198.28 \mathrm{~N} \cdot \mathrm{~m}$

Problem 314

The steel shaft shown in Fig. P-314 rotates at 4 Hz with 35 kW taken off at A, 20 kW removed at B , and 55 kW applied at C . Using $\mathrm{G}=83 \mathrm{GPa}$, find the maximum shearing stress and the angle of rotation of gear A relative to gear C.

Figure P-314

Solution 314

$$
\begin{aligned}
& T=\frac{P}{2 \pi f} \\
& T_{A}=\frac{-35(1000)}{2 \pi(4)}=-1392.6 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{B}=\frac{-20(1000)}{2 \pi(4)}=-795.8 \mathrm{~N} \cdot \mathrm{~m} \\
& T_{C}=\frac{55(1000)}{2 \pi(4)}=2188.4 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Relative to C :

Problem 315

A 5-m steel shaft rotating at 2 Hz has 70 kW applied at a gear that is 2 m from the left end where 20 kW are removed. At the right end, 30 kW are removed and another 20 kW leaves the shaft at 1.5 m from the right end. (a) Find the uniform shaft diameter so that the shearing stress will not exceed 60 MPa . (b) If a uniform shaft diameter of 100 mm is specified, determine the angle by which one end of the shaft lags behind the other end. Use G = 83 GPa .
$T=\frac{P}{2 \pi f}$
$T_{A}=T_{C}=\frac{-20(1000)}{2 \pi(2)}=-1591.55 \mathrm{~N} \cdot \mathrm{~m}$
$T_{B}=\frac{70(1000)}{2 \pi(2)}=5570.42 \mathrm{~N} \cdot \mathrm{~m}$
$T_{D}=\frac{-30(1000)}{2 \pi(2)}=-2387.32 \mathrm{~N} \cdot \mathrm{~m}$

Part (a)

$$
\tau_{\max }=\frac{16 T}{\pi d^{3}}
$$

$$
\begin{array}{ll}
\text { For } A B: & 60=\frac{16(1591.55)(1000)}{\pi d^{3}} \\
& d=51.3 \mathrm{~mm} \\
\text { For } B C: & 60=\frac{16(3978.87)(1000)}{\pi d^{3}} \\
& d=69.6 \mathrm{~mm} \\
\text { For } C D: & 60=\frac{16(2387.32)(1000)}{\pi d^{3}} \\
& d=58.7 \mathrm{~mm}
\end{array}
$$

Use $d=69.6 \mathrm{~mm}$

Part (b)

$$
\begin{aligned}
& \theta=\frac{T L}{J G} \\
& \theta_{D / A}=\frac{1}{J G} \sum T L \\
& \theta_{D / A}=\frac{1}{\frac{1}{32} \pi\left(100^{4}\right)(83000)}[-1591.55(2) \\
& \quad+3978.87(1.5)+2387.32(1.5)]\left(1000^{2}\right) \\
& \theta_{D / A}=0.007813 \mathrm{rad} \\
& \theta_{D / A}=0.448^{\circ}
\end{aligned}
$$

