Scalar multiplication of vectors is straightforward. If vector $\vec{\mathbf{A}}$ is multiplied by a positive scalar quantity *m*, the product $m \vec{\mathbf{A}}$ is a vector that has the same direction as $\vec{\mathbf{A}}$ and magnitude *mA*. If vector $\vec{\mathbf{A}}$ is multiplied by a negative scalar quantity -m,

the product $-m\vec{A}$ is directed opposite \vec{A} . For example, the vector $5\vec{A}$ is five times as long as \vec{A} and points in the same direction as \vec{A} ; the vector $-\frac{1}{3}\vec{A}$ is one-third the length of \vec{A} and points in the direction opposite \vec{A} .

Vector subtraction:

We define the operation

$$\vec{A} - \vec{B}$$
 as vector $-\vec{B}$ added to vector \vec{A} :
 $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

Figure 3.10 (a) Subtracting vector \vec{B} from vector \vec{A} . The vector $-\vec{B}$ is equal in magnitude to vector \vec{B} and points in the opposite direction. (b) A second way of looking at vector subtraction.

Example

A car travels 20.0 km due north and then 35.0° km in a direction 60.0° west of north as shown in Figure 3.11a. Find the magnitude and direction of the car's resultant displacement.

Figure 3.11 (Example 3.2) (a) Graphical method for finding the resultant displacement vector $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$. (b) Adding the vectors in reverse order $(\vec{\mathbf{B}} + \vec{\mathbf{A}})$ gives the same result for $\vec{\mathbf{R}}$.

Solution

We show two ways to analyze the problem of finding the resultant of two vectors. The first way is to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of R and its direction in Figure 3.11a. (In fact, even when you know you are going to be carrying out a calculation, you should sketch the vectors to check your results.) With an ordinary ruler and protractor, a large diagram typically gives answers to two-digit but not to three-digit precision. Try using these tools on R in Figure 3.11a and compare to the trigonometric analysis below!

The second way to solve the problem is to analyze it using algebra and trigonometry. The magnitude of R can be obtained from the law of cosines as applied to the triangle in Figure 3.11a

Use $R^2 = A^2 + B^2 - 2AB \cos \theta$ from the law of cosines to $R = \sqrt{A^2 + B^2 - 2AB \cos \theta}$ find *R*:

Substitute numerical values, noting that $\theta = 180^{\circ} - 60^{\circ} = 120^{\circ}$: Use the law of sines (Appendix B.4) to find the direction $\frac{\sin \beta}{R} = \frac{\sin \theta}{R}$

Use the law of sines (Appendix B.4) to find the direction of $\vec{\mathbf{R}}$ measured from the northerly direction:

 $R = \sqrt{(20.0 \text{ km})^2 + (35.0 \text{ km})^2 - 2(20.0 \text{ km})(35.0 \text{ km}) \cos 120^\circ}$ = 48.2 km $\frac{\sin \beta}{B} = \frac{\sin \theta}{R}$ $\sin \beta = \frac{B}{R} \sin \theta = \frac{35.0 \text{ km}}{48.2 \text{ km}} \sin 120^\circ = 0.629$ $\beta = 38|9^\circ$

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.