Components of a Vector and Unit Vectors

The graphical method of adding vectors is not recommended whenever high accuracy is required or in three-dimensional problems. In this section, we describe a method of adding vectors that makes use of the projections of vectors along coordinate axes. These projections are called the components of the vector or its rectangular components.

-

b
$A_{x}=A \cos \theta$
$A_{y}=A \sin \theta$

Unit vector

*A unit vector is a dimensionless vector having a magnitude of exactly 1.
*Unit vectors are used to specify a given direction and have no other physical significance.

[^0]

The resultant vector $\overrightarrow{\mathbf{R}}$ is

$$
\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}\right)
$$

or, rearranging terms,

$$
\overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x} \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}\right.
$$

Because $\overrightarrow{\mathbf{R}}=R_{x} \hat{\mathbf{i}}+R_{y} \hat{\mathbf{j}}$, we see that the components of the resultant vector ar

$$
\begin{aligned}
& R_{x}=A_{x}+B_{x} \\
& R_{y}=A_{y}+B_{y}
\end{aligned}
$$

$$
\begin{gathered}
R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{\left(A_{x}+B_{x}\right)^{2}+\left(A_{y}+B_{y}\right)^{2}} \\
\tan \theta=\frac{R_{y}}{R_{x}}=\frac{A_{y}+B_{y}}{A_{x}+B_{x}}
\end{gathered}
$$

At times, we need to consider situations involving motion in three component directions. The extension of our methods to three-dimensional vectors is straightforward. If $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ both have x, y, and z components, they can be expressed in the form

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}
\end{aligned}
$$

The sum of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is

$$
\overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}+\left(A_{z}+B_{z}\right) \hat{\mathbf{k}}
$$

Notice that Equation 3.19 differs from Equation 3.13: in Equation 3.19, the resultant vector also has a z component $R_{z}=A_{z}+B_{z}$. If a vector $\overrightarrow{\mathbf{R}}$ has x, y, and z components, the magnitude of the vector is $R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}$. The angle θ_{x} that $\overrightarrow{\mathbf{R}}$ makes with the x axis is found from the expression $\cos _{x}^{y} \theta_{x}=R_{x} / R$, with similar expressions for the angles with respect to the y and z axes.

The extension of our method to adding more than two vectors is also straightforward using the component method. For example, $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\left(A_{x}+B_{x}+C_{x}\right) \hat{\mathbf{i}}+$ $\left(A_{y}+B_{y}+C_{y}\right) \hat{\mathbf{j}}+\left(A_{z}+B_{z}+C_{z}\right) \hat{\mathbf{k}}$.

Example

Find the sum of two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ lying in the xy plane and given by

$$
\overrightarrow{\mathbf{A}}=(2.0 \hat{\mathbf{i}}+2.0 \hat{\mathbf{j}}) \quad \text { and } \quad \overrightarrow{\mathbf{B}}=(2.0 \hat{\mathbf{i}}-4.0 \hat{\mathbf{j}})
$$

solution

$$
\begin{aligned}
& \overrightarrow{\mathbf{R}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}=(2.0+2.0) \hat{\mathbf{i}}+(2.0-4.0) \hat{\mathbf{j}} \\
&=4.0 \hat{\mathbf{i}}-2.0 \hat{\mathbf{j}} \\
& R=\sqrt{R_{x}^{2}+R_{y}{ }^{2}}=\sqrt{(4.0)^{2}+(-2.0)^{2}}=\sqrt{20}=4.5 \\
& \quad \tan \theta=\frac{R_{y}}{R_{x}}=\frac{-2.0}{4.0}=-0.50
\end{aligned}
$$

$\theta=-27$

This answer is correct if we interpret it to mean 27° clockwise from the x axis. Our standard form has been to quote the angles measured counterclockwise from the $1 x$ axis, and that angle for this vector is
$\theta=360-27$
$=333^{\circ}$.

Example

A particle undergoes three consecutive displacements: $\Delta \vec{r}_{1}=(15 \hat{i}+30 \hat{j}+12 \hat{\mathbf{k}}) \mathrm{cm}, \Delta \overrightarrow{\mathrm{r}}_{2}=(23 \hat{\mathrm{i}}-14 \hat{\mathrm{j}}-5.0 \hat{\mathbf{k}}) \mathrm{cm}$, and $\Delta \overrightarrow{\mathbf{r}}_{3}=(-13 \hat{\mathbf{i}}+15 \hat{\mathrm{j}}) \mathrm{cm}$. Find unit-vector notation for the resultant displacement and its magnitude.

solution

To find the resultant displacement, add the three vectors:

Find the magnitude of the resultant vector:

$$
\begin{aligned}
\Delta \overrightarrow{\mathbf{r}} & =\Delta \overrightarrow{\mathbf{r}}_{1}+\Delta \overrightarrow{\mathbf{r}}_{2}+\Delta \overrightarrow{\mathbf{r}}_{3} \\
& =(15+23-13) \hat{\mathbf{i}} \mathrm{cm}+(30-14+15) \hat{\mathbf{j}} \mathrm{cm}+(12-5.0+0) \hat{\mathbf{k}} \mathrm{cm} \\
& =(25 \hat{\mathbf{i}}+31 \hat{\mathbf{j}}+7.0 \hat{\mathbf{k}}) \mathrm{cm}
\end{aligned}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}
$$

$$
=\sqrt{(25 \mathrm{~cm})^{2}+(31 \mathrm{~cm})^{2}+(7.0 \mathrm{~cm})^{2}}=40 \mathrm{~cm}
$$

Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower.
(A) Determine the components of the hiker's displacement for each day.

Solution

$$
\begin{aligned}
& A_{x}=A \cos \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(0.707)=17.7 \mathrm{~km} \\
& A_{\gamma}=A \sin \left(-45.0^{\circ}\right)=(25.0 \mathrm{~km})(-0.707)=-17.7 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& B_{x}=B \cos 60.0^{\circ}=(40.0 \mathrm{~km})(0.500)=20.0 \mathrm{~km} \\
& B_{y}=B \sin 60.0^{\circ}=(40.0 \mathrm{~km})(0.866)=34.6 \mathrm{~km}
\end{aligned}
$$

(B) Determine the components of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip. Find an expression for $\overrightarrow{\mathbf{R}}$ in terms of unit vectors.

$$
\begin{aligned}
& R_{x}=A_{x}+B_{x}=17.7 \mathrm{~km}+20.0 \mathrm{~km}=37.7 \mathrm{~km} \\
& R_{y}=A_{y}+B_{y}=-17.7 \mathrm{~km}+34.6 \mathrm{~km}=17.0 \mathrm{~km} \\
& \overrightarrow{\mathbf{R}}=(37.7 \hat{\mathbf{i}}+17.0 \hat{\mathbf{j}}) \mathrm{km}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{E x} \text { (prob 15) page 88 } \\
& \vec{A}=5 \hat{i}+2 \hat{j}, \vec{B}=-3 i-5 j \text {, and } \vec{E}=2 \vec{A}+3 \vec{B}
\end{aligned}
$$

a) write vector \vec{E} in component form
b) Draw a coordinate system and on it show vectors \vec{A}, \vec{B},
c) what are the magnitude and direction of rector $\vec{E} n d \vec{E}$

Solution
(a) $\vec{E}=2(5 \hat{i}+2 \hat{j})+3(-3 \hat{i}-5 \hat{j})$

$$
\begin{aligned}
& =10 \hat{\imath}+4 \hat{\jmath}-3 \hat{\imath}-15 \hat{\jmath} \\
\vec{E} & =1 \hat{\jmath}-11 \hat{\jmath}
\end{aligned}
$$

(C)

$$
\begin{aligned}
E & =\sqrt{1^{2}+(-1)^{2}} \\
& =\sqrt{122} \\
& =11.05 \\
\theta & =\tan ^{-1} \frac{E_{y}}{E_{x}} \\
& =\tan ^{-1} \frac{-11}{1} \\
& =-84.8 \\
D & =370-84.8 \\
& =275.19^{\circ}
\end{aligned}
$$

[^0]: * We shall use the symbols i, j, and $\mathrm{k} /$ to represent unit vectors pointing in the positive x, y, and z directions, respectively.

