
3. Newton's Third Law

If you press against a corner of this textbook with your fingertip, the book pushes back and makes a small dent in your skin. If you push harder, the book does the same and the dent in your skin is a little larger. This simple activity illustrates that forces are interactions between two objects: when your finger pushes on the book, the book pushes back on your finger. This important principle is known as Newton's third law

If two objects interact, the force $\vec{\mathbf{F}}_{12}$ exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force $\vec{\mathbf{F}}_{21}$ exerted by object 2 on object 1:

Newton's third law

$$\vec{\mathbf{F}}_{12} = -\vec{\mathbf{F}}_{21} \tag{5.7}$$

Figure 5.6 Newton's third law. The force $\overrightarrow{\mathbf{F}}_{12}$ exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force $\overrightarrow{\mathbf{F}}_{21}$ exerted by object 2 on object 1.

- 23. The position of a particle as a function of time is given by $\vec{r} = (5.0\hat{i} + 4.0\hat{j})t^2$ m, where t is in seconds.
 - a. What is the particle's distance from the origin at t = 0, 2, and 5 s?
 - b. Find an expression for the particle's velocity \vec{v} as a function of time.
 - c. What is the particle's speed at t = 0, 2, and 5 s?
 - 23. a. 0 m, 25.6 m, 160 m b. $(10\hat{i} + 8\hat{j})t$ m/s c. 0 64.0 m/s
 - 25. a. $-6\hat{i} + 2\hat{j}$ b. 6.3, 18° above the -x-axis
 - 27. $-1.1\hat{i} 3.0\hat{j}$
 - 29. $0.707\hat{i} + 0.707\hat{j}$
 - 31. a. 100 m lower b. 5.03 km

13. | FIGURE EX5.13 shows an acceleration-versus-force graph for a 500 g object. What acceleration values go in the blanks on the vertical scale?

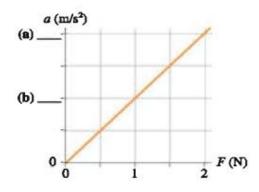


FIGURE EX5.13

Kinetic friction $\vec{f_k}$

- 7. 3 9. ½
- 11. $\overline{3.7}$ s
- 13. a. 4 m/s² b. 2 m/s²
- 15. 0.25 kg
- 17. a. ≈0.05 N b. ≈100 N
- 19.

15. FIGURE EX5.15 shows an object's acceleration-versus-force graph. What is the object's mass?

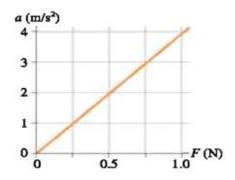


FIGURE EX5.15

30. A single force with x-component F_x acts on a 2.0 kg object as it moves along the x-axis. The object's acceleration graph $(a_x \text{ versus } t)$ is shown in FIGURE P5.30. Draw a graph of F_x versus t.

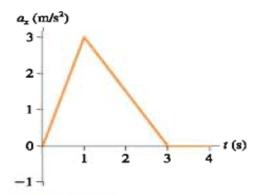


FIGURE P5.30