University Of Anbar College Of Engineering Electrical Engineering Department

MATHEMATICS-1 1st class students

Dr. Hamid Raddam Hussein

References

- 1. Stewart, J., Clegg, D. K., & Watson, S. (2020). Calculus: early transcendental. Cengage Learning.
- 2. Thomas, G. B., Haas, J., Heil, C., & Weir, M. (2018). Thomas' Calculus. Pearson Education Limited.
- 3. Stroud, K. A., & Booth, D. J. (2020). Engineering mathematics. Bloomsbury Publishing.

1.1 Sets of Numbers and Inequalities.

- Sets on Numbers.
- Intervals.
- Properties of Inequalities.
- Linear Inequalities.
- Properties of Absolute Value.
- Solve Inequalities; Quadratic, Numerator and the Denominator.

1.2 Functions: Basic Definitions and Examples.

- Definition of Function.
- The Vertical Line test of a Function.
- Some Types of Functions.
- Domain and Range of a Function.
- Representation of Functions.

1.3 Properties of Functions and Their Combination.

- Symmetry.
- Even and Odd Functions.
- Increasing and Decreasing Functions.
- Basic Operations on Functions.
- Composition of Functions.

1.4 Inverse Functions

- One-to-One Functions.
- Inverse Functions.

1.5 Trigonometric Functions

- Degree/Radians Conversion Factors.
- Trigonometric Functions.
- Trigonometric Functions using the Unit Circle.
- Values of Sine and Cosine.
- Trigonometric Identities.
- Graphs of the Trigonometric Functions.

1.6 Inverse Trigonometric Functions

- Inverse of Sine and Cosine Functions.
- Inverse of Tangent and Cotangent Functions.
- Inverse of Secant and Cosecant Functions.

1.1 Sets of Numbers and Inequalities مجموعات الأعداد و المتباينات

مجموعات الأعداد 🚽 SETS OF NUMBERS

natural numbers set - مجموعة الأعداد الطبيعية

N={ 1 , 2 , 3 , ... }

Whole numbers set - مجموعة الأعداد الكلية

W={0,1,2,3,...}

integers numbers set - مجموعة الأعداد الصحيحة

Z={ ... ,-3 ,-2 ,-1 ,0 ,1, 2 , 3 , ... }

 $\mathsf{N} \subset \mathsf{W} \subset \mathsf{Z}$

 image: set interval
 - rational numbers set

 Q = { $\frac{P}{q} \mid p, q \in Z, q \neq 0$ }

 $\frac{2}{3}, \frac{5}{7}, \frac{9}{8}, \frac{-6}{7}$

 5 \in Q ?
 $\frac{5}{1} = 5$

 T

 $\frac{2}{5} = 0.4$
 $\frac{1}{3} = 0.3333333... = 0.\overline{3}$
 $\frac{2}{7} = 0.285714285714285714285714...$

 $\sqrt{9} = 3$ $\sqrt{3} = 9$, $\sqrt{9} = \pm 3$? F $\sqrt{16} = 4$ $\sqrt{25} = 5$ $\sqrt{36} = 6$ $\sqrt{49} = 7$ $\sqrt{64} = 8$ $\sqrt{81} = 9$

irrational numbers set - مجموعة الأعداد غير النسبية

- يرمز اها بالرمز

- $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$
- ∏ = 3.14159...

 $\sqrt{-2}$ ليس نسبية أو غير نسبية

real numbers set - مجموعة الأعداد المقيقية

 $R = Q \cup I$

الفترات - Intervals

open interval

1. The open interval $(a, b) = \{x \mid a < x < b\}$

فترة مغلقة لانشانية infinite-closed interval

The infinite-closed interval $[a, \infty) = \{x \mid x \ge a\}$ or $(-\infty, b] = \{x \mid x \le b\}$ 5. $5 \leq x$ -1 0 1 2 3 9 10 11 -5 -4 -3 -2 -6 -10 -9 -7 [5,∞) EXAMPLE: Solve the following inequalitie هل المتباينات التالية 2< x < 5 (2, 5)solution: 1 2 3 4 5 6

Properties of Inequalities

If a, b, c in \mathbb{R} , then 1. If a < b then a + c < b + c and a - c < b - c2< 5 , 2+4< 5+4 , 6< 9 2< 5 , 2-4< 5-4 , -2< 1 حل المتباينات التالية Solve the following inequalities x+2< 5 x< 5-2 x< 3 solution: $(-\infty, 3)$ ______ 2. If a < b and b < c then a < c3< 7 and 7< 9 then 3< 9 3. If a < b and (c > 0) then ac < bc and $\frac{a}{c} < \frac{b}{c}$ 2 < 5 , 2 . 3 < 5 . 3 , 6 < 15 6 < 9 , $\frac{6}{2} < \frac{9}{2}$, 2 < 34. If a < b and c < 0 then a > b c and $\frac{a}{c} > \frac{b}{c}$ 4 < 8 , 4(-2) > 8(-2) , -8 > -16

$$4 < 8$$
 , $\frac{4}{-2} > \frac{8}{-2}$, $-2 > -4$

LINEAR INEQUALITIES

EXAMPLE 1.1.1: Solve the following inequalities: هل المتباينات التالية

$$6 - 2x \ge 3x - 4$$

$$6 + 4 \ge 3x + 2x$$

$$10 \ge 5x$$

$$2 \ge x$$
Solution: $(-\infty, 2]$

EXAMPLE 1.1.1: Solve the following inequalities:

$$4(x-3) > -2x - 16$$

$$4x - 12 > -2x - 16$$

$$4x + 2x > 12 - 16$$

$$6x > -4$$

$$x > \frac{-4}{6}$$

$$x > \frac{-2}{3}$$
Solution: $(-\frac{2}{3}, \infty)$

EXAMPLE 1.1.1: Solve the following inequalities: هل التباينات التالية

$$-3 < 5 - 2x \le 7$$

$$-3 -5 < -2x \le 7 - 5$$

$$-8 < -2x \le 2$$

$$\frac{-8}{-2} > x \ge \frac{2}{-2}$$

$$4 > x \ge -1$$
Solution : [-1,4)
$$\frac{-3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}{5}$$
RELATED PROBLEM 1 **Solution**:
a. $4 - x < 3x + 2$
b. $3(2x - 1) > 4x - 11$
c. $1 \le 5 + 2x < 4$
Answers
a. $(\frac{1}{2}, \infty)$
b. $(-4, \infty)$
c. $[-2, -\frac{1}{2})$

$$ABSOLUTE VALUES$$

$$|5| = 5$$

$$|-5| = -(-5)$$

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

EXAMPLE 1.1.2: Rewrite each expression without absolute value: أعد كتابة كل تعبير بدون قيمة مطلقة

$$|\sqrt{2} - 1| = |\sqrt{2} - \sqrt{1}| = \sqrt{2} - 1$$

 $|3 - \Pi| = -(3 - \Pi) = \Pi - 3$

$$\left| \begin{array}{ccc} 3x - 1 \end{array} \right| = \begin{cases} 3x - 1, & \text{ if } 3x - 1 \ge 0 \\ \\ 1 - 3x, & \text{ if } 3x - 1 < 0 \end{cases} = \begin{cases} 3x - 1, & \text{ if } x \ge \frac{1}{3} \\ 1 - 3x, & \text{ if } x < \frac{1}{3} \end{cases}$$

 $\sqrt{2} > 1$? $\sqrt{2} > \sqrt{1}$ T $\sqrt{5} > 3$? $\sqrt{5} > \sqrt{9}$ F

EXAMPLE 1.1.2: Rewrite each expression without absolute value: أعد كتابة كل تعبير بدون قيمة مطلقة

$$|\sqrt{2} - 1| = |\sqrt{2} - \sqrt{1}| = \sqrt{2} - 1$$

 $|3 - \Pi| = -(3 - \Pi) = \Pi - 3$

$$\left| \begin{array}{ccc} 3x - 1 \end{array} \right| = \begin{cases} 3x - 1, & \text{if } 3x - 1 \ge 0 \\ \\ 1 - 3x, & \text{if } 3x - 1 < 0 \end{cases} = \begin{cases} 3x - 1, & \text{if } x \ge \frac{1}{3} \\ 1 - 3x, & \text{if } x < \frac{1}{3} \end{cases}$$

Properties of Absolute Value

For all real numbers a and b

1. $|a| \ge 0$. 2. |ab| = |a||b|3. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, \quad b \neq 0$ 4. $|a+b| \le |a|+|b|$ (Triangle Inequality) $\therefore \sqrt{a^2} = |a|$, $\sqrt{(-3)^2} = |-3|=3$

For all real numbers a and b

- 6. If a > 0, then |x| < a if and only if -a < x < a. EXAMPLE $|x| \le 3$ $-3 \le x \le 3$ Solution: [-3,3] $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{9}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$
 - 7. If a > 0, then |x| > a if and only if x > a or x < -aEXAMPLE $|x| \ge 3$ $x \ge 3$ or $x \le -3$ Solution: $\begin{bmatrix} 3, \infty \\ -5 & 4 & 3 & -2 & 1 & 0 \end{bmatrix}$
 - 8. |f(x)| < |g(x)| if and only if $f^2(x) \le g^2(x)$.

EXAMPLE 1.1.3: Solve the following inequalities:

$$| 3x - 2 | < 6$$

-6 < 3x - 2 < 6
-4 < 3x < 8
$$\frac{-4}{3} < x < \frac{8}{3}$$

Solution : $(\frac{-4}{3}, \frac{8}{3})$

EXAMPLE 1.1.3: Solve the following inequalities:

	2 - 5x ≥ 6				
	<mark>2</mark> - 5x ≥ 6	or	-6 ≥ <mark>2</mark> -5x		
	- <mark>5</mark> x ≥ 4	or	-8 ≥ <mark>-5</mark> x		
	$X \leq \frac{-4}{5}$	or	$\frac{8}{5} \leq X$		
Solution	: (-∞,	$\frac{-4}{5}$] \cup [$\frac{8}{5}$,∞)		
		$-\frac{4}{5}$ $\frac{8}{5}$ -1 0 1			
EXAMPLE 1.1.3: Solve the fo	lowing inequalities:				
$ 4x+3 \le -2$	Solution : ϕ				
RELATED PROBLEM 2					
Solve the following inequal $ 2x+3 < 2$	$\mathbf{b.} \mid 4 -$	2r > 8	c. $ 5x-8 \ge -1$		
Answers	b. 4 -	$ 2x \geq 0$	c. $ 5x-5 \ge -1$		
a. $\left(-\frac{5}{2}, -\frac{1}{2}\right)$	b. (-0	$\infty, -2] \bigcup [6,\infty)$	c. R		
هل المتباينات - Solve inequalities Quadratic - التربيعية numerator and the denominator - إلبسط و المجالي					
تخليل مقدار من الدرجة الثانية (x - 2)(x - 3) = $x^2 - 3x - 2x + 6 = x^2 - 5x + 6$					
[تحقق من صحة الساوات $x^2 + 4x - 12 = (x$	\bigcirc	F		
	$x^2 + 4x - 12 = (x^2)^2$	+6)(x-2)			

EXAMPLE 1.1.4: Solve the following inequalities:

	(-∞,2)	(2,3)	(3,∞)
(x-2)	_	+	+
(x - 3)	_	_	+
(x-2)(x-3)	+		+
Solution : (2 , 3)		1 2	

EXAMPLE 1.1.4: Solve the following inequalities:

$$\frac{4-x}{3x-1}\leq 0$$

	$(-\infty, \frac{1}{3})$	$(\frac{1}{3}, 4)$	(4,∞)
4 - x	+	+	-
3x - 1	—	+	+
$\frac{4-x}{3x-1}$	-	+	-

Solution :
$$(-\infty, \frac{1}{3}) \cup [4, \infty)$$

EXAMPLE 1.1.4: Solve the following inequalities:

$$\frac{2}{1-3x} - 1 \ge 0$$

$$\frac{2}{1-3x} - \frac{1-3x}{1-3x} \ge 0$$

$$\frac{2-(1-3x)}{1-3x} \ge 0$$

$$\frac{2-1+3x}{1-3x} \ge 0$$

$$\frac{1+3x}{1-3x} \ge 0$$

$$\frac{1+3x}{1-3x} \ge 0$$

$$\frac{1+3x}{1-3x} = 0$$
Solution : $\left[-\frac{1}{3}, \frac{1}{3}\right]$

$$\frac{-\frac{1}{3}}{-2} = \frac{1}{2}$$

 $|x + 3| \le |2x - 1|$ 8. |f(x)| < |g(x)| if and only if $f^2(x) \le g^2(x)$

Solution : $[-24, -2) \cup (9, \infty)$

EXAMPLE 1.1.4: Solve the following inequalities:

f. $\frac{1}{x^2+1} \ge 0$ Solution : R

RELATED PROBLEM 3

Solve the following inequalities:

a.
$$x^2 < 2x + 3$$
b. $\frac{2x - 3}{x - 2} \ge 0$ c. $| 3x + 4 | < | x - 2 |$ d. $\frac{2}{x - 3} \ge \frac{1}{x + 1}$ e. $x^2 + 4 \le 0$ Answersa. $(-1,3)$ b. $(-\infty, \frac{3}{2}] \cup (2, \infty)$ d. $[-5, -1) \cup (3, \infty)$ e. ϕ

EXERCISES 1.1 The Exercises 1 - 8, solve the inequalities 1. 3x - 4 < 82. 1 - 2x < -43. 3x - 4 < -44. 4 - 5x < 2x - 75. $3(x - 4) - 2 \ge 2(x - 7)$. 6. $-3 < 2x - 4 \le 7$ 7. $-2 < \frac{2x - 7}{3} \le 4$ 8. $3(2x - 4) - 2(x - 7) \ge 7 + 3(x - 5)$. The Exercises 9 - 15, solve the inequalities 9. $|2x + 4| \le 3$ 10. $\left|\frac{2x + 5}{3}\right| \le 4$ 11. |3x - 2| > 512. $|2x + 4| + 4 \le 3$ 13. $-2|5x + 2| + 4 \le 3$ 14. $|x| \le |x - 5|$ 15. |3x - 2| > |2x - 5|. The Exercises 16 - 23, solve the inequalities 16. x(x - 4) < 017. $x^2 - 3x < 4$ 18. $x^2 < x$ 19. $x^2 - 4x + 4 \ge 0$ 20. $\frac{2}{x - 3} \le 0$ 21. $\frac{2x - 4}{x + 3} \le 0$ 22. $\frac{1}{x + 3} \le 4$

SECTION 1.2 FUNCTIONS: BASIC DEFINITIONS AND EXAMPLES

كتابة الدالة كمجموعة من الأزواح المرتبة

f={ (1,3) , (2,5) , (3,5) }

EXAMPLE 1.2.1 Determine which of the following sets is a function. If it is a function, what is its domain and range?

حدد المجموعة التي تمثل دالة ، إذا كانت المجموعة تمثل دالة حدد المجال و المدى

a.
$$f = \{(1,2), (3,4), (-1,5), (2,0), (0,0)\}$$
Solution $D_f = \{1, 3, -1, 2, 0\}$ $R_f = \{2, 4, 5, 0\}.$ b. $g = \{(5, -3), (1, 4), (-5, 2), (1, 0), (0, 0)\}$

Solution g is not a function (1,4) and (1,0) have the same x – coordinate. (1,4), (1,0) $\in g$

y= x -2

THE VERTICAL LINE TEST OF A FUNCTION

اختبار الخط العمودي لدالة

بعض أنواع الدوالي SOME TYPES OF FUNCTIONS

كثيرات الحدود POLYNOMIALS

كثيرة حدود من الدرجة (degree) الخامسة f(x)= 3x⁵ + 4x⁴- 2x³+ 3x²+ 8x- 4) الخامسة

معاملات كثيرة الحدود (coefficients of the polynomial) ، 4 , -2 , 3 , 8 , -4

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

n (degree) من الدرجة (polynomial) كثيرة حدود

 a_0,a_1,a_2,\cdots,a_n (coefficients of the polynomial) معاملات كثيرة الحدود ${
m a}_n
eq 0$, ${
m n}\in{
m N}$

 $p(x) = ax^2 + bx + c$ quadratic functions دالة تربيعية $p(x) = ax^3 + bx^2 + cx + d$ cubic functions دالة تكعيبية example

$$f(x) = \sqrt{2x^3 + x^5} - \frac{5}{2}x^2 + 1$$
 degree 5

$$g\left(x\right) = 5x^{-2} - x^3 + x^7$$

is not a polynomial because $x^{-2} = \frac{1}{x^2}$

الدوال النسبية RATIONAL FUNCTIONS

$$f(x) = \frac{p(x)}{q(x)} \qquad q(x) \neq 0$$

example

 $f(x) = \frac{-3x^3 + 1}{x^2 - x}$ rational function

$$f(x) = \frac{x^2 + 1}{\sqrt{x - x}}$$
 not a rational function

الدوال الجذرية RADICAL FUNCTIONS

$$f(x) = \sqrt{x^3 - 4} \qquad x^3 - 4 \ge 0 \qquad \sqrt{-9} =?$$
$$g(x) = \sqrt[3]{x^2 + 2} \qquad \sqrt[3]{27} = 3 \qquad \sqrt[3]{-27} = -3$$

دالة متعددة التعريف PIECEWISE FUNCTIONS

$$f(x) = egin{cases} 2x+1 & x \leq 1 \ \sqrt{x} & x > 1 \end{cases}$$

المجال و المدى في الدوال - DOMAIN AND RANGE OF A FUNCTION

تحديد مجال الدالة جبريا

الجذر في المقام: 0< ماتحت الجذر

EXAMPLE 1.2.3 Find the domain of each of the following functions أوجد المجال لجميع الدوال التالية

a. $f(x) = x^2 - 2x$ Solution $D_f = R$ b. $f(x) = \frac{3x - 4}{x - 5}$ Solution x-5=0 x=5 $D_f = (-\infty, 5) \cup (5, \infty)$ $D_f = R - \{5\}$

EXAMPLE 1.2.3 Find the domain of each of the following functions أوجد المجال لجميع الدوال التالية

c. $f(x) = \frac{2x-3}{x^2-4x-5}$ Solution $x^{2}-4x-5 = 0$ (x-5)(x+1) = 0(x-5) = 0 or (x+1) = 0 $x = 5 \qquad x = -1$ $D_f = (-\infty, -1) \cup (-1, 5) \cup (5, \infty)$ $D_f = R - \{5, -1\}$

EXAMPLE 1.2.3 Find the domain of each of the following functions أوجد المجال لجميع الدوال التالية

d. $f(x) = \sqrt{5x - 2}$ Solution $5x - 2 \ge 0$ $5x \ge 2$ $x \ge \frac{2}{5}$ $D_f = [\frac{2}{5}, \infty)$ e. $f(x) = \sqrt[3]{x^2 - 4x}$ Solution $D_f = R$ **RELATED PROBLEM 2** Find the domain of each of the following functions.

ling

a.
$$f(x) = x^3 + x^2 - 3$$

b. $f(x) = \frac{x-2}{x+4}$
c. $f(x) = \frac{4x-5}{x^2 - x - 30}$
d. $f(x) = \sqrt{4-3x}$
e. $f(x) = \sqrt{4-3x}$
e. $f(x) = \sqrt[5]{x-8}$
Answer
a. $D_f = \mathbb{R}$
b. $D_f = \{x \in \mathbb{R} : x \neq -4\}$
c. $D_f = \{x \in \mathbb{R} : x \neq -4\}$
d. $D_f = \{x \in \mathbb{R} : x \neq -5, x \neq 6\}$
d. $D_f = \{x \in \mathbb{R} : x \leq \frac{4}{8}\}$
e. $D_f = \mathbb{R}$

تمثيل الدوال - Representation of functions

DEFINITION 1.2.4

The two functions f and g are equal, if f and g have the same domain and f(x) = g(x) for each x in the common domain.

EXAMPLE 1.2.4

$$f(x) = \sqrt{x} + 1$$
 $\mathsf{D}_{\mathsf{f}} = [\mathbf{0}, \infty)$

$$g(x) = rac{1}{2} \Big(2 \sqrt{x} + 2 \Big)$$
 $\mathsf{D}_{\mathsf{f}} = [\mathbf{0}, \infty]$

f(x) = g(x)

28

-4

a = 4

EXERCISES 1.2

- In Exercises 1 2, determine which of the following sets is a function. If it is a function, what is its domain and range?
 - 1. $f = \{(2,3), (3,3), (-2,3), (1,3), (0,3)\}$ 2. $g = \{(5,1), (2,2), (-1.5,2), (5,3), (1,7)\}.$
- In Exercises 3 4, determine which of the following diagrams represent a function. Explain your reason for any that do not define a function.

> In Exercises 5-6 use the vertical line to test to identify if the graphs are functions or not.

-) In Exercises 7 -8 find the numerical value of the function at the given value of π .
 - 7. $f(x) = 2x^4 3$; x = 0, -18. $g(x) = \frac{3x^2 - 4x - 1}{2x^2 + 5x - 3}$; x = -1

In Exercises 9 - 19, find the domain of each function

9.
$$f(x) = x^{4} - 4x + 1$$

10. $f(x) = \sqrt[4]{2x^{2} - 3x + 1}$
11. $f(x) = \frac{x^{2} - 2x}{x - 4}$
12. $f(x) = \sqrt{3x - 9}$
13. $f(x) = \frac{1}{\sqrt{x - 5}}$
14. $f(x) = \sqrt{\frac{2x + 1}{x + 2}}$
15. $f(x) = \frac{\sqrt{x} + 4x}{x^{4} - x}$
16. $g(w) = \frac{w - 1}{w^{2} - w - 6}$

Find the domain of $f(x) = \sqrt{x^2 - x - 6}$

$$(x-3)(x+2) \ge 0$$

 $x^2 - x - 6 > 0$

\bigcirc					
	(-∞,-2)	(-2,3)	(3,∞)		
<i>x</i> – 3	-	-	+		
<i>x</i> + 2	-	+	+		
(x-3)(x+2)	+	-	+		
$(-\infty - 2]$ [2)					

Solution : $(-\infty, -2] \cup [3, \infty)$

Solve
$$1-2|2x-3| \ge -6$$

 $-2|2x-3| \ge -7$
 $|2x-3| \le \frac{7}{2}$
 $-\frac{7}{2} \le 2x-3 \le \frac{7}{2}$
 $-\frac{7}{2} + 3 \le 2x \le \frac{7}{2} + 3$
 $\frac{-7+6}{2} \le 2x \le \frac{7+6}{2}$
 $\frac{-1}{2} \le 2x \le \frac{13}{2}$

Solve the following inequality, and write your answer in interval notation

 $-3 < 2x - 3 \le 7$ -3 + 3 < 2x \le 7 + 3 0 < 2x \le 10 0 < x \le 5 Solution : (0,5]

Solve the following inequality and write your answer in interval notation

 $\sqrt{(x-2)^2} \le 3$ $|x-2| \le 3$ $-3 \le x-2 \le 3$ $-1 \le x \le 5$ Solution : [-1,5]

Section 1.3 PROPERTIES OF FUNCTIONS, AND THEIR COMBINATION فصائص الدوال و تركيباتها

المقطع INTERCEPTS

EXAMPLE 1.3.1 Find the x and y intercepts of the graph of the equation |y| = x and y intercepts of the graph of the equation

RELATED PROBLEM 1 Find the x and y intercepts of the graph of the equation $9x^2 - 2y^2 = 16$

التناظر SYMMETRY

DEFINITION 1.3.1 (Symmetry with Respect to x -axis) (x معور x) التناظر هول محور x)

A graph is said to be symmetric with respect to x – axis provided that whenever (x, y)

is on the graph, then (x, -y) is also on the graph.

EXAMPLE 1.3.2Show that the graph of the equation $x = y^2$ is symmetric with respect to x-axis.x = y² is symmetric with respect to x

Solution If (x, y) is on the graph, $x = y^2$ than $x = (-y)^2 = y^2$ then (x, -y) is also on the graph.

DEFINITION 1.3.2 (Symmetry with Respect to y-axis) (Y-axis) (Y-axis) A graph is said to be symmetric with respect to y-axis provided that whenever (x, y) is on the graph, then (-x, y) is also on the graph.

يقال المنحنى A متناظر هول المور y إذا كان (x,y) عنصر في A فأن (x, y) عنصر في A

Solution If (x, y) is on the graph,

 $y = x^2$ than $y = (-x)^2 = x^2$

then (-*x*, *y*) is also on the graph.

ر التناظر هول نقطة الاصل) (التناظر هول نقطة الاصل) (DEFINITION 1.3.3 (Symmetry with Respect to Origin)

A graph is said to be symmetric with respect to the origin provided that whenever (x, y) is on the graph, then (-x, -y) is also on the graph.

يقال المنحنى A متناظر هول نقطة الأصل إذا كان (x,y) عنصر في A فأن (x,y-) عنصر في A

 EXAMPLE 1.3.4 Show that the graph of the equation $y = 2x^3$ is symmetric with respect to the origin.

 the origin.

 يتحقق المنحنى الذي معادلته y = 2 x³ as ymmetric with respect to y = 2 x³ is symmetris with respect to y = 2 x³ is symmetric with respect to y = 2

Solution If (x, y) is on the graph,

 $y = 2x^3$ than $-y = 2(-x)^3 = -2x^3$, $y = 2x^3$

then (-x, -y) is also on the graph.

التناظر SYMMETRY

(Symmetry with Respect to x-axis) (x) (د التناظر حول محور x)

whenever (x, y) is on the graph, then (x, -y) is also on the graph.

(Symmetry with Respect to y-axis) (y التناظر هول محور y)

whenever (x, y) is on the graph, then (-x, y) is also on the graph.

(Symmetry with Respect to Origin) (التناظر حول نقطة الاصل)

whenever (x, y) is on the graph, then (-x, -y) is also on the graph.

الدوال الزوجية و الفردية - Even and Odd Functions

(Odd Functions)

الدالة الفردية

b. A function f is odd if its graph is symmetric with respect to the origin; that is, f(-x) = -f(x) for every x in the function's domain.

EXAMPLE 1.3.5

Determine algebraically whether the following functions are even, odd, or nither.

حدد جبريا إذا كانت الدوال التالية زوجية أو فردية أو غير ذلك

a. $f(x) = x^4 - 3$ Solution $f(-x) = (-x)^4 - 3 = x^4 - 3 = f(x)$. f is even. b. $g(x) = \frac{x - 2x^3}{x^2 + 1}$ Solution $g(-x) = \frac{-x - 2(-x)^3}{(-x)^2 + 1} = \frac{-x + 2x^3}{x^2 + 1} = -\frac{x - 2x^3}{x^2 + 1} = -g(x)$. g is odd.

c. $h(x) = x^3 + 1$. Solution

$$h(-x) = (-x)^3 + 1 = -x^3 + 1 = -(x^3 - 1) \neq -h(x)$$

Since $h(-x) \neq h(x)$ and $h(-x) \neq -h(x)$

h is neither

A) Determine algebraically whether the function $f(x) = \frac{x^5 + 3x}{x^4 + x^2}$ is even, odd, or neither.

Solution

$$f(-x) = \frac{(-x)^5 + 3(-x)}{(-x)^4 + (-x)^2} = \frac{-x^5 - 3x}{x^4 + x^2} = \frac{-(x^5 + 3x)}{x^4 + x^2} = -\frac{(x^5 + 3x)}{x^4 + x^2} = -f(x)$$
f is odd

A) Determine algebraically whether the function $f(x) = \left| \frac{2x^4 + x^2}{\sin x} \right|$ is even, odd, or neither.

Solution

$$f(-x) = \left| \frac{2(-x)^4 + (-x)^2}{\sin(-x)} \right| = \left| \frac{2x^4 + x^2}{-\sin x} \right| = \left| \frac{2x^4 + x^2}{\sin x} \right| = f(x)$$

f is even

B) Determine algebraically is the function $f(x) = \frac{x^4 + x^3}{|x|}$ even, odd, or neither. f is even

RELATED PROBLEM 5 Determine algebraically whether the following functions are even, odd, or neither.

a.
$$f(x) = x^2 + 3$$

a. $f(x) = x^2 + 3$
a. Even
b. $g(x) = \frac{2x - x^3}{x^4 + 1}$
b. $g(x) = x^3 + x^2$.
c. $h(x) = x^3 + x^2$.
c. Neither

الدوال التزايدية و التناقصية - INCREASING AND DECREASING FUNCTIONS

الدوال التزايدية و التناقصية (Increasing and Decreasing Functions) الدوال التزايدية و التناقصية

a. A function f defined on an interval I is said to be *increasing* on I if

 $f(x_1) < f(x_2)$ whenever $x_1 < x_2$, for all $x_1, x_2 \in I$.

b. A function f is said to be *decreasing* on I if and only if

 $f(x_1) > f(x_2)$ whenever $x_1 < x_2$, for all $x_1, x_2 \in I$.

EXAMPLE 1.3.6 Let $f(x) = x^2$. Determine:

a. The intervals on which f is increasing.

b. The intervals on which f is decreasing.

Solution

a. if $0 \le x_1 < x_2$ than $x_1^2 < x_2^2$ Thus $f(x_1) < f(x_2)$ *f* increasing interval $[0,\infty)$

a. if $x_1 < x_2 < 0$ than $x_1^2 > x_2^2$ Thus $f(x_1) > f(x_2)$ *f* decreasing interval (- ∞ , 0]

RELATED PROBLEM 6 Let $f(x) = -x^2$. Determine:

a. The intervals on which f is increasing.

b. The intervals on which f is decreasing.

Answer

a.
$$(-\infty, 0]$$
 b. $[0, \infty)$

العمليات الأساسية على الدوال - Basic Operations on Functions

DEFINITION 1.3.7 (Basic Operations on Functions)

Let f and g be two functions. We define the sum f + g, the difference f - g, the product $f \cdot g$, and the quotient f/g as follows:

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(f \cdot g)(x) = f(x)g(x)$$
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad , \quad g(x) \neq 0$$

EXAMPLE 1.3.7 Let $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x+2}$. Find f + g and its domain Solution

$$(f + g)(x) = f(x) + g(x) = \sqrt{x + 1} + \frac{1}{x + 2}$$

 $D_f = [-1, \infty)$
 $D_g = R - \{-2\}$
 $D_{f+g} = [-1, \infty)$

RELATED PROBLEM 7 Let $f(x) = \sqrt{2x-1}$ and $g(x) = \frac{1}{x-3}$. Find the domain and the rule of f - g.

Solution

$$(f - g)(x) = f(x) - g(x) = \sqrt{2x - 1} - \frac{1}{x - 3}$$
$$D_{f} = [\frac{1}{2}, \infty]$$
$$D_{g} = R - \{3\}$$
$$D_{f - g} = [\frac{1}{2}, \infty] - \{3\}$$

EXAMPLE 1.3.8 Let f(x) = x - 7 and $g(x) = x^2 - 16$. Find the domain and the rule of $\frac{f}{g}$. Solution

$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} = \frac{x-7}{x^2-16}$	تنبيه مهم x ² = 16	الصحيح $x^2 = 16$
$x^2 - 16 = 0$	$\sqrt{x^2} = \sqrt{16}$ $x = \pm 4$	$\sqrt{x^2} = \sqrt{16}$ $\pm x = 4$
$x^2 = 16$		$x = \pm 4$
$x = \pm 4$		-
$D_{f/g} = R - \{4, -4\}$		

RELATED PROBLEM 8 Let f(x) = 2x - 3 and $g(x) = x^2 - 5x + 6$. Find the domain and rule of $\frac{f}{g}$.

Answer Domain: $\mathbb{R} - \{2,3\}$, Rule: $\left(\frac{f}{g}\right)(x) = \frac{2x-3}{x^2-5x+6}$.

تركيب الدوال - composition of functions

 $(f \circ g)(x) = f(g(x))$

DEFINITION 1.3.8

Let f and g be two functions, we define the composition $f \circ g$ of f and g as the function

$$(f \circ g)(x) = f(g(x))$$

The domain of $f \circ g$ consists of all numbers x in the domain of g for which the number g(x) is in the domain of f.

EXAMPLE Let f(x) = 2x, $g(x) = x^2$ find $f \circ g$, $g \circ f$, $(f \circ g)(3)$

Solution $(f \circ g)(x) = f(g(x)) = f(x^2) = 2x^2$

$$(g \circ f)(x) = g(f(x)) = g(2x) = 4x^2$$

$$(f \circ g)(3) = 2 \cdot 3^2 = 18$$

EXAMPLE 1.3.9 Let $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x+2}$. Determine the functions $g \circ f$, $f \circ g$ and their domains, then find $(g \circ f)(3)$ and $(f \circ g)\left(\frac{1}{2}\right)$. Solution $(g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = \frac{1}{\sqrt{x+1}+2}$ $D_f = [-1, \infty)$ $\mathsf{D}_{\mathsf{g}} = (-\infty, -2) \cup (-2, \infty)$ $in(-1,\infty)$ $\sqrt{x+1} > 0$ $D_{(a \circ f)} = [-1, \infty)$ $(f \circ g)(x) = f(g(x)) = f(\frac{1}{x+2}) = \left| \frac{1}{x+2} + 1 \right|$ $D_f = [-1, \infty)$ $D_{a} = (-\infty, -2) \cup (2,\infty)$ $in(2,\infty) \quad \frac{1}{x+2} \ge -1$, $1 \ge -x - 2$, $3 \ge -x$, $-3 \le x$ $in(-\infty, -2)$ $\frac{1}{x+2} \ge -1$, $1 \le -x - 2$, $3 \le -x$, $-3 \ge x$ $\mathsf{D}_{(\mathsf{f}\circ\mathsf{g})} = (2,\infty) \cup [-3,\infty)$ $(f \circ g)(\frac{1}{2}) = \sqrt{\frac{1}{\frac{1}{2}+2} + 1} = \sqrt{\frac{1}{\frac{5}{2}} + 1} = \sqrt{\frac{2}{5} + 1} = \sqrt{\frac{7}{5}}$

RELATED PROBLEM 9 Let $f(x) = \sqrt{1-x}$ and $g(x) = \frac{1}{2-x}$. Determine the functions $g \circ f$ and $f \circ g$ and their domains, and then find $(g \circ f)(-8)$ and $(f \circ g)\left(\frac{1}{2}\right)$.

Answer

$$(g \circ f)(x) = \frac{1}{2 - \sqrt{1 - x}}, \text{ Domain: } (-\infty, 1] - \{-3\}.$$

$$(f \circ g)(x) = \sqrt{1 - \frac{1}{2 - x}}, \text{ Domain: } (-\infty, 1] \cup (2, \infty).$$

$$(g \circ f)(-8) = -1, \ (f \circ g)\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{3}.$$

Question 2:

A) Let
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$. Find:
1) $(f \circ g)(x)$.
2) D_f , D_g , and $D_{f \circ g}$.

Solution

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$$

 $D_f = R$
 $D_g = [0, \infty)$
 $D_{(f \circ g)} = [0, \infty)$

Question 2:

A) Let
$$f(x) = \frac{3}{\sqrt{x - 4}}$$
, $g(x) = x^2 + 4$. Find:
1) $(f \circ g)(x)$.
2) D_f , D_g , and $D_{f \circ g}$.
Solution
3 3 3 3

$$(f \circ g)(x) = f(g(x)) = f(x^{2} + 4) = \frac{3}{\sqrt{x^{2} + 4 - 4}} = \frac{3}{\sqrt{x^{2}}} = \frac{3}{|x|}$$
$$D_{f} = (4, \infty)$$
$$D_{g} = R$$
$$D_{(f \circ g)} = R - \{0\}$$

Question 2:

A) Let
$$f(x) = \frac{7}{4 - x^2}$$
, $g(x) = \sqrt{x}$. Find:
1) $(f \circ g)(x)$.
2) D_{f} , D_{f} , and D_{f-r} .
Solution
 $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = \frac{7}{4 - (\sqrt{x})^2} = \frac{7}{4 - x}$
 $D_{f} = \mathbb{R} - \{-2, 2\}$
 $D_{g} = [0, \infty)$
 $D_{(f \circ g)} = [0, \infty) - \{4\}$

			EXERCISES 1.3									
> In Ex	ercises 1 - 12, find the do	main	of each function									
1.	$f(x) = x^0 - 4x + 1$	2.	$f(x) = \sqrt{1 - 7x}$	з.	$f(x) = \sqrt[3]{2x^2 - 3x + 1}$							
4.	$f(x) = \frac{1}{\sqrt{x-5}}$	5.	$f(x) = \sqrt{\frac{2x+1}{x+2}}$	6.	$f(t) = \sqrt{3 - \frac{1}{t^2}}$							
7.	$g(w) = \frac{2}{w-1}$	8.	$g(t) = \frac{2t-8}{t^2-16}$	9.	$g(r) = \frac{r-1}{r^2 - r - 6}$							
10.	$f(x) = \frac{2x^4 - 3x + 1}{ 2x - 4 + 1}$	11.	$f(x) = \frac{2x - 5}{ x + 1 - 3}$	12.	$f(x) = \frac{3x^2 - x + 4}{\sqrt{2x - 4} - 3}$							
In Exercises 12-18, determine all intercepts of the graph of the equation. Then decide whether the graph is symmetric with respect to the x -axis, the y - axis, or the origin.												
the g	raph is symmetric with re	spect	to the x -axis, the p	y – axis, or	the origin.							
13.	$x = 3y^2 - 2$	14.	$x^2 - y^2 = 1$	15.	$x^4 - 3y^4$							
16.	$x^2y^4 - 2x^4 = 1$	17.	$y = x - \frac{1}{x}$	18.	$y = \sqrt{9 - x^2}$							
) In Ex	ercises 19-21, List the int	ercept	s and describe the sy	mmetry (ii	f any) of the graph.							
19.	$y = \frac{1}{3}x$	20.	$2x = -y^2$	21.	$y = x^2 - 3$							
> In Ex	ercises 22-27, determine	which o	of the following funct	tions are o	dd, even, or neither							
22.	$f(x)=5x^3-3$	23.	$f(x)=(x-2)^2$	24.	$f(x) = \frac{x}{x^2 + 4}$							
25.	$f(x)=(x^2+2)^k$	26.	$y = \frac{ x }{x}$	27.	$x(x^2 + 1)^4$							
> In Es	zercises 28 - 33, determi	ne the	intervals on which	each of th	he following functions are							
	sing and the intervals on											
28.	f(x)=1-3x	29.	f(x) = 4	30.	$f(x)=x^2-8$							
31.	$f(x)=2-x^3$	32.	$f(x) = x^{\theta}$	33.	$f(x) = -x^s$							
) In Ex	ercises 34-42, let $f(x) = x$	z ³ + 4	x - 2 and $g(x) = 2$.	- x3. Find	the specified values							
34.	(f + g)(-1)	35.	(f - g)(2)	36.	$(f-g)(a), a \in \mathbb{R}$							
37.	(f - g)(0)	38.	$\left(\frac{f}{g}\right)$ (1)	39.	(f ∘ g)(3)							
40.	(g ∘ f)(3)	41.	$(f \circ f)(-2)$	42.	(g ∘ g)(2)							
> In Ex	ercises 43 -48, find $f + g$.f · g.	and $\frac{f}{g}$ and their do	meine.								
43.	f(x) = 2x + 1; g(x) =	3 – <i>x</i>	44. f(x)	= x - 2;	$y(x) = x^2 - 2$							

SECTION 1.4 INVERSE FUNCTIONS

معكوس الدوال

الدالة المتباين - One-to-One Function

one-to-one

not one-to-one

التطبيق المتباين (One-to-One Function) التطبيق المتباين

A function f is said to be **one-to-one** (often written 1-1) if every element in its range corresponds to exactly one element in its domain.

That is, for all x_1 and x_2 in the domain of f

$$\text{if } x_1 \neq x_2 \text{, then } f(x_1) \neq f(x_2) \text{,} \\$$

which is equivalent to, for all x_1 and x_2 in the domain of f

if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Solution

$$f(x_{1}) = f(x_{2})$$

$$2x_{1} + 5 = 2x_{2} + 5$$

$$2x_{1} = 2x_{2}$$

$$x_{1} = x_{2}$$

one to one

ملاحظة : الدالة الخطية one to one الخطية : الدالة الخطية

In fact all linear functions are one to one, because the linear function can be written in the form f(x) = ax + b and if $f(x_1) = f(x_2)$, then

$$ax_1 + b = ax_2 + b,$$

Simplifying the two terms, we have

Solution

 $x_1 = x_2$.

EXAMPLE 1.4.2 Determine whether each of the following functions is one to one.

a. $f(x) = 2x^2 + 1$ f(x₁) = f(x₂) $2x_1^2 + 1 = 2x_2^2 + 1$ $2x_1^2 = 2x_2^2$ $x_1^2 = x_2^2$ $\sqrt{x_1^2} = \sqrt{x_2^2}$ $|x_1| = |x_2|$ $x_1 = \pm x_2$ Not one to one **EXAMPLE 1.4.2** Determine whether each of the following functions is one to one. b. $f(x) = x^2 + 1$, $x \ge 0$

Solution

$$f(x_{1}) = f(x_{2})$$

$$x_{1}^{2} + 1 = x_{2}^{2} + 1$$

$$x_{1}^{2} = x_{2}^{2}$$

$$\sqrt{x_{1}^{2}} = \sqrt{x_{2}^{2}}$$

$$|x_{1}| = |x_{2}|$$

$$x_{1} = x_{2}$$
one to one

EXAMPLE 1.4.2 Determine whether each of the following functions is one to one.

c.
$$f(x) = 2 + \sqrt[3]{2x + 1}$$

f(x₁) = f(x₂)
 $2 + \sqrt[3]{2x_1 + 1} = 2 + \sqrt[3]{2x_2 + 1}$
 $\sqrt[3]{2x_1 + 1} = \sqrt[3]{2x_2 + 1}$
 $2x_1 + 1 = 2x_2 + 1$
 $2x_1 = 2x_2$
 $x_1 = x_2$

Solution

1

 $x \ge 0$

one to one

B) Show that $f(x) = x^2 - 4x - 5$, x > 2 is a one-to-one function.

Solution
$$f(x_1) = f(x_2)$$

 $x_1^2 - 4x_1 - 5 = x_2^2 - 4x_2 - 5$
 $x_1^2 - 4x_1 = x_2^2 - 4x_2$
 $x_1^2 - 4x_1 + 4 = x_2^2 - 4x_2 + 4$
 $(x_1 - 2)^2 = (x_2 - 2)^2$
 $\sqrt{(x_1 - 2)^2} = \sqrt{(x_2 - 2)^2}$
 $|x_1 - 2| = |x_2 - 2|$
 $x_1 - 2 = x_2 - 2$
 $x_1 = x_2$
one to one

RELATED PROBLEM 2 Determine whether each of the following functions is one to one.

a.
$$f(x) = 1 - 3x^2$$

b. $f(x) = x^2 + 2x - 1, x \ge -1$
c. $f(x) = 6 + \sqrt[6]{7x + 2}$

Answer

a. Not one-to-one

b. One-to-one

c. One-to-one

Let
$$f(x) = \frac{2x+1}{x-1}$$
,

a. Show that f(x) is one-to-one function on its domain.

Solution
$$f(x_1) = f(x_2)$$

 $\frac{2x_1+1}{x_1-1} = \frac{2x_2+1}{x_2-1}$
 $2x_1x_2+x_2-2x_1-1=2x_2x_1+x_1-2x_2-1$
 $x_2-2x_1=x_1-2x_2$
 $3x_2=3x_1$
 $x_2=x_1$

one to one

الدالة العكسية - Inverse Function

DEFINITION 1.4.2 (Inverse Function)

If f is a one-to-one function, then there is a function f^{-1} , called the inverse of f, such that y = f(x) if and only if $x = f^{-1}(y)$. The domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f.

THEOREM 1.4.1

If f is a one-to-one function and if f^{-1} is its inverse function, then f^{-1} is a one-to-one having f as its inverse. Furthermore

$$f^{-1}(f(x)) = x$$
 for x in the domain of f

and

$$f(f^{-1}(x)) = x$$
 for x in the domain of f^{-1}

EXAMPLE 1.4.3 Determine whether the functions f and g are inverses of each other.

a.
$$f(x) = 2x + 1$$
 and $g(x) = \frac{x - 1}{2}$.
Solution

$$(f \circ g)(x) = f(g(x)) = f(\frac{x-1}{2}) = 2\frac{x-1}{2} + 1 = x$$
$$(g \circ f)(x) = g(f(x)) = g(2x+1) = \frac{2x+1-1}{2} = x$$

Then *f* is the inverse of *g* and vice versa

b.
$$f(x) = 2x$$
 and $g(x) = x + 1$.
Solution
 $(f \circ g)(x) = f(g(x)) = f(x+1) = 2(x+1) = 2x+2 \neq x$

then f and g are not inverses of each other.

Step 1: We prove f is one - to - one. This proves that f^{-1} exists.

Step 2: Substitute *y* for f(x) and solve the resulting equation for *x*. This gives the equation $x = f^{-1}(y)$ **Step 3:** We obtain $f^{-1}(x)$ from the definition of $f^{-1}(y)$.

EXAMPLE 1.4.4 Find f^{-1} for the function f(x) = 2x + 5.

RELATED PROBLEM 4 Assume that the following two functions are 1 -1. Find their inverse functions.

a.
$$f(x) = (2x^3 - 5)^{1/7}$$
.
Solution $y = (2x^3 - 5)^{1/7}$
 $y^7 = 2x^3 - 5$
 $y^{7+5} = 2x^3$
 $\frac{y^{7+5}}{2} = x^3$
 $x = \sqrt[3]{\frac{y^7+5}{2}}$
 $y = \sqrt[3]{\frac{x^7+5}{2}}$
 $f^{-1}(x) = \sqrt[3]{\frac{x^7+5}{2}}$

B) Show that f(x) = 3x + 2 is a one-to-one function, and find $f^{-1}(x)$.

Solution y= 3x+2 $\frac{y-2}{3} = x$ $y=\frac{x-2}{3}$ $f^{-1}(x)=\frac{x-2}{3}$

B) Given that $f(x) = \frac{1-2x}{3x+2}$ is a one-to-one function, find $f^{-1}(x)$.

$$y = \frac{1-2x}{3x+2}$$

$$3xy+2y = 1-2x$$

$$3xy+2x = 1-2y$$

$$x(3y+2) = 1-2y$$

$$x = \frac{1-2y}{3y+2}$$

$$y = \frac{1-2x}{3x+2}$$

$$f^{-1}(x) = \frac{1-2x}{3x+2}$$

EXERCISES 1.4

In Exercises 1-5, Use the horizontal line test to determine whether the given function is oneto-one.

In Exercises 6-16, Determine whether the given function is one-to-one. If it is one-to-one, find its inverse.

6.
$$f = \{(12,2), (15,4), (19,-1), (25,6), (78,0)\}$$

7. $g = \{(-1,2), (0,4), (9,-4), (18,6), (23,-4)\}$
8. $h(x) = x^2 + 2$.
9. $I(x) = \frac{1}{2x-4}, x \neq 2$.
10. $J(x) = -5x + \frac{5}{3}$.
11. $K(x) = |5x-4|$.
12. $f(x) = -\frac{11}{x+3}, x \neq -3$.
13. $f(x) = \sqrt{x+5}$.
14. $f(x) = x\sqrt{9-x^2}$.
15. $g(x) = \sqrt[4]{x} + 4$

16.
$$g(x) = 2 - (3 - x)^{4/3}$$

> In Exercises 17-22, Assume the functions are one-to-one. Find the requested inverse.

18. If
$$f(2) = 4$$
, find $f^{-1}(4)$.

19. If g(-5) = 6, find g⁻¹(6).

Section 1.5 TRIGONOMETRIC FUNCTIONS الدوال المثلثية

التحويل بين الدرجات و الراديان - DEGREES/RADIANS CONVERSION FACTORS

ANGLES

القياس بالراديان Radian Measured

EXAMPLE 1.5.1 Convert the following degree measures to radians.

Solution

a.
$$75^{\circ} = 75 \times \frac{\pi}{180} = \frac{5\pi}{12}$$
 radians.
b. $-225^{\circ} = (-225) \times \frac{\pi}{180} = -\frac{5\pi}{4}$ radians.

RELATED PROBLEM 1 Convert the following degree measures to radians.

Answers

a.
$$\frac{\pi}{3}$$
 b. $-\frac{10\pi}{9}$

EXAMPLE 1.5.2 Convert the following radian measures to degrees.

a.
$$\frac{5\pi}{9}$$
 b. $\frac{17\pi}{36}$

Solution

a.
$$\frac{5\pi}{9}$$
 radian $=\frac{5\pi}{9} \times \frac{180}{\pi} = 100^{\circ}$. **b.** $\frac{17\pi}{36}$ radian $=\frac{17\pi}{36} \times \frac{180}{\pi} = 85^{\circ}$

RELATED PROBLEM 2 Convert the following radian measures to degrees.

a.
$$\frac{\pi}{10}$$
 b. $-\frac{13\pi}{12}$
Answers
a. 18° b. -195°

Degrees	0	30 ⁰	45 ⁰	60 ⁰	90 ⁰	120 ⁰	135 ⁰	150 ⁰	180 ⁰	270 ⁰	360 ⁰
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

الدوال المثلثية – TRIGONOMETRIC FUNCTIONS

EXAMPLE Given the figure below; Find x, sin, cos, tan, cot, csc and sec for both angles.

x ² = 4 + 9	α
x= √13	
	3

Answers

	sin	COS	tan	\cot	CSC	sec
α	$\frac{3}{\sqrt{13}}$	$\frac{2}{\sqrt{13}}$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{\sqrt{13}}{3}$	$\frac{\sqrt{13}}{2}$
θ	$\frac{2}{\sqrt{13}}$	$\frac{3}{\sqrt{13}}$	$\frac{2}{3}$	$\frac{3}{2}$	$\frac{\sqrt{13}}{2}$	$\frac{\sqrt{13}}{3}$

	sin	COS	tan	\cot	CSC	sec					
30°											
60°											

	sin	COS	tan	\cot	CSC	sec
30°						
60°						

	sin	COS	tan	\cot	CSC	sec
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	2	$\frac{2\sqrt{3}}{3}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	$\frac{2\sqrt{3}}{3}$	2

	sin	COS	tan	\cot	csc	sec
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$

trigonometric functions using the unit circle– الدوال المثلثية باستخدام دائرة الوحدة DEFINITION 1.5.3

a. Let $x^2 + y^2 = r^2$ be a circle centered at the origin and an angle with θ radians in standard form. If P is the point (x, y) as shown in Figure 1.5.11, then the trigonometric functions are defined by:

$$\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}, y \neq 0$$
$$\cos \theta = \frac{x}{r} \qquad \qquad \sec \theta = \frac{r}{x}, x \neq 0$$
$$\tan \theta = \frac{y}{x}, x \neq 0 \qquad \qquad \cot \theta = \frac{x}{y}, y \neq 0$$

$$x^{2} + y^{2} = (0.87 -)^{2} + (0.5)^{2}$$

= 0.75 + 0.25 = 1

VALUES OF SINE AND COSINE

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	2π
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	0	$\frac{1}{2}$	1

EXAMPLE 1.5.4 If θ is in standard position and Q(4, -3) is on the terminal side of θ . Use Definition 1.5.3 to find the values of all six trigonometric functions for θ .

Solution Notice that the point is on a circle of radius $r = \sqrt{16+9} = 5$. Thus, we obtain

$$\sin \theta = \frac{-3}{5}, \ \cos \theta = \frac{4}{5}, \ \tan \theta = \frac{-3}{4}$$
$$\csc \theta = \frac{5}{2}, \ \sec \theta = \frac{5}{4}, \ \cot \theta = \frac{4}{2}.$$

$$\operatorname{sc} \theta = \frac{5}{-3}, \ \operatorname{sec} \theta = \frac{5}{4}, \ \operatorname{cot} \theta = \frac{4}{-3}$$

قيم الجيب و الجيب تمام - VALUES OF SINE AND COSINE

$$sin^{\circ}150 = sin(\pi - \circ 150)$$

$$= sin^{\circ}30 = 0.5$$

$$sin\theta = sin(\pi - \theta)$$

$$cos^{\circ}150 = -cos(\pi - \circ 150)$$

$$= -cos^{\circ}30 = -0.87$$

$$cos\theta = -cos(\pi - \theta)$$

$$tan\theta = -(\pi - \theta)$$

$$sin^{\circ}240 = -sin(^{\circ}240 - \pi)$$

$$= -\sin^{\circ}60 = -0.87$$
$$sin\theta = -sin(\theta - \pi)$$

$$\cos^{\circ}240 = -\cos(^{\circ}240 - \pi)$$
$$= -\cos^{\circ}60 = -0.5$$
$$\cos\theta = -\cos(\theta - \pi)$$

$$tan \theta = tan (\theta - \pi)$$

$$sin^{\circ}330 = -sin(2\pi - °330)$$
$$= -\sin °30 = -0.5$$
$$sin\theta = -sin(2\pi - \theta)$$
$$cos^{\circ}330 = cos(2\pi - °330)$$

 $=\cos^{\circ}30=0.87$

 $\cos\theta = \cos(2\pi - \theta)$

 $\tan \theta = - \tan(2\pi - \theta)$

 $tan (\theta + 1 \pi) = tan \theta$

Π

tan (θ +2 π) = tan θ

Π

tan (θ +3 π) = tan θ

Π

Π

_2π

_2π

<mark>sin(θ+7.2π)=sin θ</mark>

EXAMPLE

$$\sin(\frac{2\pi}{3}) = \sin(\pi - \frac{2\pi}{3}) = \sin(\frac{3\pi}{3} - \frac{2\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$$

$$\cos(\frac{7\pi}{6}) = -\cos(\frac{7\pi}{6} - \pi) = -\cos(\frac{7\pi}{6} - \frac{6\pi}{6}) = -\cos(\frac{\pi}{6}) = -\frac{\sqrt{3}}{2}$$

$$\cos(-\frac{7\pi}{6}) = \cos(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2}$$

$$\cos(\frac{16\pi}{3}) = \cos(\frac{\pi}{3} + \frac{15\pi}{3}) = \cos(\frac{\pi}{3} + 5\pi) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$$

$$\sin(-\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

EXAMPLE 1.5.6 Find the value of each of the following: **a.** $\sin\left(\frac{17\pi}{4}\right)$ **b.** $\cos\left(-\frac{7\pi}{6}\right)$ **c.** $\cos\left(\frac{4\pi}{3}\right)$

Solution

a.
$$\sin\left(\frac{17\pi}{4}\right) = \sin\left(\frac{\pi}{4} + \frac{16}{4}\pi\right) = \sin\left(\frac{\pi}{4} + 4\pi\right) = \sin\left(\frac{\pi}{4} + 2\cdot 2\pi\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

c.
$$\cos\left(\frac{4\pi}{3}\right) = -\cos\left(\frac{4\pi}{3} - \pi\right) = -\cos\left(\frac{4\pi}{3} - \frac{3\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

EXAMPLE 1.5.7 Use the periodicity of tangent and secant as well as their values when $0 \le x \le 2\pi$ to find the exact value of each of the following.

a.
$$\operatorname{sec}\left(\frac{9\pi}{4}\right)$$
 b. $\sin\left(\frac{15\pi}{2}\right)$ **c.** $\operatorname{sec}\left(-\frac{2\pi}{3}\right)$ **d.** $\tan\left(-\frac{5\pi}{6}\right)$

Solution

a.
$$\sec\left(\frac{9\pi}{4}\right) = \sec\left(\frac{\pi}{4} + \frac{8\pi}{4}\right) = \sec\left(\frac{\pi}{4} + 2\pi\right) = \sec\left(\frac{\pi}{4}\right) = \sqrt{2}$$

b. $\sin\left(\frac{15\pi}{2}\right) = \sin\left(\frac{\pi}{2} + \frac{14\pi}{2}\right) = \sin\left(\frac{\pi}{2} + \frac{14\pi}{2}\right) = \sin\left(\frac{\pi}{2} + 7\pi\right) = \sin\left(\frac{3\pi}{2}\right) = -1$
c. $\sec\left(-\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = -\sec\left(\frac{\pi}{3}\right) = -2$
d. $\tan\left(-\frac{5\pi}{6}\right) = -\tan\left(\frac{5\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) =$

RELATED PROBLEM 5 Find the value of each of the following:
a.
$$\tan\left(\frac{17\pi}{4}\right)$$
 b. $\cot\left(-\frac{5\pi}{6}\right)$ **c.** $\cos\left(\frac{-55\pi}{6}\right)$ **d.** $\sin\left(\frac{2\pi}{3}-\frac{27\pi}{4}\right)$
Answers
a. 1 **b.** $\sqrt{3}$ **c.** $\frac{-\sqrt{3}}{2}$ **d.** $-\frac{\sqrt{6}-\sqrt{2}}{4}$

المتطابقات المثلثية - TRIGONOMETRIC IDENTITIES

$$tan \theta = \frac{Sin \theta}{cos \theta}$$
$$Sin^{2} \theta + cos^{2} \theta = 1$$
$$\frac{Sin^{2} \theta}{Sin^{2} \theta} + \frac{cos^{2} \theta}{Sin^{2} \theta} = \frac{1}{Sin^{2} \theta}$$
$$1 + cot^{2} \theta = cec^{2} \theta$$

 $Sin^{2} \theta + cos^{2} \theta = 1$ $\frac{Sin^{2} \theta}{cos^{2} \theta} + \frac{cos^{2} \theta}{cos^{2} \theta} = \frac{1}{cos^{2} \theta}$ $tan^{2} \theta + 1 = sec^{2} \theta$

متطابقات المجموع و الفرق The sum and difference identities

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}.$

 $sin(x \pm y) = sin x cos y \pm cos x sin y$ $sin(x \pm y) = sin x cos y \pm sin y cos x$ $sin(x \pm x) = sin x cos x \pm sin x cos x$ sin(2x) = 2 sin x cos x sin(2x) = 2 sin x cos x

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\cos(x \pm y) = \cos x \cos y - \sin x \sin y$ $\cos(x \pm x) = \cos x \cos x - \sin x \sin x$ $\cos(2x) = \cos^2 x - \sin^2 x$ $\cos(2x) = (1 - \sin^2 x) - \sin^2 x$ $\cos(2x) = 1 - 2\sin^2 x$ $\cos(2x) = \cos^2 x - (1 - \cos^2 x)$ $\cos(2x) = 2\cos^2 x - 1$

5. $\cos(\pi - x) = \cos(\pi + x) = -\cos x$ $\cos(\pi - x) = \cos \pi \cos x + \sin \pi \sin x = -\cos x$ $\cos(\pi + x) = \cos \pi \cos x - \sin \pi \sin x = -\cos x$

1,0)

Prove this identity:

 $\sin(x+y) + \sin(x-y) = 2\sin x \cos y.$

sin(x + y) + sin(x - y) = 2sin x cos y

The half-angle formula is

sin(2x) = 2 sin x cos x $sin(x) = 2 sin\left(\frac{x}{2}\right) cos\left(\frac{x}{2}\right)$

$$\cos(2x) = \cos^2 x - \sin^2 x$$
$$\cos(x) = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$$

$$\cos(2x) = 1 - 2 \sin^2 x$$

 $\cos(x) = 1 - 2 \sin^2 \left(\frac{x}{2}\right)$

$$\cos(2x) = 2\cos^2 x - 1$$
$$\cos(x) = 2\cos^2\left(\frac{x}{2}\right) - 1$$

verify the identity $2 \sin^2(2t) + \cos(4t) = 1$ $2 \sin^2(2t) + \cos(4t) = 2 \sin^2(2t) + \cos(2.2t) = 2 \sin^2(2t) + 1 - 2\sin^2(2t) = 1$ verify the identity $\frac{1 + \csc \alpha}{\sec \alpha} - \cot \alpha = \cos \alpha$

Solution

 $\frac{1+\csc\alpha}{\sec\alpha}-\cot\alpha=\frac{1+\frac{1}{\sin\alpha}}{\frac{1}{\cos\alpha}}-\frac{\cos\alpha}{\sin\alpha}=\frac{\cos\alpha}{1}\cdot\frac{1+\frac{1}{\sin\alpha}}{1}-\frac{\cos\alpha}{\sin\alpha}$

$$= \cos \alpha + \frac{\cos \alpha}{\sin \alpha} - \frac{\cos \alpha}{\sin \alpha} = \cos \alpha$$

متطابقات المجموع و الفرق The sum and difference identities

 $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \qquad \qquad \tan(2x) = \frac{2 \tan x}{1 - \tan^2 x}$

EXAMPLE 1.5.6 Find the value of each of the following:

$$\tan\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \frac{\tan\left(\frac{\pi}{3}\right) + \tan\left(\frac{\pi}{4}\right)}{1 - \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{4}\right)} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}}$$
$$= \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3}.$$

تمثيل الدوال المثلية - GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

EXAMPLE

1

Section 1.6 معكوس الدوال المثلثية INVERSE TRIGONOMETRIC FUNCTIONS

الدالة العكسية Inverse Function

مراجعة

1

2

3

A

 $f^{-1}(f(1)) = f^{-1}(7) = 1$ $f^{-1}(f(x)) = x$ $f(f^{-1}(7)) = f(1) = 7$ $f(f^{-1}(x)) = x$

EXAMPLE 1.6.1 Find the following:

a. $\cos\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$ Solution $\cos\left(\sin^{-1}\left(-\frac{1}{2}\right)\right) = \cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ b. $\arcsin\left(\cos\left(\frac{2\pi}{3}\right)\right)$

$$\operatorname{arcsin}\left(\cos\left(\frac{2\pi}{3}\right)\right) = \operatorname{arcsin}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

Note: arcsin (which can also be written as sin^{-1}) is the inverse function of the sine function. i.e., If $y = sin^{-1}x$ then sin y = x.

a. $\sin\left(\arccos\left(-\frac{1}{2}\right)\right)$ Solution

$$\sin\left(\arccos\left(-\frac{1}{2}\right)\right) = \sin\left(\frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

b.
$$\cos^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

Solution

$$\cos^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

معكوس الظل والظل تمام – INVERSE OF TANGENT AND COTANGENT FUNCTIONS

3.

a.
$$\tan^{-1}\frac{1}{\sqrt{3}} = \frac{\pi}{6}$$
 b. $\tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$

4.

a. $\cot^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{3}$ **b.** $\cot^{-1} \left(-\sqrt{3} \right) = \frac{5\pi}{6}$

EXAMPLE 1.6.3 Find the exact value of the following **a.** $\cos(\tan^{-1}(-1))$ **b.** $\sin(\cot^{-1}(1))$ Solution $\cos(\tan^{-1}(-1)) = \cos(-\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ $\sin(\cot^{-1}(1)) = \sin((\frac{\pi}{4})) = \frac{\sqrt{2}}{2}$ (-1)

12

EXAMPLE 1.6.4 Find the exact value of $\cos\left(\tan^{-1}\left(\frac{5}{12}\right)\right)$ Solution

Let
$$\tan^{-1}\left(\frac{5}{12}\right) = \theta$$
 \longrightarrow $\tan \theta = \frac{5}{12}$
 $x^2 = 25 + 144 = 169$
 $x = 13$
 $\cos\left(\tan^{-1}\left(\frac{5}{12}\right)\right) = \cos \theta = \frac{12}{13}$

> determine the exact function value.

- **c.** $\sec^{-1}\frac{2}{\sqrt{3}} = \frac{\pi}{6}$ **d.** $\sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \frac{7\pi}{6}$
- **c.** $\csc^{-1}\frac{2}{\sqrt{3}} = \frac{\pi}{3}$ **d.** $\csc^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \frac{4\pi}{3}$

EXAMPLE 1.6.5 Find the exact value of the following

a.
$$\sin(\sec^{-1}(2))$$

Solution
a. $\sin(\sec^{-1}(2)) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$
b. $\sin(\sec^{-1}(-\frac{3}{2}))$
i. $\sin(\sec^{-1}(-\frac{3}{2}))$
i. $\sin(\sec^{-1}(-\frac{3}{2}))$
i. $\sec^{-1}(-\frac{3}{2}) = 0$ Sec $\theta = -\frac{3}{2}$
 $x^2 = 9 - 4 = 5$
 $x = \pm \sqrt{5}$
 $\sin \theta = \frac{-\sqrt{5}}{3}$
Sec $\theta = -\frac{3}{2}$
 $-\sqrt{5}$
 $x = \pm \sqrt{5}$
 $\sin \theta = \frac{-\sqrt{5}}{3}$

(0, 1)

EXERCISES 1.6

> In Exercises 1-4, determine the exact function value.

a.
$$\sin^{-1}\frac{1}{2}$$
 b. $\sin^{-1}\left(-\frac{1}{2}\right)$ **c.** $\cos^{-1}\frac{1}{2}$ **d.** $\cos^{-1}\left(-\frac{1}{2}\right)$

a.
$$\sin^{-1}\frac{\sqrt{3}}{2}$$
 b. $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ **c.** $\cos^{-1}\frac{\sqrt{3}}{2}$ **d.** $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

a.
$$\tan^{-1} \frac{1}{\sqrt{3}}$$
 b. $\tan^{-1} \left(-\sqrt{3} \right)$ c. $\sec^{-1} \frac{2}{\sqrt{3}}$ d. $\sec^{-1} \left(-\frac{2}{\sqrt{3}} \right)$

4.

1.

2.

3.

a.
$$\cot^{-1}\frac{1}{\sqrt{3}}$$
 b. $\cot^{-1}\left(-\sqrt{3}\right)$ **c.** $\csc^{-1}\frac{2}{\sqrt{3}}$ **d.** $\csc^{-1}\left(-\frac{2}{\sqrt{3}}\right)$

> In Exercises 5-10, find the exact value of the quantity.

5.

6.

7.

8.

a.
$$\sin^{-1}(\sin(\frac{1}{6}\pi))$$
 b. $\sin^{-1}(\sin(-\frac{1}{6}\pi))$

 c. $\sin^{-1}(\sin(\frac{5}{6}\pi))$
 d. $\sin^{-1}(\sin(-\frac{5}{6}\pi))$

 a. $\cos^{-1}(\cos(\frac{1}{3}\pi))$
 b. $\cos^{-1}(\cos(-\frac{1}{3}\pi))$

 c. $\cos^{-1}(\cos(\frac{2}{3}\pi))$
 d. $\cos^{-1}(\cos(-\frac{1}{3}\pi))$

 c. $\cos^{-1}(\cos(\frac{2}{3}\pi))$
 d. $\cos^{-1}(\cos(\frac{4}{3}\pi))$

 a. $\tan^{-1}(\tan(\frac{1}{6}\pi))$
 b. $\tan^{-1}(\tan(-\frac{1}{3}\pi))$

 c. $\tan^{-1}(\tan(\frac{2}{6}\pi))$
 d. $\tan^{-1}(\tan(-\frac{4}{3}\pi))$

 a. $\cot^{-1}(\cot(\frac{1}{6}\pi))$
 b. $\sec^{-1}(\sec(\frac{1}{3}\pi))$