University Of Anbar
 College Of Engineering

Electrical Engineering Department

MATHEMATICS-1 ${ }^{1 t}$ class students

Dr. Hamid Raddam Hussein

References

1. Stewart, J., Clegg, D. K., \& Watson, S. (2020). Calculus: early transcendental. Cengage Learning.
2. Thomas, G. B., Haas, J., Heil, C., \& Weir, M. (2018). Thomas' Calculus. Pearson Education Limited.
3. Stroud, K. A., \& Booth, D. J. (2020). Engineering mathematics. Bloomsbury Publishing.

1.1 Sets of Numbers and Inequalities.

- Sets on Numbers.
- Intervals.
- Properties of Inequalities.
- Linear Inequalities.
- Properties of Absolute Value.
- Solve Inequalities; Quadratic, Numerator and the Denominator.

1.2 Functions: Basic Definitions and Examples.

- Definition of Function.
- The Vertical Line test of a Function.
- Some Types of Functions.
- Domain and Range of a Function.
- Representation of Functions.

1.3 Properties of Functions and Their Combination.

- Symmetry.
- Even and Odd Functions.
- Increasing and Decreasing Functions.
- Basic Operations on Functions.
- Composition of Functions.

1.4 Inverse Functions

- One-to-One Functions.
- Inverse Functions.

1.5 Trigonometric Functions

- Degree/Radians Conversion Factors.
- Trigonometric Functions.
- Trigonometric Functions using the Unit Circle.
- Values of Sine and Cosine.
- Trigonometric Identities.
- Graphs of the Trigonometric Functions.

1.6 Inverse Trigonometric Functions

- Inverse of Sine and Cosine Functions.
- Inverse of Tangent and Cotangent Functions.
- Inverse of Secant and Cosecant Functions.

Functions 1 الدوال

1.1 Sets of Numbers and Inequalities

 A
SETS OF NUMBERS A1AS

$$
N=\{1,2,3, \ldots\}
$$

$$
W=\{0,1,2,3, \ldots\}
$$

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

$$
\mathbf{N} \subset \mathbf{W} \subset \mathbf{Z}
$$

ة. rational numbers set

$$
\mathrm{Q}=\left\{\left.\frac{P}{q} \right\rvert\, \mathrm{p}, \mathrm{q} \in \mathrm{Z}, \mathrm{q} \neq 0\right\}
$$

$$
\frac{2}{3}, \frac{5}{7}, \frac{9}{8}, \frac{-6}{7}
$$

$$
5 \in Q \quad ? \quad \frac{5}{1}=5 \quad T
$$

$$
\frac{2}{5}=0.4
$$

$$
\frac{1}{3}=0.333333 \ldots=0 . \overline{3}
$$

$$
\frac{2}{7}=0.285714285714285714285714 \ldots
$$

$$
\begin{aligned}
& \text { Con } \\
& \sqrt{9}=3 \quad 3 \times 3=9 \quad, \sqrt{9}= \pm 3 \quad ? \\
& \sqrt{16}=4 \\
& \sqrt{25}=5 \\
& \sqrt{36}=6 \\
& \sqrt{49}=7 \\
& \sqrt{64}=8 \\
& \sqrt{81}=9
\end{aligned}
$$

- irrational numbers set

$$
\begin{aligned}
& \sqrt{2}=1.414212356237 \ldots \quad \sqrt{6}=\Gamma, \Sigma \Sigma q \Sigma \wedge q \vee \sum \Gamma V \wedge \Gamma I V \wedge 000 \\
& \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7} \\
& \Pi=3.14159 \ldots
\end{aligned}
$$

$$
\sqrt{-2} \quad \text { لييّ، نسبية أو فير نسبيـة }
$$

$$
R=Q \cup I
$$

$$
\mathbf{N} \subset \mathbf{W} \subset \mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R}
$$

Intervals - ت

open interval

1. The open interval $(a, b)=\{x \mid a<x<b\}$

2. The closed interval $[a, b]=\{x \mid a \leq x \leq b\}$

$$
1 \leq x \leq 5
$$

[1,5]
$3 \leq x \leq 8$

[3,8]

3. The half-open interval $(a, b]=\{x \mid a<x \leq b\}$ or $[a, b)=\{x \mid a \leq x<b\}$

$$
0 \leq x<6
$$

$$
3<x \leq 6
$$

$(3,6]$

infinite-open interval

4. The infinite-open interval $(a, \infty)=\{x \mid x>a\}$ or $(-\infty, b)=\{x \mid x<b\}$

$$
x<3 \quad+
$$

$$
(-\infty, 3)
$$

5. The infinite-closed interval $[a, \infty)=\{x \mid x \geq a\}$ or $(-\infty, b]=\{x \mid x \leq b\}$

$$
5 \leq x
$$

$$
[5, \infty)
$$

EXAMPLE: Solve the following inequalitie

هـ المتباينايت اليتالية

$$
\begin{aligned}
& 2<x<5 \text { solution: }(2,5) \\
& 7 \geq x>4 \text { solution: }(4,7] \\
& x<-3 \text { solution: }(-\infty,-3) \\
& x \geq-1 \text { solution: }[-1, \infty) \\
& x<-3 \text { or } x \geq-1 \text { solution: }(-\infty,-3) \cup[-1, \infty)
\end{aligned}
$$

$$
\int_{3}-7 x_{-6}
$$

If a, b, c in \mathbb{R}, then

1. If $a<b$ then $a+c<b+c$ and $a-c<b-c$ $2<5, \quad 2+4<5+4, \quad 6<9$

$$
2<5, \quad 2-4<5-4, \quad-2<1
$$

Solve the following inequalities حل المتباينات التالية

$$
\begin{aligned}
x+2 & <5 \\
x & <5-2 \\
x & <3
\end{aligned}
$$

solution: $(-\infty, 3)$

2. If $a<b$ and $b<c$ then $a<c$ $3<7$ and $7<9$ then $3<9$
3. If $a<b$ and $c>0$ then $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$

$$
\begin{aligned}
& 2<5 \quad, 2 \cdot 3<5.3,6<15 \\
& 6<9
\end{aligned}, \frac{6}{3}<\frac{9}{3}, 2<3
$$

4. If $a<b$ and $c<0$ then $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$

$$
4<8,4(-2)>8(-2),-8>-16
$$

$$
4<8 \quad, \frac{4}{-2}>\frac{8}{-2} \quad,-2>-4
$$

EXAMPLE 1.1.1: Solve the following inequalities: هلم المتبايناتي التاليلية

$$
\begin{aligned}
6-2 x & \geq 3 x-4 \\
6+4 & \geq 3 x+2 x \\
10 & \geq 5 x \\
2 & \geq x
\end{aligned}
$$

Solution: $\quad(-\infty, 2]$

A

$$
\begin{aligned}
4(x-3) & >-2 x-16 \\
4 x-12 & >-2 x-16 \\
4 x+2 x & >12-16 \\
6 x & >-4 \\
x & >\frac{-4}{6} \\
x & >\frac{-2}{3} \\
\text { Solution }: & \left(-\frac{2}{3}, \infty\right)
\end{aligned}
$$

EXAMPLE 1.1.1: Solve the following inequalities:

$$
\begin{gathered}
-3<5-2 x \leq 7 \\
-3-5<-2 x \leq 7-5 \\
-8<-2 x \leq 2 \\
\frac{-8}{-2}>x \geq \frac{2}{-2} \\
4>x \geq-1
\end{gathered}
$$

Solution :
$[-1,4)$

RELATED PROBLEM 1

Solve the following inequalities:
a. $4-x<3 x+2$
b. $3(2 x-1)>4 x-11$
c. $1 \leq 5+2 x<4$

Answers

a. $\left(\frac{1}{2}, \infty\right)$
b. $(-4, \infty)$
c. $\left[-2,-\frac{1}{2}\right)$

ABSOLUTE VALUES äth

$$
\begin{aligned}
& |5|=5 \\
& |-5|=-(-5) \\
& |a|=\left\{\begin{array}{cc}
a & \text { if } a \geq 0 \\
-a & \text { if } a<0
\end{array}\right.
\end{aligned}
$$

EXAMPLE 1.1.2: Rewrite each expression without absolute value:
أعد كتابة كل تعبير بدون قيمة مطلقة

$$
\begin{aligned}
& |\sqrt{2}-1|=|\sqrt{2}-\sqrt{1}|=\sqrt{2}-1 \\
& |3-\Pi|=-(3-\Pi)=\Pi-3
\end{aligned}
$$

$$
|3 x-1|=\left\{\begin{array}{ll}
3 x-1, & \text { if } 3 x-1 \geq 0 \\
1-3 x, & \text { if } 3 x-1<0
\end{array}= \begin{cases}3 x-1, & \text { if } x \geq \frac{1}{3} \\
1-3 x, & \text { if } x<\frac{1}{3}\end{cases}\right.
$$

és

$$
\begin{array}{llll}
\sqrt{2}>1 & ? & \sqrt{2}>\sqrt{1} & \mathrm{~T} \\
\sqrt{5}>3 & ? & \sqrt{5}>\sqrt{9} & \mathrm{~F}
\end{array}
$$

EXAMPLE 1.1.2: Rewrite each expression without absolute value: أعد كتابة كل تعبير بدون قيمة مطلقة

$$
\begin{aligned}
& |\sqrt{2}-1|=|\sqrt{2}-\sqrt{1}|=\sqrt{2}-1 \\
& |3-\Pi|=-(3-\Pi)=\Pi-3
\end{aligned}
$$

$$
|3 x-1|=\left\{\begin{array}{ll}
3 x-1, & \text { if } 3 x-1 \geq 0 \\
1-3 x, & \text { if } 3 x-1<0
\end{array}= \begin{cases}3 x-1, & \text { if } x \geq \frac{1}{3} \\
1-3 x, & \text { if } x<\frac{1}{3}\end{cases}\right.
$$

Properties of Absolute Value

For all real numbers \boldsymbol{a} and \boldsymbol{b}

1. $|a| \geq 0$.
2. $|a b|=|a||b|$
3. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \quad b \neq 0$
4. $|a+b| \leq|a|+|b| \quad$ (Triangle Inequality)
5. $\sqrt{a^{2}}=|a|, \quad \sqrt{(-3)^{2}}=|-3|=3$

For all real numbers \boldsymbol{a} and \boldsymbol{b}

6. If $a>0$, then $|x|<a$ if and only if $-a<x<a$.

EXAMPLE $\quad|x| \leq 3 \quad-3 \leq x \leq 3$
Solution: [-3, 3]

7. If $a>0$, then $|x|>a$ if and only if $x>a$ or $x<-a$ EXAMPLE $|x| \geq 3 \quad x \geq 3$ or $x \leq-3$
Solution :

8. $|f(x)|<|g(x)|$ if and only if $f^{2}(x) \leq g^{2}(x)$.

EXAMPLE 1.1.3: Solve the following inequalities:

$$
\begin{array}{r}
|3 x-2|<6 \\
-6<3 x-2<6 \\
-4<3 x<8 \\
\frac{-4}{3}<x<\frac{8}{3}
\end{array}
$$

Solution: $\quad\left(\frac{-4}{3}, \frac{8}{3}\right)$

EXAMPLE 1.1.3: Solve the following inequalities:

$$
|2-5 x| \geq 6
$$

$2-5 x \geq 6$	or	$-6 \geq 2-5 x$
$-5 x \geq 4$	or	$-8 \geq-5 x$
$x \leq \frac{-4}{5}$	or	$\frac{8}{5} \leq x$

Solution :

$$
\left(-\infty, \frac{-4}{5}\right] \cup\left[\frac{8}{5}, \infty\right)
$$

EXAMPLE 1.1.3: Solve the following inequalities:

$$
|4 x+3| \leq-2 \quad \text { Solution : } \phi
$$

RELATED PROBLEM 2 أسَئلة اهها صلة بالسسابق

Solve the following inequalities:
a. $|2 x+3|<2$
b. $|4-2 x| \geq 8$
c. $|5 x-8| \geq-1$

Answers
a. $\left(-\frac{5}{2},-\frac{1}{2}\right)$
b. $(-\infty,-2] \cup[6, \infty)$
c. \mathbb{R}

Solve inequalities -

numerator and the denominator - patig hamed

تحقق هن صحة المساوات

$$
\begin{aligned}
& x^{2}+4 \mathrm{x}-12=(x+3)(x-4) \\
& x^{2}+4 x-12=(x+6)(x-2)
\end{aligned}
$$

\square

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (x-3)^{2}=x^{2}-2 \cdot 3 x+3^{2}=x^{2}-6 x+9
\end{aligned}
$$

$$
\begin{gathered}
a^{2}-b^{2}=(a-b)(a+b) \\
x^{2}-4=(x-2)(x+2)
\end{gathered}
$$

EXAMPLE 1.1.4: Solve the following inequalities:

	$(-\infty, 2)$	$(2,3)$	$(3, \infty)$
$(x-2)$	-	+	+
$(x-3)$	-	-	+
$(x-2)(x-3)$	+	-	+

Solution : (2, 3)

EXAMPLE 1.1.4: Solve the following inequalities:

$$
\frac{4-x}{3 x-1} \leq 0
$$

	$\left(-\infty, \frac{1}{3}\right)$	$\left(\frac{1}{3}, 4\right)$	$(4, \infty)$
$4-\mathrm{x}$	+	+	-
$3 \mathrm{x}-1$	-	+	+
$\frac{4-x}{3 x-1}$	-	+	-

Solution : $\left(-\infty, \frac{1}{3}\right) \cup[4, \infty)$

EXAMPLE 1.1.4: Solve the following inequalities:

$$
\begin{aligned}
& \frac{2}{1-3 x}-1 \geq 0 \\
& \frac{2}{1-3 x}-\frac{1-3 x}{1-3 x} \geq 0
\end{aligned}
$$

$$
\frac{2-(1-3 x)}{1-3 x} \geq 0
$$

$$
\frac{2-1+3 x}{1-3 x} \geq 0
$$

$$
\frac{1+3 x}{1-3 x} \geq 0
$$

	$\left(-\infty,-\frac{1}{3}\right)$	$\left(-\frac{1}{3}, \frac{1}{3}\right)$	$\left(\frac{1}{3}, \infty\right)$
$1+3 x$	-	+	+
$1-3 x$	+	+	-
$\frac{1+3 x}{1-3 x}$	-	+	-

Solution: $\left[-\frac{1}{3}, \frac{1}{3}\right)$

$$
|x+3| \leq|2 x-1| \quad \text { 8. }|f(x)|<|g(x)| \text { if and only if } f^{2}(x) \leq g^{2}(x)
$$

$$
\begin{gathered}
|x+3| \leq|2 x-1| \\
(x+3)^{2} \leq(2 x-1)^{2} \\
(x+3)^{2}-(2 x-1)^{2} \leq 0 \\
x^{2}+6 x+9-\left(4 x^{2}-4 x+1\right) \leq 0 \\
x^{2}+6 x+9-4 x^{2}+4 x-1 \leq 0 \\
-3 x^{2}+10 x+8 \leq 0 \\
(-x+4)(3 x+2) \leq 0
\end{gathered}
$$

	$\left(-\infty,-\frac{2}{3}\right)$	$\left(-\frac{2}{3}, 4\right)$	$(4, \infty)$
$-x+4$	+	+	-
$3 x+2$	-	+	+
$(-x+4)(3 x+2)$	-	+	-

Solution : (- $\left.\infty,-\frac{2}{3}\right] \cup[4, \infty)$

$$
\begin{array}{l|l}
\frac{3}{x-9} \geq \frac{2}{x+2} & \\
\frac{3}{x-9}-\frac{2}{x+2} \geq 0 & \frac{3 x+6-2 x+18}{(x-9)(x+2)} \geq 0 \\
\frac{(x+2)-2(x-9)}{(x-9)(x+2)} \geq 0 & \frac{x+24}{(x-9)(x+2)} \geq 0
\end{array}
$$

	$(-\infty-24)$	$(-24,-2)$	$(-2,9)$	$(9, \infty)$
$x+24$	-	+	+	+
$x-9$	-	-	-	+
$x+2$	-	-	+	+
$\frac{x+24}{(x-9)(x+2)}$	-	+	-	+

السبورة $24-24$

Solution : $[-24,-2) \cup(9, \infty)$

EXAMPLE 1.1.4: Solve the following inequalities:

$$
\text { f. } \frac{1}{x^{2}+1} \geq 0 \quad \text { Solution : } \mathrm{R}
$$

RELATED PROBLEM 3

Solve the following inequalities:
a. $\quad x^{2}<2 x+3$
b. $\frac{2 x-3}{x-2} \geq 0$
c. $|3 x+4|<|x-2|$
d. $\frac{2}{x-3} \geq \frac{1}{x+1}$
e. $x^{2}+4 \leq 0$

Answers
a. $(-1,3)$
b. $\quad\left(-\infty, \frac{3}{2}\right] \cup(2, \infty)$
c. $\left(-3,-\frac{1}{2}\right)$
d. $[-5,-1) \cup(3, \infty)$
e. ϕ

EXERCISES 1.1

7n Exerelsee 1 - 8, nolve the inequalitioe

1. $3 x-4<8$
2. $1-2 x<-4$
3. $3 x-4<-4$
4. $3(x-4)-2 \geq 2(x-7)$.
a. $-3<2 x-4 \leq 7$
5. $-2<\frac{2 x-7}{3} \leq 4$
a. $3(2 x-4)-2(x-7) \geq 7+3(x-5)$.
> In Exereliee $9-15$, eolve the inequalitiee
a. $|2 x+4| \leq 3$
6. $\left|\frac{2 x+5}{3}\right| \leq 4$
7. $|3 x-2|>5$
8. $|2 x+4|+4 \leq 3$
9. $-2|5 a+2|+4 \leq 3$
10. $|=|\leq|=-5|$
11. $|3 x-2|>|2 x-5|$.
$>$ In Exerciees $16-23$, nolve the inequalitiee
12. $a(x-4)<0$
13. $a^{2}-3 x<4$
14. $a^{2}<x$
15. $x^{2}-4 x+4 \geq 0$
16. $\frac{2}{x-3} \leq 0$
17. $\frac{2 x-4}{x+3} \leq 0$
18. $\frac{1}{x+3} \leq 4$

SECTION 1.2 FUNCTIONS: BASIC DEFINITIONS AND EXAMPLES

Definition of Function - $\mathbf{\alpha} \mid \boldsymbol{| l |}$

Df domain المجال
Cf codomain المجال المقابل
Rf range المدى

domain المجال A

B المجال المقابلcodomain
range المدى $=\{3,5\}$

Not a Function $\begin{gathered}\text { |lal } \\ \text { Hent }\end{gathered}$

A
B

A
B

كاترة

$$
f=\{(1,3),(2,5),(3,5)\}
$$

Function - व|N|

EXAMPLE 1.2.1 Determine which of the following sets is a function. If it is a function, what is its domain and range?

حدد المجموعة التي تمثل دالة ، إذا كانت المجموعة تمثل دالة حدد المجال و المدى
a. $\quad f=\{(1,2),(3,4),(-1,5),(2,0),(0,0)\}$

Solution
لd $D_{f}=\{1,3,-1,2,0\}$ (1) $R_{\mathrm{f}}=\{2,4,5,0\}$.
b. $g=\{(5,-3),(1) 4),(-5,2),(1) 0),(0,0)\}$

Solution g is not a function (1,4) and (1,0) have the same x - coordinate.

$$
(1,4),(1,0) \in g \quad \text { نفسة x } x \text { لهما الاحداثي }
$$

$$
y=x-2
$$

$$
f(x)=x-2
$$

كثيرات المدود

$f(x)=3 x^{5}+4 x^{4}-2 x^{3}+3 x^{2}+8 x-4$ كثيرة حدود من الدرجة (degree) الخامسة 4 (4 (

$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
كثيرة حدود (polynomial) من الدرجة (degree)
$a_{0}, a_{1}, a_{2}, \cdots, a_{n}$ (coefficients of the polynomial) معاملات كثيرة الحدود

$$
a_{n} \neq 0, n \in N
$$

$p(x)=a x^{2}+b x+c \quad$ quadratic functions \quad دالة تربيعية $p(x)=a x^{3}+b x^{2}+c x+d \quad$ cubic functions \quad دالة تكعيبية example

$$
\begin{aligned}
& f(x)=\sqrt{2} x^{3}+x^{5}-\frac{5}{2} x^{2}+1 \quad \text { degree } 5 \\
& g(x)=5 x^{-2}-x^{3}+x^{7}
\end{aligned}
$$

is not a polynomial because $\quad x^{-2}=\frac{1}{x^{2}}$
الدوال النسبية RATIONAL FUNCTIONS

$$
\mathrm{f}(\mathrm{x})=\frac{p(x)}{q(x)} \quad \mathrm{q}(\mathrm{x}) \neq 0
$$

example

$$
\begin{aligned}
& f(x)=\frac{-3 x^{3}+1}{x^{2}-x} \quad \text { rational function } \\
& f(x)=\frac{x^{2}+1}{(\sqrt{x})-x} \quad \text { not a rational function }
\end{aligned}
$$

RADICAL FUNCTIONS الدوال الجذرية

$$
\begin{array}{lll}
f(x)=\sqrt{x^{3}-4} & \mathbf{x}^{3}-4 \geq 0 & \sqrt{-9}=? \\
g(x)=\sqrt[3]{x^{2}+2} & \sqrt[3]{27}=3 & \sqrt[3]{-27}=-3
\end{array}
$$

دالة متعددة التعريف PIECEWISE FUNCTIONS

$$
f(x)=\left\{\begin{array}{cc}
2 x+1 & x \leq 1 \\
\sqrt{x} & x>1
\end{array}\right.
$$

DOMAIN AND RANGE OF A FUNCTION - المجال و المدى في الدوال

تحديد مجال الدالة جبريـا

$$
\text { الجذرِ في البسط: } 0 \text { ² ماتحت الجنر }
$$

الجنر في الماحاق:

Function

- $g(x)=\sin (x)+3, \quad(1 \leq x \leq$

Line
$h: x=1$
i: $y=3.84$
Number

- $a=1$

Point

- $A=(1,0)$
- $B=(1,3.84)$
- $C=(0,3.84)$

Segment

- $\mathrm{j}=3.84$
- $k=1$

a. $f(x)=x^{2}-2 x \quad$ Solution $\quad \mathrm{D}_{\mathrm{f}}=\mathrm{R}$
b. $\quad f(x)=\frac{3 x-4}{x-5}$

$$
\begin{array}{ll}
\text { Solution } & x-5=0 \quad x=5 \\
& D_{f}=(-\infty, 5) \cup(5, \infty) \\
& D_{f}=R-\{5\}
\end{array}
$$

EXAMPLE 1.2.3 Find the domain of each of the following functions أوجد المجال لجميع الدوال التالية
c. $f(x)=\frac{2 x-3}{x^{2}-4 x-5}$

Solution

$$
x^{2}-4 x-5=0
$$

$$
(x-5)=0 \quad \text { or } \quad(x+1)=0
$$

$$
x=5 \quad x=-1
$$

$$
D_{f}=(-\infty,-1) \cup(-1,5) \cup(5, \infty)
$$

$$
D_{f}=R-\{5,-1\}
$$

EXAMPLE 1.2.3 Find the domain of each of the following functions أوجد المجال لجميع الدوال التالية
d. $f(x)=\sqrt{5 x-2}$

Solution $\quad 5 x-2 \geq 0$
$5 x \geq 2$
$x \geq \frac{2}{5}$
$D_{f}=\left[\frac{2}{5}, \infty\right)$
e. $f(x)=\sqrt[3]{x^{2}-4 x}$

$$
\text { Solution } \quad D_{f}=R
$$

RELATED PROBLEM 2 Find the domain of each of the following functions.
a. $f(x)=x^{3}+x^{2}-3$

أهـ
b. $\quad f(x)=\frac{x-2}{x+4}$
c. $\quad f(x)=\frac{4 x-5}{x^{2}-x-30}$
d. $f(x)=\sqrt{4-3 x}$
e. $f(x)=\sqrt[5]{x-8}$

Answer
a. $D_{f}=\mathbb{R}$
b. $D_{f}=\{x \in \mathbb{R}: x \neq-4\} \quad \mathrm{D}_{\mathrm{f}}=\mathrm{R}-\{-4\}$
c. $D_{f}=\{x \in \mathbb{R}: x \neq-5, x \neq 6\} \quad \mathrm{D}_{\mathrm{f}}=\mathrm{R}-\{-5,6\}$
d. $D_{f}=\left\{x \in \mathbb{R}: x \leq \frac{4}{3}\right\}$
$D_{f}=\left(-\infty, \frac{4}{8}\right]$
e. $D_{f}=\mathbb{R}$

Representation of functions - تمثيل الدوال

DEFINITION 1.2.4

The two functions f and g are equal, if f and g have the same domain and $f(x)=g(x)$ for each x in the common domain.

EXAMPLE 1.2.4

$$
\begin{array}{rr}
f(x)=\sqrt{x}+1 & \mathrm{D}_{\mathrm{f}}=[0, \infty) \\
g(x)=\frac{1}{2}(2 \sqrt{x}+2) & \mathrm{D}_{\mathrm{f}}=[0, \infty) \\
& \mathrm{f}(\mathbf{x})=\mathrm{g}(\mathbf{x})
\end{array}
$$

Linear Functions andà		
Power Functions gegall and	$f(x)=x^{2}$	$f(x)=x^{3}$
Root Functions 		$f(x)=\sqrt[3]{x}$
Reciprocal Functions tot grent alla		
Absolute Value Function 		

Linear Functions	$f(x)=b$	$f(x)=m x+b$

Power Functions

- Function
- $\mathrm{f}(\mathrm{x})=1 \mathrm{x}^{2}$

Number

- $a=1$
$-b=0$
$-n=2$

- Function
- $\mathrm{f}(\mathrm{x})=0.4 \mathrm{x}^{2}$

Number

- $\mathrm{a}=0.4$
- $b=0$
- $n=2$

- Function
- $f(x)=1 x^{3}$

Number

- $a=1$
- $b=0$
- $n=3$

Function

- $\mathrm{f}(\mathrm{x})=0.4 \mathrm{x}^{3}$

Number

- $a=0.4$
- $b=0$
- $n=3$

- Function
- $f(x)=0.1 x^{3}+5$

Number

- $\mathrm{a}=0.1$
- $b=5$
- $n=3$

Function

- $\mathbf{f}(x)=\sqrt[2]{x+1}$

Number

- $\mathrm{a}=1$
- $n=2$
- Text
- text1 $=" f(x)=\sqrt[2]{x+1} "$

Function

- $f(x)=\sqrt[3]{x}$

Number

- $\mathrm{a}=0$
- $n=3$

Text

- text1 $=" \mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}}{ }^{\prime}$

Function

- $f(x)=\sqrt[3]{x+5}$

Number

- $a=5$
- $n=3$

Text

- text1 $=" \mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}+5}$ "

Reciprocal Functions

- Function
- $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$
- Number
- $\mathrm{a}=0$
- $n=1$

Text

- text1 $=" \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}{ }^{\prime}$

Function

- $f(x)=\frac{1}{x+5}$

Number

- $a=5$
- $\mathrm{n}=1$
Text
- text1 $=" \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}+5}$ "

Function

- $f(x)=\frac{1}{x^{2}}$
- Number
- $a=0$
- $n=2$

Text

- text1 $={ }^{\prime} \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}}$ "

- Function
- $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}+1}$

Absolute Value Function

In Exerciees 1-2, determine which of the following seta le a function. If it ie a function, what is ite domaln and range?

1. $f=\{(2,3),(2,3),(-2,3),(1,3),(0,3)\}$
2. $g=\{(5,1),(2,2),(-1,5,2),(5,3),(1,7)\}$.
> In Exercises 3 - 4, determise which of the following diagrame represent a funetion. Explain your reseos for any that do not define a fancotion.
3.

4.

7 In Exerciese 5-6 une the vertical line to test to identily if the graphes are functione of not.
5.

6.

) In Exerciees 7-8 find the numerical value of the fanetion at the givee value of a.
7. $N(x)=2 x^{4}-3 ; x=0,-1$
8. $s(x)=\frac{3 x^{2}-4 x-1}{2 x^{2}+5 x-3} ; x=-1$

In Exurciese 9-19, find the domsin of cech fusetion
9. $f(z)=z^{4}-4 z+1$
11. $f(a)=\frac{x^{2}-2 a}{a-4}$
12. $f(x)=\sqrt[8]{2 x^{2}-3 a+1}$
12. $f(x)=\sqrt{3 x-9}$
12. $f(a)=\frac{1}{\sqrt{x-5}}$
14. $f(a)=\sqrt{\frac{2 z+1}{a+2}}$
15. $f(a)=\frac{\sqrt{2}+4 x}{x^{4}-x}$
16. $g(w)=\frac{w-1}{w^{2}-w-6}$

Find the domain of $f(x)=\sqrt{x^{2}-x-6}$

$$
(x-3)(x+2) \geq 0
$$

	$(-\infty,-2)$	$(-2,3)$	$(3, \infty)$
$x-3$	-	-	+
$x+2$	-	+	+
$(x-3)(x+2)$	+	-	+

Solution : $(-\infty,-2] \cup[3, \infty)$

Solve $1-2|2 x-3| \geq-6$

$$
\begin{gathered}
-2|2 x-3| \geq-7 \\
|2 x-3| \leq \frac{7}{2} \\
-\frac{7}{2} \leq 2 x-3 \leq \frac{7}{2} \\
-\frac{7}{2}+3 \leq 2 x \leq \frac{7}{2}+3 \\
\frac{-7+6}{2} \leq 2 x \leq \frac{7+6}{2} \\
\frac{-1}{2} \leq 2 x \leq \frac{13}{2}
\end{gathered}
$$

$$
\frac{-1}{4} \leq x \leq \frac{13}{4}
$$

Solution : $\left[\frac{-1}{4}, \frac{13}{4}\right]$

Solve the following inequality, and write your answer in interval notation

$$
\begin{aligned}
-5 & <2 x-3 \leq 7 \\
-3+3 & <2 x \leq 7+3 \\
0 & <2 x \leq 10 \\
0 & <x \leq 5
\end{aligned}
$$

Solve the following inequality and write your answer in interval notation

$$
\begin{array}{r}
\sqrt{(z-2)^{2}} \leq 3 \\
|x-2| \leq 3 \\
-3 \leq x-2 \leq 3 \\
-1 \leq x \leq 5 \\
\text { Solution: }[-1,5]
\end{array}
$$

Section 1.3
PROPERTIES OF FUNCTIONS, AND THEIR COMBINATION

INTERCEPTS المقطع

EXAMPLE 1.3.1 Find the x and y intercepts of the graph of the equation

$$
4 x^{2}+y^{2}=16
$$

RELATED PROBLEM 1 Find the x and y intercepts of the graph of the equation

$$
9 x^{2}-2 y^{2}=16
$$

SYMMETRY التناظر

DEFINITION 1.3.1 (Symmetry with Respect to x-axis) (X (التناظر شول شصو)
A graph is said to be symmetric with respect to x-axis provided that whenever (x, y) is on the graph, then $(x,-y)$ is also on the graph.

يقال المنينى A متناظر شول اليمور x إذا كان () (x,y) عنصر في A فأن (x,-y) منصر في A

EXAMPLE 1.3.2 Show that the graph of the equation $x=y^{2}$ is symmetric with respect to x - axis.

Solution If (x, y) is on the graph,

$$
x=y^{2} \text { than } x=(-y)^{2}=y^{2}
$$

then $(x,-y)$ is also on the graph.

DEFINITION 1.3.2 (Symmetry with Respect to y-axis) (التناظر شول شصور) ()
A graph is said to be symmetric with respect to y-axis provided that whenever (x, y) is on the graph, then $(-x, y)$ is also on the graph.

EXAMPLE 1.3.3 Show that the graph of the equation $y=x^{2}$ is symmetric with respect to y - axis.

Solution If (x, y) is on the graph,

$$
y=x^{2} \quad \text { than } y=(-x)^{2}=x^{2}
$$

then $(-x, y)$ is also on the graph.

DEFINITION 1.3.3 (Symmetry with Respect to Origin)
(التناظر شول نقطة الآصل،)
A graph is said to be symmetric with respect to the origin provided that whenever (x, y) is on the graph, then $(-x,-y)$ is also on the graph.

EXAMPLE 1.3.4 Show that the graph of the equation $y=2 x^{3}$ is symmetric with respect to the origin.

Solution If (x, y) is on the graph,

$$
y=2 x^{3} \quad \text { than }-y=2(-x)^{3}=-2 x^{3} \quad, y=2 x^{3}
$$

then $(-x,-y)$ is also on the graph.

SYMMETRY التناظر

(Symmetry with Respect to x-axis) (التناظر شول میور x)
whenever (x, y) is on the graph, then $(x,-y)$ is also on the graph.
(Symmetry with Respect to y-axis) (التناظر شول مشور ()
whenever (x, y) is on the graph, then $(-x, y)$ is also on the graph.
(Symmetry with Respect to Origin) (التناظر هول نقطة الاصل) (Sxin)
whenever (x, y) is on the graph, then $(-x,-y)$ is also on the graph.

الدوال الزوجية و الفردية - Even and Odd Functions

DEFINITION 1.3.4 (Even and Odd Functions)

الـالة الززوجية و الفردية
a. A function f is even if its graph is symmetric with respect to y-axis; that is, $f(-x)=f(x)$ for every x in the function's domain.
b. A function f is odd if its graph is symmetric with respect to the origin; that is, $f(-x)=-f(x)$ for every x in the function's domain.

(Even Functions) الدالة الروجبية

a. A function f is even if its graph is symmetric with respect to y-axis; that is, $f(-x)=f(x)$ for every x in the function's domain.

Function

- $f(x)=x^{2}$

Line
$g: y=4$
Number

- $\mathrm{a}=4$

Point
$A=(0,4)$

- $B=(2-4)$
- $C=(2,4)$

[^0]

- b. A function f is odd if its graph is symmetric with respect to the origin; that is, $f(-x)=-f(x)$ for every x in the function's domain.

Boolean Value

- $\mathrm{a}=$ false
- $\mathbf{b}=$ false

Function

- $f(x)=0.2 x^{3}$
$g(x)=0.2(-x)^{3}$
$h(x)=-\left(0.2 x^{3}\right)$
Point
- $A=(0,0)$
- $B=(2.34,2.56)$
- $\mathrm{B}^{\prime}=$ (2.34-, 2.56-)

Text
text1 $=$ " $\mathrm{f}(-\mathrm{x})=0.2(-\mathrm{x})^{3 "}$

- text2 $=$ " $f(x)=0.2 x^{3}$ " text3 $=$ " $-f(x)=-\left(0.2 x^{3}\right)$ "

Boolean Value

- $\mathbf{a}=$ true
- $\mathbf{b}=$ false

Function

- $f(x)=0.2 x^{3}$
- $g(x)=0.2(-x)^{3}$
$h(x)=-\left(0.2 x^{3}\right)$
Point
- $A=(0,0)$
- $B=(2.34,2.56)$
- $B^{\prime}=(2.34-, 2.56-)$

Text

- text1 $=" \mathrm{f}(-\mathrm{x})=0.2(-\mathrm{x})^{3 "}$
- text2 $=" f(x)=0.2 x^{3} "$ text3 $=$ " $-f(x)=-\left(0.2 x^{3}\right) "$

EXAMPLE 1.3.5

Determine algebraically whether the following functions are even, odd, or nither. حدد جبريا إذا كانتت الدوال اليالية زوجية أو فردية أو غير ذلكـ
a. $f(x)=x^{4}-3$

Solution
$f(-x)=(-x)^{4}-3=x^{4}-3=f(x) . \quad f$ is even.
b. $g(x)=\frac{x-2 x^{3}}{x^{2}+1}$

Solution
$g(-x)=\frac{-x-2(-x)^{3}}{(-x)^{2}+1}=\frac{-x+2 x^{3}}{x^{2}+1}=-\frac{x-2 x^{3}}{x^{2}+1}=-g(x) . \quad g$ is odd.
c. $h(x)=x^{3}+1$.

Solution

$$
h(-x)=(-x)^{3}+1=-x^{3}+1=-\left(x^{3}-1\right) \neq-h(x)
$$

Since $h(-x) \neq h(x)$ and $h(-x) \neq-h(x)$
h is neither
A) Determine algebraically whether the function $f(x)=\frac{x^{5}+3 x}{x^{4}+x^{2}}$ is even, odd, or neither.

Solution

$f(-x)=\frac{(-x)^{5}+3(-x)}{(-x)^{4}+(-x)^{2}}=\frac{-x^{5}-3 x}{x^{4}+x^{2}}=\frac{-\left(x^{5}+3 x\right)}{x^{4}+x^{2}}=-\frac{\left(x^{5}+3 x\right)}{x^{4}+x^{2}}=-f(x)$

f is odd

A) Determine algebraically whether the function $f(x)=\left|\frac{2 x^{4}+x^{2}}{\sin x}\right|$ is even, odd, or neither.
Solution

$$
f(-x)=\left|\frac{2(-x)^{4}+(-x)^{2}}{\sin (-x)}\right|=\left|\frac{2 x^{4}+x^{2}}{-\sin x}\right|=\left|\frac{2 x^{4}+x^{2}}{\sin x}\right|=f(x)
$$

Function
$f(x)=\left|\frac{2 x^{4}+x^{2}}{\sin (x)}\right|$

B) Determine algebraically is the function $f(x)=\frac{x^{4}+x^{2}}{|r|}$ even, odd, or neither. f is even

RELATED PROBLEM 5 Determine algebraically whether the following functions are even, odd, or neither.
a. $f(x)=x^{2}+3$
b. $g(x)=\frac{2 x-x^{5}}{x^{4}+1}$
c. $h(x)=x^{3}+x^{2}$.

Answer

a. Even
b. Odd
c. Neither

INCREASING AND DECREASING FUNCTIONS

الدوال التزايدية و التناقصية

DEFINITION 1.3.5 (Increasing and Decreasing Functions) الدوال الترزايية و التناتصيةa. A function f defined on an interval I is said to be increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, for all $x_{1}, x_{2} \in I$.
b. A function f is said to be decreasing on I if and only if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$, for all $x_{1}, x_{2} \in I$.

- $f(x)=0.2 x^{2}, \quad(x \geq 0)$

$$
p(x)=0.2 x^{2}
$$

- $a=3.5$

قطعة مستّقيم

- $\mathrm{h}=2.45$
- $\mathrm{j}=6.05$

مستقيم
$g: x=3.5$
i: $x=5.5$
منینى وسيطي
$f_{1}: \quad x=-(t)+0$ is $(t \geq 0, C$
$\mathbf{y}=\mathbf{0}(\mathbf{t})+\mathrm{B}!\mathrm{m} \geq \mathbf{0 , 0 . 2}$
نص

- "increasing" = 1 نص
"decreasing" = نص2

دالـة
$f(x)=0.2 x^{2}, \quad(x \geq 0)$
$p(x)=0.2 x^{2}$
- عد
- $\mathrm{a}=4.6$ -
قطعة مستُقّق
- $\mathrm{h}=4.23$
- $\mathrm{j}=1.35$
مستُقْ
$\mathrm{g}: \mathrm{x}=4.6$ -
i: $x=2.6$
منحنى وسيطي
- $f_{1}: x=-(t)+0$! 0 ($t \geq 0, C$
$y=0(t)+1!(t \geq 0,0.2$
,
"increasing" = 1
"decreasing" = نص2

- دالـة
- $\mathrm{f}(\mathrm{x})=0.2 \mathrm{x}^{2}, \quad(\mathrm{x} \geq 0)$
$p(x)=0.2 x^{2}$
- عد
- $a=0$

قطعة مسنقّقم
$-h=0$

- $\mathrm{j}=0.8$
- مستقّق
$\mathrm{g}: \mathrm{x}=0$
i: $x=2$
- منحنى وسيطي
- $f_{1}: \quad x=-(t)+0$ إد $(t \geq 0, c$
$y=0(t)+1 \leq t \geq 0,0.2$
- ن
- "increasing" =1
- "decreasing" = نص

EXAMPLE 1.3.6 Let $f(x)=x^{2}$. Determine:
a. The intervals on which f is increasing.
b. The intervals on which f is decreasing.

Solution

a. if $0 \leq x_{1}<x_{2}$ than $x_{1}{ }^{2}<x_{2}{ }^{2}$ Thus $f\left(x_{1}\right)<f\left(x_{2}\right) \quad f$ increasing interval $[0, \infty)$
a. if $x_{1}<x_{2}<0$ than $x_{1}{ }^{2}>x_{2}{ }^{2}$ Thus $f\left(x_{1}\right)>f\left(x_{2}\right) \quad f$ decreasing interval $(-\infty, 0]$

RELATED PROBLEM 6 Let $f(x)=-x^{2}$. Determine:

a. The intervals on which f is increasing.
b. The intervals on which f is decreasing.

Answer

a. $(-\infty, 0]$
b. $[0, \infty)$

العمليات الأساسية على الدوال - Basic Operations on Functions

DEFINITION 1.3.7 (Basic Operations on Functions)

Let f and g be two functions. We define the sum $f+g$, the difference $f-g$, the product $f \cdot g$, and the quotient f / g as follows:

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f \cdot g)(x) & =f(x) g(x) \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)}, g(x) \neq 0
\end{aligned}
$$

EXAMPLE 1.3.7 Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x+2}$. Find $f+g$ and its domain Solution

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x)=\sqrt{x+1}+\frac{1}{x+2} \\
D_{f} & =[-1, \infty) \\
D_{g} & =R-\{-2\} \\
D_{f+g} & =[-1, \infty)
\end{aligned}
$$

RELATED PROBLEM 7 Let $f(x)=\sqrt{2 x-1}$ and $g(x)=\frac{1}{x-3}$. Find the domain and the rule of $f-g$.
Solution

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x)=\sqrt{2 x-1}-\frac{1}{x-3} \\
D_{f} & =\left[\frac{1}{2}, \infty\right) \\
D_{g} & =R-\{3\} \\
D_{f-g} & =\left[\frac{1}{2}, \infty\right)-\{3\}
\end{aligned}
$$

EXAMPLE 1.3.8 Let $f(x)=x-7$ and $g(x)=x^{2}-16$. Find the domain and the rule of $\frac{f}{g}$.
Solution

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x)= & \frac{f(x)}{g(x)}=\frac{x-7}{x^{2}-16} \\
x^{2}-16 & =0 \\
x^{2} & =16 \\
x & = \pm 4 \\
\mathrm{D}_{\mathrm{f} / \mathrm{g}} & =\mathrm{R}-\{4,-4\}
\end{aligned}
$$

RELATED PROBLEM 8 Let $f(x)=2 x-3$ and $g(x)=x^{2}-5 x+6$. Find the domain and rule of $\frac{f}{g}$.
Answer Domain: $\mathbb{R}-\{2,3\}$, Rule: $\left(\frac{f}{g}\right)(x)=\frac{2 x-3}{x^{2}-5 x+6}$.

g

$$
(f \circ g)(x)=f(g(x))
$$

DEFINITION 1.3.8

Let f and g be two functions, we define the composition $f \circ g$ of f and g as the function

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of all numbers x in the domain of g for which the number $g(x)$ is in the domain of f.

EXAMPLE Let $f(x)=2 x, g(x)=x^{2}$ find $f \circ g, g \circ f,(f \circ g)(3)$
Solution $(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=2 x^{2}$

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))=g(2 x)=4 x^{2} \\
& (f \circ g)(3)=2 \cdot 3^{2}=18
\end{aligned}
$$

EXAMPLE 1.3.9 Let $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x+2}$. Determine the functions $g \circ f, f \circ g$ and their domains, then find $(g \circ f)(3)$ and $(f \circ g)\left(\frac{1}{2}\right)$.

Solution

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))=g(\sqrt{x+1})=\frac{1}{\sqrt{x+1}+2} \\
& D_{f}=[-1, \infty) \\
& D_{g}=(-\infty,-2) \cup(-2, \infty) \\
& \operatorname{in}(-1, \infty) \quad \sqrt{x+1}>0 \\
& D_{(g \circ f)}=[-1, \infty) \\
& (f \circ g)(x)=f(g(x))=f\left(\frac{1}{x+2}\right)=\sqrt{\frac{1}{x+2}+1} \\
& D_{f}=[-1, \infty) \\
& D_{g}=(-\infty,-2) \cup(2, \infty)
\end{aligned}
$$

$$
\begin{array}{lll}
\operatorname{in}(2, \infty) \frac{1}{x+2} \geq-1, & 1 \geq-x-2, & 3 \geq-x, \\
\operatorname{in}(-\infty,-2) \frac{1}{x+2} \geq-1, & 1 \leq-x-2 & , 3 \leq-x,
\end{array}
$$

$$
D_{(f \circ g)}=(2, \infty) \cup[-3, \infty)
$$

$$
(f \circ g)\left(\frac{1}{2}\right)=\sqrt{\frac{1}{\frac{1}{2}+2}+1}=\sqrt{\frac{1}{\frac{5}{2}}+1}=\sqrt{\frac{2}{5}+1}=\sqrt{\frac{7}{5}} \quad \frac{1}{2}+2=2 \frac{1}{2}=\frac{5}{2}
$$

RELATED PROBLEM 9 Let $f(x)=\sqrt{1-x}$ and $g(x)=\frac{1}{2-x}$. Determine the functions $g \circ f$ and $f \circ g$ and their domains, and then find $(g \circ f)(-8)$ and $(f \circ g)\left(\frac{1}{2}\right)$.
Answer

$$
(g \circ f)(x)=\frac{1}{2-\sqrt{1-x}}, \text { Domain: }(-\infty, 1]-\{-3\} .
$$

$(f \circ g)(x)=\sqrt{1-\frac{1}{2-x}}$, Domain: $(-\infty, 1] \cup(2, \infty)$.
$(g \circ f)(-8)=-1,(f \circ g)\left(\frac{1}{2}\right)=\frac{\sqrt{3}}{3}$.

Question 2:

A) Let $f(x)=x^{2}, g(x)=\sqrt{x}$. Find:

1) $(f \circ g)(x)$.
2) D_{f}, D_{f}, and $D_{f, \cdot}$.

Solution

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f(\sqrt{x})=(\sqrt{x})^{2}=x \\
D_{f} & =R \\
D_{g} & =[0, \infty) \\
D_{(f \circ g)} & =[0, \infty)
\end{aligned}
$$

Question 2:

A) Let $f(x)=\frac{3}{\sqrt{x-4}}, g(x)=x^{2}+4$. Find:

1) $(f \circ g)(x)$.
2) $D_{f}, D_{\text {, }}$, and $D_{f, .}$.

Solution

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f\left(x^{2}+4\right)=\frac{3}{\sqrt{x^{2}+4-4}}=\frac{3}{\sqrt{x^{2}}}=\frac{3}{|x|} \\
D_{f} & =(4, \infty) \\
D_{g} & =R \\
D_{(f \circ g)} & =R-\{0\}
\end{aligned}
$$

Question 2:

A) Let $f(x)=\frac{7}{4-x^{2}}, g(x)=\sqrt{x}$. Find:

1) $(f \cdot g)(x)$.
2) $D_{t}, D_{\text {, }}$ and $D_{1 . .}$.

Solution

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(\sqrt{x})=\frac{7}{4-(\sqrt{x})^{2}}=\frac{7}{4-x} \\
& D_{f}=R-\{-2,2\} \\
& D_{g}=[0, \infty) \\
& D_{(f \circ g)}=[0, \infty)-\{4\}
\end{aligned}
$$

EXERCISES 1.3

In Exoecoliee 1 - 12, find she domain of each fanotion

1. $f(x)-a^{*}-4 x+1$
2. $\quad f(x)-\sqrt{1-7 x}$
3. $f(x)-\sqrt[4]{2 x^{2}-3 x+1}$
4. $f(x)=\frac{1}{\sqrt{x-5}}$
5. $f(x)-\sqrt{\frac{2 x+1}{x+2}}$
6. $f(t)=\sqrt{3-\frac{1}{t^{2}}}$
7. $\quad(w)-\frac{2}{s-1}$
8. $s(x)=\frac{2 t-8}{t^{2}-16}$
-. $g(r)=\frac{r-1}{r^{2}-r-6}$
1a. $f(x)-\frac{2 x^{4}-3 x+1}{|2 x-4|+1}$
9. $f(x)=\frac{2 x-5}{|x+1|-3}$
10. $f(x)=\frac{3 x^{2}-x+4}{\sqrt{2 x-4}-3}$

In Exeecdiee 12-18, determine all intercepte of the graph of the equation. Then deoide whether the graph ie ey mametrie with reapect to she x-exis, the y-axie, or she orligin.
12. $x-3 g^{2}-2$
14. $z^{2}-y^{2}-1$
15. $x^{4}=3 y^{4}$
16. $x^{2} y^{4}-2 x^{4}-1$
17. $y=x-\frac{1}{x}$
18. $y-\sqrt{9-z^{2}}$

I In Exseccisee 19-21, List she inteceepte and desoribe the symmetry (\mathbb{F} ang) of she graph.
19. $y-\frac{1}{3}=$
20. $2=-y^{2}$
27. $y-x^{2}-3$

7 In Rxeccipes 22-27, determine which of she folloning fancticese are odd, even, or melther
22. $f(a)-5 x^{2}-3$
23. $f(x)-(x-2)^{3}$
23. $y-\frac{|x|}{x}$
24. $f(x)-\frac{x}{x^{2}+4}$
25. $f(x)-\left(x^{2}+2\right)^{2}$
27. $a\left(x^{2}+1\right)^{2}$

In Exoecciee $28-33$, determine the lintervale oe whieh each of the following funetione are increeaing and the intervale on which shey are decreselng.
28. $f(x)-1-3 x$
29. $f(x)-4$
3a. $f(a)-x^{2}-8$
31. $f(x)-2-x^{2}$
32. $f(x)-x^{*}$
32. $f(x)=-x^{2}$

In Rxeecolees 34-42, let $f(x)-x^{3}+4 a-2$ and $g(x)-2-x^{3}$. Find the apecithed valoee
34. $\quad(f+g)(-1)$
35. $(f-s)(2)$
36. $(f-g)(a), \omega \in R$
$37 . \quad(f-9)(0)$
38. $\left(\frac{f}{s}\right)(1)$
39. $(f \circ g)(3)$
48. $6 \circ n(3)$
41. $\quad(f \circ f)(-2)$
42. $(9 \circ g)(2)$

3 In Execoliees $43-48$, find $f+9 . f \cdot 9$, and $\frac{f}{g}$ and their domaine.
43. $f(x)=2 x+1 ; g(x)-3-x \quad$ 44. $\quad f(x)-x-2 \pi(x)-x^{2}-2$

SECTION 1.4 INVERSE FUNCTIONS
 شعكويس الثوال

One-to-One Function - الدالة المتباين

one-to-one

not one-to-one

DEFINITION 1.4.1 (One-to-One Function) التطبيق المتباين
A function f is said to be one-to-one (often written 1-1) if every element in its range corresponds to exactly one element in its domain.

That is, for all x_{1} and x_{2} in the domain of f

$$
\text { if } x_{1} \neq x_{2} \text {, then } f\left(x_{1}\right) \neq f\left(x_{2}\right) \text {, }
$$

which is equivalent to, for all x_{1} and x_{2} in the domain of f

$$
\text { if } f\left(x_{1}\right)=f\left(x_{2}\right) \text {, then } x_{1}=x_{2}
$$

$f(x)=0.5 x^{2}$

- $g(x)=x+2$
- $a=5$

$\mathrm{c}=12.5$
- $I=5$
- $m=6$
- $n=3$
- $p=4$
$\mathrm{s}=10$
$\mathrm{t}=12.5$
S
$h: y=5$
i: $y=6$
$\mathrm{j}: \mathrm{x}=3$
k: $x=4$
$\mathrm{q}: \mathrm{x}=5$

EXAMPLE 1.4.1 Show that $f(x)=2 x+5$ is a one-to-one function.

Solution

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{2}\right) \\
2 x_{1}+5 & =2 x_{2}+5 \\
2 x_{1} & =2 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

one to one

ملاحظة : الدالة الخطية REMARK one to one

In fact all linear functions are one to one, because the linear function can be written in the form $f(x)=a x+b$ and if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
a x_{1}+b=a x_{2}+b
$$

Simplifying the two terms, we have

$$
x_{1}=x_{2} .
$$

EXAMPLE 1.4.2 Determine whether each of the following functions is one to one.

$$
\begin{aligned}
& \text { a. } f(x)=2 x^{2}+1 \\
& \text { Solution } \\
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& 2 x_{1}^{2}+1=2 x_{2}^{2}+1 \\
& 2 x_{1}^{2}=2 x_{2}^{2} \\
& x_{1}^{2}=x_{2}^{2} \\
& \sqrt{x_{1}^{2}}=\sqrt{x_{2}^{2}} \\
&\left|x_{1}\right|=\left|x_{2}\right| \\
& x_{1}= \pm x_{2}
\end{aligned}
$$

Not one to one

EXAMPLE 1.4.2 Determine whether each of the following functions is one to one.
b. $f(x)=x^{2}+1, x \geq 0$

Solution

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& x_{1}^{2}+1=x_{2}^{2}+1 \\
& x_{1}^{2}=x_{2}^{2} \\
& \sqrt{x_{1}^{2}}=\sqrt{x_{2}^{2}} \\
&\left|x_{1}\right|=\left|x_{2}\right| \\
& x \geq 0 \quad x_{1}=x_{2} \\
& \text { one to one }
\end{aligned}
$$

EXAMPLE 1.4.2 Determine whether each of the following functions is one to one.

$$
\text { c. } f(x)=2+\sqrt[3]{2 x+1}
$$

Solution

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& 2+\sqrt[3]{2 x_{1}+1}=2+\sqrt[3]{2 x_{2}+1} \\
& \sqrt[3]{2 x_{1}+1}=\sqrt[3]{2 x_{2}+1} \\
& 2 x_{1}+1=2 x_{2}+1 \\
& 2 x_{1}=2 x_{2} \\
& x_{1}=x_{2} \\
& \text { one to one }
\end{aligned}
$$

B) Show that $f(x)=x^{2}-4 x-5, x>2$ is a one-to-one function.

$$
x>2
$$

$$
\begin{aligned}
\text { Solution } \mathrm{f}\left(\mathrm{x}_{1}\right) & =\mathrm{f}\left(\mathrm{x}_{2}\right) \\
x_{1}^{2}-4 x_{1}-5 & =x_{2}^{2}-4 x_{2}-5 \\
x_{1}^{2}-4 x_{1} & =x_{2}^{2}-4 x_{2} \\
x_{1}^{2}-4 x_{1}+4 & =x_{2}^{2}-4 x_{2}+4 \\
\left(x_{1}-2\right)^{2} & =\left(x_{2}-2\right)^{2} \\
\sqrt{\left(x_{1}-2\right)^{2}} & =\sqrt{\left(x_{2}-2\right)^{2}} \\
\left|x_{1}-2\right| & =\left|x_{2}-2\right| \\
x_{1}-2 & =x_{2}-2 \\
x_{1} & =x_{2} \\
\text { one to } & \text { one }
\end{aligned}
$$

RELATED PROBLEM 2 Determine whether each of the following functions is one to one.
a. $f(x)=1-3 x^{2}$
b. $f(x)=x^{2}+2 x-1, x \geq-1$
c. $f(x)=6+\sqrt[5]{7 x+2}$

Answer

a. Not one-to-one
b. One-to-one
c. One-to-one

Let $f(x)=\frac{2 x+1}{x-1}$,
a. Show that $f(x)$ is one-to-one function on its domain.

$$
\begin{aligned}
& \text { Solution } \begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& \frac{2 x_{1}+1}{x_{1}-1}=\frac{2 x_{2}+1}{x_{2}-1} \\
& 2 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}-2 \mathrm{x}_{1}-1=2 \mathrm{x}_{2} \mathrm{x}_{1}+\mathrm{x}_{1}-2 \mathrm{x}_{2}-1 \\
& \mathrm{x}_{2}-2 \mathrm{x}_{1}=\mathrm{x}_{1}-2 \mathrm{x}_{2} \\
& 3 \mathrm{x}_{2}=3 \mathrm{x}_{1} \\
& \mathrm{x}_{2}=\mathrm{x}_{1} \\
& \text { one to one }
\end{aligned}
\end{aligned}
$$

الدالة العكسـية - Inverse Function

DEFINITION 1.4.2 (Inverse Function)

If f is a one-to-one function, then there is a function f^{-1}, called the inverse of f, such that $y=f(x)$ if and only if $x=f^{-1}(y)$. The domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f.

THEOREM 1.4.1

If f is a one-to-one function and if f^{-1} is its inverse function, then f^{-1} is a one-to-one having f as its inverse. Furthermore

$$
f^{-1}(f(x))=x \text { for } x \text { in the domain of } f
$$

and

$$
f\left(f^{-1}(x)\right)=x \text { for } x \text { in the domain of } f^{-1}
$$

EXAMPLE 1.4.3 Determine whether the functions f and g are inverses of each other.
a. $\quad f(x)=2 x+1$ and $g(x)=\frac{x-1}{2}$.

Solution

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f\left(\frac{x-1}{2}\right)=2 \frac{x-1}{2}+1=x \\
& (g \circ f)(x)=g(f(x))=g(2 x+1)=\frac{2 x+1-1}{2}=x
\end{aligned}
$$

Then f is the inverse of g and vice versa
b. $\quad f(x)=2 x$ and $g(x)=x+1$.

Solution

$$
(f \circ g)(x)=f(g(x))=f(x+1)=2(x+1)=2 x+2 \neq x
$$

then f and g are not inverses of each other.

Step 1: We prove f is one - to - one. This proves that f^{-1} exists.
Step 2: Substitute y for $f(x)$ and solve the resulting equation for x. This gives the equation $\quad x=f^{1}(y)$
Step 3: We obtain $f^{-1}(x)$ from the definition of $f^{-1}(y)$.
EXAMPLE 1.4.4 Find f^{-1} for the function $f(x)=2 x+5$.

1

- $g(x)=2 x+5$
- $h(x)=\frac{x-5}{2}$

زاورية

- $\alpha={ }^{\circ} 90$

قَ

- $\mathbf{j}=2.81$
- $k=2.81$

مستقْم

- f: $y=x$
i: $x+y=1.9$
- " $f(x)=2 x+5^{\prime \prime}=1$ صن
- " $f^{-1}(x)=(x-5) / 2^{\prime \prime}=2$ u
- "x=y" = 3 نص
- نقّة
- $(0.95,0.95)=i$
- $(-1.03,2.94)=$

RELATED PROBLEM 4 Assume that the following two functions are $1-1$. Find their inverse functions.
a. $\quad f(x)=\left(2 x^{3}-5\right)^{1 / 7}$

$$
\text { Solution } \begin{gathered}
y=\left(2 x^{3}-5\right)^{1 / 7} \\
y^{7}=2 x^{3}-5 \\
y^{7}+5=2 x^{3} \\
\frac{\mathbf{y}^{7}+\mathbf{5}}{2}=x^{3} \\
\boldsymbol{x}=\sqrt[3]{\frac{y^{7}+5}{2}} \\
\boldsymbol{y}=\sqrt[3]{\frac{x^{7}+5}{2}} \\
\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x})=\sqrt[3]{\frac{x^{7}+5}{2}}
\end{gathered}
$$

- $g(x)=\left(2 x^{3}-5\right)^{3}$
- $h(x)=\left(\frac{x^{7}+5}{2}\right)^{\frac{1}{3}}$
f: $y=x$

B) Show that $f(x)=3 x+2$ is a one-to-one function, and find $f^{-1}(x)$.

Solution

$$
\begin{gathered}
y=3 x+2 \\
\frac{y-2}{3}=x \\
y=\frac{x-2}{3} \\
f^{-1}(x)=\frac{x-2}{3}
\end{gathered}
$$

B) Given that $f(x)=\frac{1-2 x}{3 x+2}$ is a one-to-one function, find $f^{-1}(x)$. vas

$$
\begin{gathered}
y=\frac{1-2 x}{3 x+2} \\
3 x y+2 y=1-2 x \\
3 x y+2 x=1-2 y \\
x(3 y+2)=1-2 y \\
x=\frac{1-2 y}{3 y+2} \\
y=\frac{1-2 x}{3 x+2} \\
f^{-1}(x)=\frac{1-2 x}{3 x+2}
\end{gathered}
$$

مستّهي

- $g: y=x$

2

- $\mathrm{f}(\mathrm{x})=\frac{1-2 \mathrm{x}}{3 \mathrm{x}+2}$

مسنقّ

- $g: y=x$

منحنى وسيطي
$\mathrm{x}=0(\mathrm{t})+\frac{1-2 \mathrm{t}}{3 \mathrm{t}+2}$

- f_{1} :

$$
\mathrm{y}=\mathrm{t}+0\left(\frac{1-2 \mathrm{t}}{3 \mathrm{t}+2}\right)
$$

EXERCISES 1.4

In Exercies 1-5, Use the horiaontal line test to determine whether the given function is one to-one.
1.

2.

2.

4.
5.

7 In Exurcisee 6-16, Determine whether the givee funetion is one-to-cen. If it is one-to-see, find ita inverpe.
c. $f=\{(12,2),(15,4),(19,-1),(25,6),(78,0)\}$
7. $s=\{(-1,2),(0,4),(2,-4),(18,6),(23,-4)\}$
8. $K(x)=x^{2}+2$.
a. $\quad I(x)=\frac{1}{2 x-4}, x=2$.
10. $J(z)=-5 x+\frac{5}{3}$.
11. $K(x)=|5 x-4|$.
12. $f(x)=-\frac{11}{x+3}, x=-3$.
13. $f(x)=\sqrt{x+5}$.
14. $f(x)=x \sqrt{9-x^{2}}$.
15. $g(x)=\sqrt{x}+4$
16. $g(x)=2-(3-x)^{1 / 2}$
> In Exerciese 17-22, Aasume the functions are oee-to-oese. Find the requested inverse.
17. If $f(4)=3$, find $f^{-1}(3)$.
18. If $f(2)=4$, find $f^{-1}(4)$.
19. If $g(-5)=6$, fied $g^{-1}(6)$.

Section 1.5

TRIGONOMETRIC FUNCTIONS الإوال الـثـثيـية

) التحويل بين الدرجات و الراديان -)EGREES/RADIANS CONVERSION FACTORS

ANGLES

Radian Measured القياس بالراديان

EXAMPLE 1.5.1 Convert the following degree measures to radians.
a. 75°
b. -225°

Solution

a. $\quad 75^{\circ}=75 \times \frac{\pi}{180}=\frac{5 \pi}{12}$ radians.
b. $\quad-225^{\circ}=(-225) \times \frac{\pi}{180}=-\frac{5 \pi}{4}$ radians.

RELATED PROBLEM 1 Convert the following degree measures to radians.
a. 60°
b. -200°

Answers

a. $\frac{\pi}{3}$
b. $-\frac{10 \pi}{9}$

EXAMPLE 1.5.2 Convert the following radian measures to degrees.
a. $\frac{5 \pi}{9}$
b. $\frac{17 \pi}{36}$

Solution

a. $\frac{5 \pi}{9}$ radian $=\frac{5 \pi}{9} \times \frac{180}{\pi}=100^{\circ} \quad$ b. $\frac{17 \pi}{36}$ radian $=\frac{17 \pi}{36} \times \frac{180}{\pi}=85^{\circ}$

RELATED PROBLEM 2 Convert the following radian measures to degrees.
a. $\frac{\pi}{10}$
b. $-\frac{13 \pi}{12}$

Answers
a. 18°
b. -195°

Degrees	0	30^{0}	45^{0}	60^{0}	90^{0}	120°	135^{0}	150^{0}	180°	270^{0}	360^{0}
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π

If θ is an acute angle $\left(0<\theta<\frac{\pi}{2}\right)$

المجاور
$\csc \theta=\frac{\text { gin }}{\text { gital }}$
$\sec \theta=\frac{\operatorname{sig} \mid}{2 g \log |l|}$

EXAMPLE Given the figure below; Find x, \sin , \cos , \tan, cot, cse and sec for both angles.

$$
\begin{aligned}
& x^{2}=4+9 \\
& x=\sqrt{13}
\end{aligned}
$$

Answers

	\sin	\cos	\tan	\cot	\csc	\sec
α	$\frac{3}{\sqrt{13}}$	$\frac{2}{\sqrt{13}}$	$\frac{3}{2}$	$\frac{2}{3}$	$\frac{\sqrt{13}}{3}$	$\frac{\sqrt{13}}{2}$
θ	$\frac{2}{\sqrt{13}}$	$\frac{3}{\sqrt{13}}$	$\frac{2}{3}$	$\frac{3}{2}$	$\frac{\sqrt{13}}{2}$	$\frac{\sqrt{13}}{3}$

2

	\sin	\cos	\tan	\cot	\csc	\sec
30°						
60°						

	\sin	\cos	\tan	\cot	\csc	\sec
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	2	$\frac{2 \sqrt{3}}{3}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	$\frac{2 \sqrt{3}}{3}$	2

	\sin	\cos	\tan	\cot	\csc	\sec
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$

trigonometric functions using the unit circle- الدوال المثلثة باستخدام دائرة الوحدة

DEFINITION 1.5.3

a. Let $x^{2}+y^{2}=r^{2}$ be a circle centered at the origin and an angle with θ radians in standard form. If P is the point (x, y) as shown in Figure 1.5.11, then the trigonometric functions are defined by:

$$
\begin{array}{ll}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y}, y \neq 0 \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x}, x \neq 0 \\
\tan \theta=\frac{y}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0
\end{array}
$$

$F=\left(\cos ^{\circ} 30, \sin ^{\circ} 30\right)$
$(0,1)$

$F=\left(\cos ^{\circ} 45, \sin ^{\circ} 45\right)$

$F=\left(\cos ^{\circ} 60, \sin ^{\circ} 60\right)$

$\mathrm{F}=\left(\cos ^{\circ} \mathrm{O}, \sin ^{\circ} \mathrm{O}\right)$

$\mathrm{F}=\left(\cos ^{\circ} 60, \sin ^{\circ} 60\right)$

$$
\begin{aligned}
x^{2}+y^{2} & =(0.5)^{2}+(0.87)^{2} \\
& =0.25+0.75=1
\end{aligned}
$$

$$
\begin{aligned}
x^{2}+y^{2} & =(0.87-)^{2}+(0.5)^{2} \\
& =0.75+0.25=1
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=(1)^{2}+(0)^{2} \\
&=1+0=1 \\
& x^{2}+y^{2}=1 \\
& \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

$$
r=3
$$

$$
x^{2}+y^{2}=(1.5)^{2}+(2.6)^{2}
$$

$$
=2.25+6.75=9
$$

$$
x^{2}+y^{2}=r^{2}
$$

$\sin ^{\circ} 60=\frac{y}{r}=\frac{2.6}{3}$
$\cos ^{\circ} 60=\frac{x}{r}=\frac{1.5}{3}$
$\tan ^{\circ} 60=\frac{y}{x}=\frac{2.6}{1.5}$

VALUES OF SINE AND COSINE

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	2π
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	0	$\frac{1}{2}$	1

EXAMPLE 1.5.4 If θ is in standard position and $Q(4,-3)$ is on the terminal side of θ. Use Definition 1.5 .3 to find the values of all six trigonometric functions for θ.

Solution Notice that the point is on a circle of radius $r=\sqrt{16+9}=5$. Thus, we obtain

$$
\begin{aligned}
& \sin \theta=\frac{-3}{5}, \cos \theta=\frac{4}{5}, \quad \tan \theta=\frac{-3}{4}, \\
& \csc \theta=\frac{5}{-3}, \sec \theta=\frac{5}{4}, \cot \theta=\frac{4}{-3} .
\end{aligned}
$$

قيم الجيب و الجيب تمام - VALUES OF SINE AND COSINE

-••

$$
\begin{aligned}
\sin ^{\circ} 150 & =\sin \left(\pi-{ }^{\circ} 150\right) \\
& =\sin ^{\circ} 30=0.5
\end{aligned}
$$

$$
\sin \theta=\sin (\pi-\theta)
$$

$$
\cos ^{\circ} 150=-\cos \left(\pi-{ }^{\circ} 150\right)
$$

$$
=-\cos ^{\circ} 30=-0.87
$$

$$
\cos \theta=-\cos (\pi-\theta)
$$

$$
\tan \theta=-(\pi-\theta)
$$

$$
\begin{aligned}
\sin ^{\circ} 240 & =-\sin \left({ }^{\circ} 240-\pi\right) \\
& =-\sin { }^{\circ} 60=-0.87 \\
\sin \theta & =-\sin (\theta-\pi) \\
\cos ^{\circ} 240 & =-\cos \left({ }^{\circ} 240-\pi\right) \\
& =-\cos ^{\circ} 60=-0.5 \\
\cos \theta & =-\cos (\theta-\pi)
\end{aligned}
$$

$\tan \theta=\tan (\theta-\pi)$

$$
\begin{aligned}
\sin ^{\circ} 330 & =-\sin \left(2 \pi-{ }^{\circ} 330\right) \\
& =-\sin { }^{\circ} 30=-0.5 \\
\sin \theta & =-\sin (2 \pi-\theta)
\end{aligned}
$$

$$
\begin{aligned}
\cos ^{\circ} 330 & =\cos \left(2 \pi-{ }^{\circ} 330\right) \\
& =\cos ^{\circ} 30=0.87 \\
\cos \theta & =\cos (2 \pi-\theta)
\end{aligned}
$$

$\tan \theta=-\tan (2 \pi-\theta)$

$$
\square
$$

$$
\begin{gathered}
\sin \left(-{ }^{\circ} 60\right)=-\sin ^{\circ} 60=-0.87 \\
\sin (-\theta)=-\sin \theta \\
\cos \left({ }^{\circ} 60\right)=\cos ^{\circ} 60=0.5 \\
\cos (-\theta)=\cos \theta \\
\tan (-\theta)=-\tan \theta
\end{gathered}
$$

$\square \pi$

$$
\tan (\theta+2 \pi)=\tan \theta
$$

$\square \pi$
$\tan (\theta+3 \pi)=\tan \theta$

$\tan (\theta+4 \pi)=\tan \theta$

$\square \pi$
$\tan (\theta+5 \pi)=\tan \theta$

$\square \pi$

$$
\tan (\theta+9 \pi)=\tan \theta
$$

$\square \pi$

$\sin (\theta+1.2 \pi)=\sin \theta$

$\square 2 \pi$

$$
\sin (\theta+2.2 \pi)=\sin \theta
$$

$\square 2 \pi$
$\sin (\theta+3.2 \pi)=\sin \theta$

2π

$$
\sin (\theta+4.2 \pi)=\sin \theta
$$

2π

$$
\sin (\theta+7.2 \pi)=\sin \theta
$$

$\square 2 \pi$

EXAMPLE

$$
\begin{aligned}
& \sin \left(\frac{2 \pi}{3}\right)=\sin \left(\pi-\frac{2 \pi}{3}\right)=\sin \left(\frac{3 \pi}{3}-\frac{2 \pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{7 \pi}{6}\right)=-\cos \left(\frac{7 \pi}{6}-\pi\right)=-\cos \left(\frac{7 \pi}{6}-\frac{6 \pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2} \\
& \cos \left(-\frac{7 \pi}{6}\right)=\cos \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{16 \pi}{3}\right)=\cos \left(\frac{\pi}{3}+\frac{15 \pi}{3}\right)=\cos \left(\frac{\pi}{3}+5 \pi\right)=-\cos \left(\frac{\pi}{3}\right)=-\frac{1}{2} \\
& \sin \left(-\frac{\pi}{4}\right)=-\sin \left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}
\end{aligned}
$$

EXAMPLE 1.5.6 Find the value of each of the following:
a. $\sin \left(\frac{17 \pi}{4}\right)$
b. $\cos \left(-\frac{7 \pi}{6}\right)$
c. $\cos \left(\frac{4 \pi}{3}\right)$

Solution

a. $\sin \left(\frac{17 \pi}{4}\right)=\sin \left(\frac{\pi}{4}+\frac{16}{4} \pi\right)=\sin \left(\frac{\pi}{4}+4 \pi\right)=\sin \left(\frac{\pi}{4}+2 \cdot 2 \pi\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$.
c. $\cos \left(\frac{4 \pi}{3}\right)=-\cos \left(\frac{4 \pi}{3}-\pi\right)=-\cos \left(\frac{4 \pi}{3}-\frac{3 \pi}{3}\right)=-\cos \left(\frac{\pi}{3}\right)=-\frac{1}{2}$

EXAMPLE 1.5.7 Use the periodicity of tangent and secant as well as their values when $0 \leq x \leq 2 \pi$ to find the exact value of each of the following.
a. $\sec \left(\frac{9 \pi}{4}\right)$
b. $\sin \left(\frac{15 \pi}{2}\right)$
c. $\sec \left(-\frac{2 \pi}{3}\right)$
d. $\tan \left(-\frac{5 \pi}{6}\right)$

Solution

a. $\quad \sec \left(\frac{9 \pi}{4}\right)=\sec \left(\frac{\pi}{4}+\frac{8 \pi}{4}\right)=\sec \left(\frac{\pi}{4}+2 \pi\right)=\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$
b. $\sin \left(\frac{15 \pi}{2}\right)=\sin \left(\frac{\pi}{2}+\frac{14 \pi}{2}\right)=\sin \left(\frac{\pi}{2}+\frac{14 \pi}{2}\right)=\sin \left(\frac{\pi}{2}+7 \pi\right)=\sin \left(\frac{3 \pi}{2}\right)=-1$
c. $\sec \left(-\frac{2 \pi}{3}\right)=\sec \left(\frac{2 \pi}{3}\right)=-\sec \left(\frac{\pi}{3}\right)=-\mathbf{- 2}$
d. $\tan \left(-\frac{5 \pi}{6}\right)=-\tan \left(\frac{5 \pi}{6}\right)=\tan \left(\frac{\pi}{6}\right)=$

$$
\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

RELATED PROBLEM 5 Find the value of each of the following:
a. $\tan \left(\frac{17 \pi}{4}\right)$
b. $\cot \left(-\frac{5 \pi}{6}\right)$
c. $\cos \left(\frac{-55 \pi}{6}\right)$
d. $\sin \left(\frac{2 \pi}{3}-\frac{27 \pi}{4}\right)$

Answers

a. 1
b. $\sqrt{3}$
c. $\frac{-\sqrt{3}}{2}$
d. $-\frac{\sqrt{6}-\sqrt{2}}{4}$

TRIGONOMETRIC IDENTITIES - المتطابقات المثلثية

$$
\begin{aligned}
& \tan \theta=\frac{\operatorname{Sin} \theta}{\cos \theta} \\
& \operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{\operatorname{Sin}^{2} \theta}{\operatorname{Sin}^{2} \theta}+\frac{\cos ^{2} \theta}{\operatorname{Sin}^{2} \theta}=\frac{1}{\operatorname{Sin}^{2} \theta} \\
& 1+\cot ^{2} \theta=\operatorname{cec}^{2} \theta
\end{aligned}
$$

$$
\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1
$$

$$
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
$$

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

The sum and difference identities متطابقات المجموع و الفرق

$$
\begin{aligned}
& \sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
& \cos (x \pm y)=\cos x \cos y \mp \sin x \sin y \\
& \tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}
\end{aligned}
$$

$$
\begin{gathered}
\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
\sin (x+y)=\sin x \cos y+\sin y \cos x \\
\sin (x+x)=\sin x \cos x+\sin x \cos x \\
\sin (2 x)=2 \sin x \cos x \\
\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1
\end{gathered}
$$

prove some of the identities أثبات صحة بعض المتطابقات

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-x\right)=\sin \left(\frac{\pi}{2}+x\right)=\cos x \\
& \sin \left(\frac{\pi}{2}-x\right)=\sin \frac{\pi}{2} \cos \mathrm{x}-\sin \mathrm{x} \cos \frac{\pi}{2}=\cos \mathrm{x} \\
& \sin \left(\frac{\pi}{2}+x\right)=\sin \frac{\pi}{2} \cos \mathrm{x}+\sin \mathrm{x} \cos \frac{\pi}{2}=\cos \mathrm{x}
\end{aligned}
$$

5. $\cos (\pi-x)=\cos (\pi+x)=-\cos x$

$$
\begin{aligned}
& \cos (\pi-x)=\cos \pi \cos x+\sin \pi \sin x=-\cos x \\
& \cos (\pi+x)=\cos \pi \cos x-\sin \pi \sin x=-\cos x
\end{aligned}
$$

Prove this identity:

$$
\sin (x+y)+\sin (x-y)=2 \sin x \cos y
$$

$$
\begin{align*}
& \sin (x+y)=\sin x \cos y+\sin y \cos x \\
& \sin (x-y)=\sin x \cos y-\sin y \cos x \tag{بالجمع}
\end{align*}
$$

$$
\sin (x+y)+\sin (x-y)=2 \sin x \cos y
$$

The half-angle formula is

$$
\begin{array}{ll}
\sin (2 x)=2 \sin x \cos x & \cos (2 x)=\cos ^{2} x-\sin ^{2} x \\
\sin (x)=2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) & \cos (x)=\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \cos (2 x)=1-2 \sin ^{2} x \\
& \cos (x)=1-2 \sin ^{2}\left(\frac{x}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cos (2 x)=2 \cos ^{2} x-1 \\
& \cos (x)=2 \cos ^{2}\left(\frac{x}{2}\right)-1
\end{aligned}
$$

verify the identity $2 \sin ^{2}(2 t)+\cos (4 t)=1$
$2 \sin ^{2}(2 t)+\cos (4 t)=2 \sin ^{2}(2 t)+\cos (2.2 t)=2 \sin ^{2}(2 t)+1-2 \sin ^{2}(2 t)=1$
verify the identity

$$
\frac{1+\csc \alpha}{\sec \alpha}-\cot \alpha=\cos \alpha
$$

Solution

$$
\begin{aligned}
\frac{1+\csc \alpha}{\sec \alpha}-\cot \alpha & =\frac{1+\frac{1}{\sin \alpha}}{\frac{1}{\cos \alpha}}-\frac{\cos \alpha}{\sin \alpha}=\frac{\cos \alpha}{1} \cdot \frac{1+\frac{1}{\sin \alpha}}{1}-\frac{\cos \alpha}{\sin \alpha} \\
& =\cos \alpha+\frac{\cos \alpha}{\sin \alpha}-\frac{\cos \alpha}{\sin \alpha}=\cos \alpha
\end{aligned}
$$

The sum and difference identities متطابقات المجموع و الفرق

$$
\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y} \quad \tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x} .
$$

EXAMPLE 1.5.6 Find the value of each of the following:

$$
\begin{aligned}
\tan \left(\frac{\pi}{3}+\frac{\pi}{4}\right) & =\frac{\tan \left(\frac{\pi}{3}\right)+\tan \left(\frac{\pi}{4}\right)}{1-\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{\pi}{4}\right)}=\frac{\sqrt{3}+1}{1-\sqrt{3}} \\
& =\frac{\sqrt{3}+1}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}}=\frac{4+2 \sqrt{3}}{-2}=-2-\sqrt{3} .
\end{aligned}
$$

GRAPHS OF THE TRIGONOMETRIC FUNCTIONS - تمثيل الدوال المثلية

EXAMPLE

$$
\begin{array}{ll}
\sin x=\frac{3}{5} & \cos x=\frac{4}{5} \\
-1 \leq \sin x \leq 1 & -1 \leq \cos x \leq 1
\end{array}
$$

$$
g(x)=\csc (x)
$$

domain $=\{x \in R \mid x \neq \pi+n \pi, n \in Z\}$
range $=(-\infty,-1] \cup[1, \infty)$

$$
g(x)=\sec (x)
$$

$$
\text { domain }=\left\{x \in R \left\lvert\, x \neq \frac{\pi}{2}+n \pi\right., n \in Z\right\}
$$

$$
\text { range }=(-\infty,-1] \cup[1, \infty)
$$

$$
f(x)=\tan (x)
$$

$$
\text { domain }=\left\{x \in R \left\lvert\, x \neq \frac{\pi}{2}+n \pi\right., n \in Z\right\}
$$

$$
r a n g e=R
$$

Section 1.6
INVERSE TRIGONOMETRIC FUNCTIONS معكوس الدوال المثلثية

INVERSRE OF SINE AND COSIN FUNCTIONS - معكوس الجيب و الجيب تمام

Inverse Function مراجعة

$$
\begin{aligned}
f^{-1}(f(1)) & =f^{-1}(7)=1 \\
f\left(f^{-1}(7)\right) & =f(1)=7
\end{aligned}
$$

$$
f^{-1}(f(x))=x
$$

$$
f\left(f^{-1}(x)\right)=x
$$

$y=\sin x$

$$
\begin{aligned}
& a=1 \\
& 0
\end{aligned}
$$

\qquad $q=270$

domain $=[-1,1$] range $=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
y=\sin ^{-1} x
$$

$y=\cos x$

determine the exact function value.
a. $\quad \sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
b. $\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$
c. $\quad \cos ^{-1} \frac{1}{2}=\frac{\pi}{3}$
d. $\quad \cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$

EXAMPLE 1.6.1 Find the following:

a. $\cos \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)$

Solution

$\cos \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\cos \left(-\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$

b. $\quad \arcsin \left(\cos \left(\frac{2 \pi}{3}\right)\right)$

Solution

$$
\arcsin \left(\cos \left(\frac{2 \pi}{3}\right)\right)=\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

Note: arcsin (which can also be written as $\sin ^{-1}$) is the inverse function of the sine function. i.e., If $y=\sin ^{-1} x$ then $\sin y=x$.

EXAMPLE 1.6.2 Find the following:
a. $\sin \left(\arccos \left(-\frac{1}{2}\right)\right)$

Solution

$$
\sin \left(\arccos \left(-\frac{1}{2}\right)\right)=\sin \left(\frac{2 \pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
$$

b. $\cos ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$

Solution

$$
\cos ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
$$

3.
a. $\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6} \quad$ b. $\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}$

4.
a. $\quad \cot ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{3}$
b. $\quad \cot ^{-1}(-\sqrt{3})=\frac{5 \pi}{6}$

EXAMPLE 1.6.3 Find the exact value of the following
a. $\cos \left(\tan ^{-1}(-1)\right)$
b. $\sin \left(\cot ^{-1}(1)\right)$

Solution
$\cos \left(\tan ^{-1}(-1)\right)=\cos \left(-\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
$\sin \left(\cot ^{-1}(1)\right)=\sin \left(\left(\frac{\pi}{4}\right)\right)=\frac{\sqrt{2}}{2}$

EXAMPLE 1.6.4 Find the exact value of $\cos \left(\tan ^{-1}\left(\frac{5}{12}\right)\right)$ Solution

Let $\tan ^{-1}\left(\frac{5}{12}\right)=\theta \Longleftrightarrow \tan \theta=\frac{5}{12}$

$$
\begin{gathered}
x^{2}=25+144=169 \\
x=13 \\
\cos \left(\tan ^{-1}\left(\frac{5}{12}\right)\right)=\cos \theta=\frac{12}{13}
\end{gathered}
$$

determine the exact function value.
c. $\quad \sec ^{-1} \frac{2}{\sqrt{3}}=\frac{\pi}{6}$
c. $\quad \csc ^{-1} \frac{2}{\sqrt{3}}=\frac{\pi}{3}$
d. $\sec ^{-1}\left(-\frac{2}{\sqrt{3}}\right)=\frac{7 \pi}{6}$
d. $\csc ^{-1}\left(-\frac{2}{\sqrt{3}}\right)=\frac{4 \pi}{3}$

EXAMPLE 1.6.5 Find the exact value of the following
a. $\sin \left(\sec ^{-1}(2)\right)$
b. $\sin \left(\sec ^{-1}\left(-\frac{3}{2}\right)\right)$

Solution

a. $\sin \left(\sec ^{-1}(2)\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
b. $\sin \left(\sec ^{-1}\left(-\frac{3}{2}\right)\right)$

$$
\begin{aligned}
& \text { let } \sec ^{-1}\left(-\frac{3}{2}\right)=\theta \longrightarrow \sec \theta=-\frac{3}{2} \\
& x^{2}=9-4=5 \\
& x= \pm \sqrt{5} \\
& \sin \theta=\frac{-\sqrt{5}}{3}
\end{aligned}
$$

EXERCISES 1.6

7 In Exeroisee 1-4, determine the exact funotion value.
1.
a. $\sin ^{-1} \frac{1}{2}$
b. $\sin ^{-1}\left(-\frac{1}{2}\right)$
c. $\cos ^{-1} \frac{1}{2}$
d. $\cos ^{-1}\left(-\frac{1}{2}\right)$
2.
a. $\sin ^{-1} \frac{\sqrt{3}}{2}$
b. $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
c. $\cos ^{-1} \frac{\sqrt{3}}{2}$
d. $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
3.
a. $\tan ^{-1} \frac{1}{\sqrt{3}}$
b. $\tan ^{-1}(-\sqrt{3})$
c. $\sec ^{-1} \frac{2}{\sqrt{3}}$
d. $\operatorname{eeo}^{-1}\left(-\frac{2}{\sqrt{3}}\right)$
4.
a. $\cot ^{-1} \frac{1}{\sqrt{3}}$
b. $\cot ^{-1}(-\sqrt{3})$
c. $000^{-1} \frac{2}{\sqrt{3}}$
d. $000-1\left(-\frac{2}{\sqrt{3}}\right)$

7 In Exeroises 5-10, find the exact value of the quantity.
5.
a. $\sin ^{-1}\left(\sin \left(\frac{1}{6} \pi\right)\right)$
b. $\sin ^{-1}\left(\sin \left(-\frac{1}{6} \pi\right)\right)$
c. $\sin ^{-1}\left(\sin \left(\frac{5}{6} \pi\right)\right)$
d. $\sin ^{-1}\left(\sin \left(-\frac{5}{6} \pi\right)\right)$
6.
a. $\quad \cos ^{-1}\left(\cos \left(\frac{1}{3} \pi\right)\right)$
b. $\cos ^{-1}\left(\cos \left(-\frac{1}{3} \pi\right)\right)$
c. $\cos ^{-1}\left(\cos \left(\frac{2}{3} \pi\right)\right)$
d. $\cos ^{-1}\left(\cos \left(\frac{4}{3} \pi\right)\right)$
7.
a. $\tan ^{-1}\left(\tan \left(\frac{1}{6} \pi\right)\right)$
b. $\tan ^{-1}\left(\tan \left(-\frac{1}{3} \pi\right)\right)$
c. $\tan ^{-1}\left(\tan \left(\frac{2}{6} \pi\right)\right)$
d. $\tan ^{-1}\left(\tan \left(-\frac{4}{3} \pi\right)\right)$
8.
a. $\cot ^{-1}\left(\cot \left(\frac{1}{6} \pi\right)\right)$
b. $\sec ^{-1}\left(\operatorname{seo}\left(\frac{1}{3} \pi\right)\right)$

[^0]: Function

 - $f(x)=x^{2}$
 - $h(x)=(-x)^{2}$
 - Line
 $g: y=4$
 Number
 - $\mathrm{a}=4$
 - Point
 $A=(0,4)$
 - $B=(2-, 4)$
 - $C=(2,4)$

