University of Anbar College of Engineering Civil Engineering Department

Strength of Materials I, Semester 1, 2022

Dr. Dhafer K. Jadaan

Syllabus

- 1. Equilibrium
- 2. Stresses
- 3. Strains
- 4. Mechanical Properties
- 5. Axial Load
- 6. Torsion
- 7. Shear and Bending diagrams

Introduction

International System of Units

	Exponential Form	Prefix	SI Symbol
Multiple			
1 000 000 000	109	giga	G
1 000 000	106	mega	M
1 000	103	kilo	k
Submultiple			
0.001	10-3	milli	m
0.000 001	10^{-6}	micro	μ
0.000 000 001	10-9	nano	μ n

Example:

$$(50 \text{ kN})(60 \text{ nm}) = [50(10^3) \text{ N}][60(10^{-9}) \text{ m}]$$

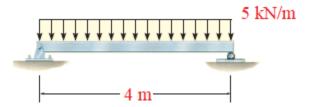
= $3000(10^{-6}) \text{ N} \cdot \text{m} = 3(10^{-3}) \text{ N} \cdot \text{m} = 3 \text{ mN} \cdot \text{m}$

Dimensional Homogeneity

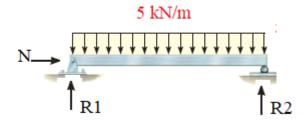
$$s = vt + \frac{1}{2}at^2$$

$$m = \frac{m}{s}s + \frac{1}{2}\frac{m}{s^2} s^2$$

Chapter One


Equilibrium

Support Reactions



Examples

Determine the reactions of the simply supported beam.

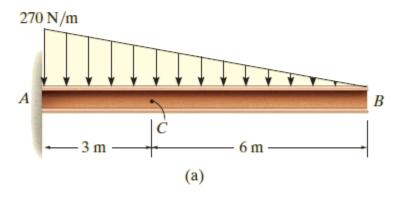
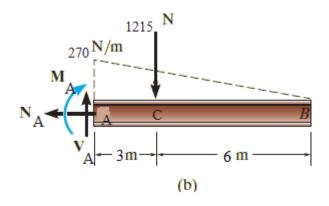
Solution

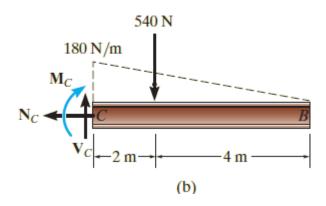
$$\Sigma F_x = 0 \to N = 0$$

$$\Sigma M_{R2} = 0 \to R_1 * 4 - 5 * 4 * 4/2 = 0 \to R_1 = 10 \ kN$$

$$\Sigma F_y = 0 \to R_1 + R_2 - 5 * 4 = 0 \to R_2 = 10 \ kN$$

Determine the resultant internal loadings acting on the cross section at C of the cantilevered beam shown in Fig. 1–4a.


Fig. 1-4

Solution

Free-body diagram. From table 1-4, fixed support has three reactions

$$\pm \Sigma F_x = 0;$$
 $-N_A = 0$ $N_A = 0$ $N_A = 0$ $+ \uparrow \Sigma F_y = 0;$ $V_A - 1215N = 0$ $V_A = 1215N$ $-M_A = 1215N$ $-M_A - 1215N(3 m) = 0$ $M_A = -3645 N \cdot m$

Determine the horizontal and vertical components of reaction on the beam caused by the pin at B and the rocker at A as shown in Fig. 5–12a. Neglect the weight of the beam.

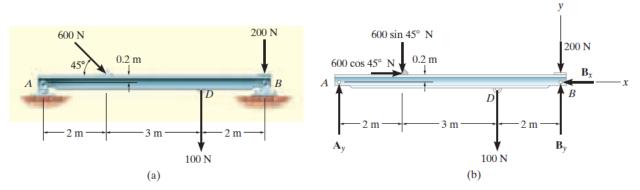
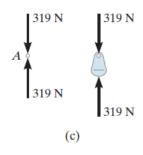



Fig. 5-12

SOLUTION

Free-Body Diagram. The supports are *removed*, and the free-body diagram of the beam is shown in Fig. 5–12b. (See Example 5.1.) For simplicity, the 600-N force is represented by its x and y components as shown in Fig. 5–12b.

Equations of Equilibrium. Summing forces in the x direction yields

A direct solution for A_y can be obtained by applying the moment equation $\Sigma M_B = 0$ about point B.

$$\zeta + \Sigma M_B = 0;$$
 100 N (2 m) + (600 sin 45° N)(5 m)
- (600 cos 45° N)(0.2 m) - A_y (7 m) = 0
 $A_y = 319$ N Ans.

Summing forces in the y direction, using this result, gives

$$+\uparrow \Sigma F_y = 0;$$
 319 N - 600 sin 45° N - 100 N - 200 N + $B_y = 0$
 $B_y = 405$ N Ans.