Chapter 6

Torsion

$$
\gamma d x=d \phi \rho \rightarrow \gamma=\rho \frac{d \phi}{d x}
$$

Since $d x$ and $d \phi$ is the same for all elements located at points on the cross section at x , then $\frac{d x}{d \phi}$ is constant over the cross section, γ increases linearly with distance from the center of the axis of the shaft,

$$
\gamma=\frac{\rho}{c} \gamma_{\max }
$$

If the material is linear-elastic, then Hooke's law applies, $\tau=G \gamma$, and consequently a linear variation in shear strain, as noted in the previous section, leads to a corresponding linear variation in shear stress along any radial line on the cross section.

$$
\begin{aligned}
& \tau=\left(\frac{\rho}{c}\right) \tau_{\max } \\
& T=\int_{A} \rho(\tau d A)=\int_{A} \rho\left(\frac{\rho}{c}\right) \tau_{\max } d A \\
& T=\frac{\tau_{\max }}{c} \int_{A} \rho^{2} d A
\end{aligned}
$$

$$
\tau_{\max }=\frac{T c}{J}
$$

Combing above equations,

$$
\tau=\frac{T \rho}{J}
$$

Solid Shaft. If the shaft has a solid circular cross section, the pola moment of inertia J can be determined using an area element in the form of a differential ring or annulus having a thickness $d \rho$ and circumference $2 \pi \rho$, Fig. 5-6. For this ring, $d A=2 \pi \rho d \rho$, and so

$$
\begin{gathered}
J=\int_{A} \rho^{2} d A=\int_{0}^{c} \rho^{2}(2 \pi \rho d \rho)=2 \pi \int_{0}^{c} \rho^{3} d \rho=\left.2 \pi\left(\frac{1}{4}\right) \rho^{4}\right|_{0} ^{c} \\
J=\frac{\pi}{2} c^{4}
\end{gathered}
$$

Tabular shafts

$$
J=\frac{\pi}{2}\left(c_{o}^{4}-c_{i}^{4}\right)
$$

Angle of twist

(a)

(b)

$$
d \phi=\gamma \frac{d x}{\rho}
$$

Since Hooke's law, $\gamma=\tau / G$, applies and the shear stress can be expressed in terms of the applied torque using the torsion formula $\tau=T(x) \rho / J(x)$, then $\gamma=T(x) \rho / J(x) G$. Substituting

$$
d \phi=\frac{T(x)}{J(x) G} d x
$$

Integrating over the entire length L of the shaft, we obtain the angle of twist for the entire shaft, namely,

$$
\phi=\int_{0}^{L} \frac{T(x) d x}{J(x) G}
$$

Multiple torques

$$
\phi=\sum \frac{T L}{J G}
$$

Example

$$
\phi_{A / D}=\frac{(+80 \mathrm{~N} \cdot \mathrm{~m}) L_{A B}}{J G}+\frac{(-70 \mathrm{~N} \cdot \mathrm{~m}) L_{B C}}{J G}+\frac{(-10 \mathrm{~N} \cdot \mathrm{~m}) L_{C D}}{J G}
$$

Example

The gears attached to the fixed-end steel shaft are subjected to the torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 GPa and the shaft has a diameter of 14 mm , determine the displacement of the tooth P on gear A. The shaft turns freely within the bearing at B.

$$
\begin{aligned}
\phi_{A}=\sum \frac{T L}{J G}= & \frac{(+150 \mathrm{~N} \cdot \mathrm{~m})(0.4 \mathrm{~m})}{3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& +\frac{(-130 \mathrm{~N} \cdot \mathrm{~m})(0.3 \mathrm{~m})}{\left.3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right)\right]} \\
& +\frac{(-170 \mathrm{~N} \cdot \mathrm{~m})(0.5 \mathrm{~m})}{\left.3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right)\right]}=-0.2121 \mathrm{rad}
\end{aligned}
$$

Since the answer is negative, by the right-hand rule the thumb is directed toward the end E of the shaft, and therefore gear A will rotate as shown in Fig. 5-19d.

The displacement of tooth P on gear A is

$$
s_{P}=\phi_{A} r=(0.2121 \mathrm{rad})(100 \mathrm{~mm})=21.2 \mathrm{~mm} \quad \text { Ans. }
$$

Example

The two solid steel shafts shown in Fig. 5-20a are coupled together using the meshed gears. Determine the angle of twist of end A of shaft $A B$ when the torque $T=45 \mathrm{~N} \cdot \mathrm{~m}$ is applied. Take $G=80 \mathrm{GPa}$. Shaft $A B$ is free to rotate within bearings E and F, whereas shaft $D C$ is fixed at D. Each shaft has a diameter of 20 mm .

Internal Torque. Free-body diagrams for each shaft are shown in Fig. 5-20b and 5-20c. Summing moments along the x axis of shaft $A B$ yields the tangential reaction between the gears of $F=$ $45 \mathrm{~N} \cdot \mathrm{~m} / 0.15 \mathrm{~m}=300 \mathrm{~N}$. Summing moments about the x axis of shaft $D C$, this force then creates a torque of $\left(T_{D}\right)_{x}=300 \mathrm{~N}(0.075 \mathrm{~m})=$ $22.5 \mathrm{~N} \cdot \mathrm{~m}$ on shaft $D C$.
Angle of Twist. To solve the problem, we will first calculate the rotation of gear C due to the torque of $22.5 \mathrm{~N} \cdot \mathrm{~m}$ in shaft $D C$, Fig. 5-20c. This angle of twist is

$$
\phi_{C}=\frac{T L_{D C}}{J G}=\frac{(+22.5 \mathrm{~N} \cdot \mathrm{~m})(1.5 \mathrm{~m})}{(\pi / 2)(0.010 \mathrm{~m})^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]}=+0.0269 \mathrm{rad}
$$

Since the gears at the end of the shaft are in mesh, the rotation ϕ_{C} of gear C causes gear B to rotate ϕ_{B}, Fig. 5-20b, where

$$
\phi_{B}(0.15 \mathrm{~m})=(0.0269 \mathrm{rad})(0.075 \mathrm{~m})
$$

We will now determine the angle of twist of end A with respect to end B of shaft $A B$ caused by the $45 \mathrm{~N} \cdot \mathrm{~m}$ torque, Fig. 5-20b. We have

$$
\phi_{A / B}=\frac{T_{A B} L_{A B}}{J G}=\frac{(+45 \mathrm{~N} \cdot \mathrm{~m})(2 \mathrm{~m})}{(\pi / 2)(0.010 \mathrm{~m})^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]}=+0.0716 \mathrm{rad}
$$

The rotation of end A is therefore determined by adding ϕ_{B} and $\phi_{A / B}$, since both angles are in the same direction, Fig. 5-20b. We have

$$
\phi_{A}=\phi_{B}+\phi_{A / B}=0.0134 \mathrm{rad}+0.0716 \mathrm{rad}=+0.0850 \mathrm{rad} \quad \text { Ans. }
$$

