1-7 Curvilinear Motion: Position, Velocity \& Acceleration

The position vector of a particle at time t is defined by a vector between origin O of a fixed reference frame and the position occupied by particle. Consider a particle which occupies position P defined by at time t and P^{\prime} defined by at $t+\Delta t$, then:

Instantaneous velocity (vector)
\&
Instantaneous speed (scalar)

$$
\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}
$$

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\frac{d s}{d t}
$$

1-8 Rectangular Components of Velocity \& Acceleration

When position vector of particle P is given by its rectangular components, $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$
Velocity vector,

$$
\begin{aligned}
\vec{v} & =\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j}+\frac{d z}{d t} \vec{k}=\dot{x} \vec{i}+\dot{y} \vec{j}+\dot{z} \vec{k} \\
& =v_{x} \vec{i}+v_{y} \vec{j}+v_{z} \vec{k}
\end{aligned}
$$

Acceleration vector,

$$
\begin{aligned}
\vec{a} & =\frac{d^{2} x}{d t^{2}} \vec{i}+\frac{d^{2} y}{d t^{2}} \vec{j}+\frac{d^{2} z}{d t^{2}} \vec{k}=\ddot{x} \vec{i}+\ddot{y} \vec{j}+\ddot{z} \vec{k} \\
& =a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}
\end{aligned}
$$

- Rectangular components particularly effective when component accelerations can be integrated independently, e.g., motion of a projectile,

$$
a_{x}=\ddot{x}=0 \quad a_{y}=\ddot{y}=-g \quad a_{z}=\ddot{z}=0
$$

with initial conditions: $x_{0}=y_{0}=z_{0}=0 \quad\left(v_{x}\right)_{0},\left(v_{y}\right)_{0},\left(v_{z}\right)_{0}=0$
Integrating twice yields: $\begin{array}{lll}v_{x}=\left(v_{x}\right)_{0} & v_{y}=\left(v_{y}\right)_{0}-g t & v_{z}=0 \\ x=\left(v_{x}\right)_{0} t & y=\left(v_{y}\right)_{0} y-\frac{1}{2} g t^{2} & z=0\end{array}$

- Motion in horizontal direction is uniform.
- Motion in vertical direction is uniformly accelerated.
- Motion of projectile could be replaced by two
 independent rectilinear motions.

Example 4: A projectile is fired from the edge of a $150-\mathrm{m}$ cliff with an initial velocity of $180 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal. Neglecting air resistance, find (a) the horizontal distance from the gun to the point where the projectile strikes the ground, (b) the greatest elevation above the
 ground reached by the projectile.

SOLUTION:

- Maximum elevation occurs when $v_{y}=0$, the Vertical motion is uniformly accelerated, then:

$$
\begin{array}{rlrl}
\left(v_{y}\right)_{0} & =(180 \mathrm{~m} / \mathrm{s}) \sin 30^{\circ} & =+90 \mathrm{~m} / \mathrm{s} \\
v_{y} & =\left(v_{y}\right)_{0}+a t & v_{y} & =90-9.81 t \\
y & =\left(v_{y}\right)_{0} t+\frac{1}{2} a t^{2} & y & =90 t-4.90 t^{2} \\
v_{y}^{2} & =\left(v_{y}\right)_{0}^{2}+2 a y & v_{y}^{2} & =8100-19.62 y \tag{3}
\end{array}
$$

Also horizontal motion - uniformly accelerated,
then:

$$
\begin{aligned}
\left(v_{x}\right)_{0}= & (180 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}=+155.9 \mathrm{~m} / \mathrm{s} \\
& x=\left(v_{x}\right)_{0} t \quad x=155.9 t \quad \ldots . .(4)
\end{aligned}
$$

$$
\begin{aligned}
& y=-150 \mathrm{~m} \\
& 2^{2}-18.37 t-30.6=0 \quad t=19.91 \mathrm{~s} \\
& \quad \text { Projectile strikes }
\end{aligned}
$$

$$
-150=90 t-4.90 t^{2} \quad t^{2}-18.37 t-30.6=0 \quad t=19.91 \mathrm{~s}
$$

the ground at: Substitute into equation (1)

Substitute t into equation (4): $x=155.9(19.91) \longleftrightarrow x=3100 \mathrm{~m}$
Maximum elevation occurs when $v_{y}=0$
$0=8100-19.62 y \quad y=413 m$
Maximum elevation above the ground $=150 \mathrm{~m}+413 \mathrm{~m}=563 \mathrm{~m}$

Example 4: Automobile A is traveling east at the constant speed of 36 km / h. As automobile A crosses the intersection shown, automobile B starts from rest 35 m north of the intersection and moves south with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. Determine the position, velocity, and acceleration of B relative to $A 5 s$ after A crosses the intersection.

SOLUTION:
Given: $v_{A}=36 \mathrm{~km} / \mathrm{h}, a_{A}=0, \quad\left(x_{A}\right) 0=0,\left(v_{B}\right) 0=0$,

- Determine motion of Automobile A:
$v_{A}=\left(36 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=10 \mathrm{~m} / \mathrm{s}$

We have uniform motion for A so:

$$
\begin{aligned}
& a_{A}=0 \\
& v_{A}=+10 \mathrm{~m} / \mathrm{s} \\
& x_{A}=\left(x_{A}\right)_{0}+v_{A} t=0+10 t
\end{aligned}
$$

$$
\text { At } t=5 \mathrm{~s}:
$$

$$
\begin{aligned}
& a_{A}=0 \\
& v_{A}=+10 \mathrm{~m} / \mathrm{s} \\
& x_{A}=+(10 \mathrm{~m} / \mathrm{s})(5 \mathrm{~s})=+50 \mathrm{~m}
\end{aligned}
$$

$$
\mathbf{a}_{A}=0
$$

$$
\mathbf{v}_{A}=10 \mathrm{~m} / \mathrm{s} \rightarrow
$$

$$
\mathbf{r}_{A}=50 \mathrm{~m} \rightarrow
$$

- Determine motion of Automobile B:

We have uniform acceleration for B so:

$$
\begin{aligned}
a_{B} & =-1.2 \mathrm{~m} / \mathrm{s}^{2} \\
v_{B} & =\left(v_{B}\right)_{0}+a t=0-1.2 t \\
y_{B} & =\left(y_{B}\right)_{0}+\left(v_{B}\right)_{0} t+\frac{1}{2} a_{B} t^{2}=35+0-\frac{1}{2}(1.2) t^{2}
\end{aligned}
$$

At $t=5 \mathrm{~s}: \quad a_{B}=-1.2 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& v_{B}=-\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})=-6 \mathrm{~m} / \mathrm{s} \\
& y_{B}=35-\frac{1}{2}\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2}=+20 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a}_{B} & =1.2 \mathrm{~m} / \mathrm{s}^{2} \downarrow \\
\mathbf{v}_{B} & =6 \mathrm{~m} / \mathrm{s} \downarrow \\
\mathbf{r}_{B} & =20 \mathrm{~m} \uparrow
\end{aligned}
$$

Since: $\quad \begin{aligned} & \mathbf{a}_{A}=0 \\ & \mathbf{v}_{A}=10 \mathrm{~m} / \mathrm{s} \rightarrow \\ & \mathbf{r}_{A}=50 \mathrm{~m} \rightarrow\end{aligned}$

$$
\begin{aligned}
\mathbf{a}_{B} & =1.2 \mathrm{~m} / \mathrm{s}^{2} \downarrow \\
\mathbf{v}_{B} & =6 \mathrm{~m} / \mathrm{s} \downarrow \\
\mathbf{r}_{B} & =20 \mathrm{~m} \uparrow
\end{aligned}
$$

Then the problems can be solve geometrically, and apply the arctangent relationship:

$$
\begin{gathered}
r_{B / A}=53.9 \mathrm{~m} \quad \alpha=21.8^{\circ} \\
\mathbf{r}_{B / A}=53.9 \mathrm{~m} \triangle 21.8^{\circ}
\end{gathered}
$$

$$
v_{B / A}=11.66 \mathrm{~m} / \mathrm{s} \quad \beta=31.0^{\circ}
$$

$$
\mathbf{v}_{B / A}=11.66 \mathrm{~m} / \mathrm{s} \text { 卫 } 31.0^{\circ}
$$

$1.2 \mathrm{~m} / \mathrm{s}^{2}$

$$
\mathbf{a}_{B / A}=1.2 \mathrm{~m} / \mathrm{s}^{2} \downarrow
$$

Or one can solve the problems using vectors to obtain equivalent results:

$$
\begin{array}{lll}
\mathbf{r}_{\mathbf{B}}=\mathbf{r}_{\mathbf{A}}+\mathbf{r}_{\mathbf{B} / \mathbf{A}} & \mathbf{v}_{\mathbf{B}}=\mathbf{v}_{\mathbf{A}}+\mathbf{v}_{\mathbf{B} / \mathbf{A}} & \mathbf{a}_{\mathbf{B}}=\mathbf{a}_{\mathbf{A}}+\mathbf{a}_{\mathbf{B} / \mathbf{A}} \\
20 \mathbf{j}=50 \mathbf{i}+\mathbf{r}_{\mathbf{B} / \mathbf{A}} & -6 \mathbf{j}=10 \mathbf{i}+\mathbf{v}_{\mathbf{B} / \mathbf{A}} & -1.2 \mathbf{j}=0 \mathbf{i}+\mathbf{a}_{\mathbf{B} / \mathbf{A}} \\
\mathbf{r}_{\mathbf{B} / \mathbf{A}}=20 \mathbf{j}-50 \mathbf{i}(\mathrm{~m}) & \mathbf{v}_{\mathbf{B} / \mathbf{A}}=-6 \mathbf{j}-10 \mathbf{i}(\mathrm{~m} / \mathrm{s}) & \mathbf{a}_{\mathbf{B} / \mathbf{A}}=-1.2 \mathbf{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& v_{B / A}=11.66 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Physically, a rider in car A would "see" car B traveling south and west.

1-9 Tangential and Normal Components

If we have an idea of the path of a vehicle, it is often convenient to analyze the motion using tangential and normal components (sometimes called path coordinates).

- The tangential direction $\left(\mathbf{e}_{\mathrm{t}}\right)$ is tangent to the path of the particle. This velocity vector of a particle is in this direction
- The normal direction $\left(\mathbf{e}_{\mathbf{n}}\right)$ is perpendicular to et and points towards the inside of the curve.
- The acceleration can have components in both the $\mathbf{e}_{\mathbf{n}}$ and \mathbf{e}_{t} directions

To derive the acceleration vector in tangential and normal components, define the motion of a particle as shown in the figure. \vec{e}_{t} and \vec{e}^{\prime} are tangential unit vectors for the particle path at P and P^{\prime}. When drawn with respect to the same origin, $\Delta \vec{e}_{t}=\vec{e}_{t}^{\prime}-\vec{e}_{t}$ and $\Delta \theta$ is the angle between them.

$$
\begin{aligned}
& \Delta e_{t}=2 \sin (\Delta \theta / 2) \\
& \lim _{\Delta \theta \rightarrow 0} \frac{\Delta \vec{e}_{t}}{\Delta \theta}=\lim _{\Delta \theta \rightarrow 0} \frac{\sin (\Delta \theta / 2)}{\Delta \theta / 2} \vec{e}_{n}=\vec{e}_{n} \\
& \vec{e}_{n}=\frac{d \vec{e}_{t}}{d \theta}
\end{aligned}
$$

With the velocity vector expressed as , the particle acceleration may be written as:
$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d v}{d t} \vec{e}_{t}+v \frac{d \vec{e}}{d t}=\frac{d v}{d t} \vec{e}_{t}+v \frac{d \vec{e}}{d \theta} \frac{d \theta}{d s} \frac{d s}{d t}$
But, $\frac{d \vec{e}_{t}}{d \theta}=\vec{e}_{n} \quad \rho d \theta=d s \quad \frac{d s}{d t}=v$
After substituting, $\vec{a}=\frac{d v}{d t} \vec{e}_{t}+\frac{v^{2}}{\rho} \vec{e}_{n} \quad a_{t}=\frac{d v}{d t} \quad a_{n}=\frac{v^{2}}{o}$

- The tangential component of acceleration reflects change of speed and the normal component reflects change of direction.
- The tangential component may be positive or negative. Normal component always points toward center of path curvature.

Example 5: A motorist is traveling on a curved section of highway of radius 2500 ft at the speed of $60 \mathrm{mi} / \mathrm{h}$. The motorist suddenly applies the brakes, causing the automobile to slow down at a constant rate. Knowing that after 8 s the speed has been reduced to $45 \mathrm{mi} / \mathrm{h}$, determine the acceleration of the automobile immediately after the brakes have been applied.

SOLUTION: Define your coordinate system
Then Determine velocity and acceleration in the tangential direction

$$
\begin{aligned}
60 \mathrm{mi} / \mathrm{h}=\left(60 \frac{\mathrm{mi}}{\mathrm{~h}}\right)\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right) & =88 \mathrm{ft} / \mathrm{s} \\
45 \mathrm{mi} / \mathrm{h} & =66 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

The deceleration constant, therefore;

$$
a_{t}=\text { average } a_{t}=\frac{\Delta v}{\Delta t}=\frac{66 \mathrm{ft} / \mathrm{s}-88 \mathrm{ft} / \mathrm{s}}{8 \mathrm{~s}}=-2.75 \mathrm{ft} / \mathrm{s}^{2}
$$

Immediately after the brakes are applied, the speed is still $88 \mathrm{ft} / \mathrm{s}$

$$
\begin{aligned}
& a_{n}=\frac{v^{2}}{\rho}=\frac{(88 \mathrm{ft} / \mathrm{s})^{2}}{2500 \mathrm{ft}}=3.10 \mathrm{ft} / \mathrm{s}^{2} \\
& a=\sqrt{a_{n}^{2}+a_{t}^{2}}=\sqrt{2.75^{2}+3.10^{2}} \\
& \tan \alpha=\frac{a_{n}}{a_{t}}=\frac{3.10 \mathrm{ft} / \mathrm{s}^{2}}{2.75 \mathrm{ft} / \mathrm{s}^{2}}
\end{aligned}
$$

$$
\mathbf{a}=4.14 \mathrm{ft} / \mathrm{s}^{2} \quad \text { and } \quad \alpha=48.4^{\circ}
$$

1-10 Radial and Transverse Components

The position of a particle P is expressed as a distance r from the origin O to P - this defines the radial direction $\mathbf{e}_{\mathbf{r}}$. The transverse direction $\mathbf{e}_{\boldsymbol{\theta}}$ is perpendicular to $\mathbf{e}_{\mathbf{r}}: \quad \vec{r}=r \vec{e}_{r}$

The particle velocity vector is: $\vec{v}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}$

The particle acceleration vector is: $\quad \vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta}$

One can derive the velocity and acceleration relationships by recognizing that the unit vectors change direction. The particle velocity vector is:
$\vec{v}=\frac{d}{d t}\left(r \vec{e}_{r}\right)=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \vec{e}_{r}}{d t}=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}$
$\vec{r}=r \vec{r}_{r} \ldots \ldots . . \frac{d \vec{e}_{r}}{d \theta}=\vec{e}_{\theta} \quad \frac{d \vec{e}_{\theta}}{d \theta}=-\vec{e}_{r}$
$\frac{d \vec{e}_{r}}{d t}=\frac{d \vec{e}_{r}}{d \theta} \frac{d \theta}{d t}=\vec{e}_{\theta} \frac{d \theta}{d t} \ldots \ldots . \ldots . . \frac{d \vec{e}_{\theta}}{d t}=\frac{d \vec{e}_{\theta}}{d \theta} \frac{d \theta}{d t}=-\vec{e}_{r} \frac{d \theta}{d t}$
Similarly, the particle acceleration vector is:

$$
\begin{aligned}
\vec{a} & =\frac{d}{d t}\left(\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta}\right)=\frac{d^{2} r}{d t^{2}} \vec{e}_{r}+\frac{d r}{d t} \frac{d \vec{e}_{r}}{d t}+\frac{d r}{d t} \frac{d \theta}{d t} \vec{e}_{\theta}+r \frac{d^{2} \theta}{d t^{2}} \vec{e}_{\theta}+r \frac{d \theta}{d t} \frac{d \vec{e}_{\theta}}{d t} \\
& =\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta}
\end{aligned}
$$

When particle position is given in cylindrical coordinates, it is convenient to express the velocity and acceleration vectors using the unit vectors

- Position vector: $\vec{r}=R \vec{e}_{R}+z \vec{k}$
- Velocity vector:

$$
\vec{v}=\frac{d \vec{r}}{d t}=\dot{R} \vec{e}_{R}+R \dot{\theta} \vec{e}_{\theta}+\dot{z} \vec{k}
$$

- Acceleration vector: $\vec{a}=\frac{d \vec{v}}{d t}=\left(\ddot{R}-R \dot{\theta}^{2}\right) \vec{e}_{R}+(R \ddot{\theta}+2 \dot{R} \dot{\theta}) \vec{e}_{\theta}+\ddot{z} \vec{k}$

Example 6: Rotation of the arm about O is defined by $\theta=0.15 t^{2}$ where θ is in radians and t in seconds. Collar B slides along the arm such that $r=0.9-0.12 t^{2}$ where r is in meters. After the arm has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, and (c) the relative acceleration of the collar with respect to the arm.

SOLUTION:

- Evaluate time t for $\theta=30^{\circ}: \theta=0.15 t^{2}=30^{\circ}=0.524 \mathrm{rad} \quad t=1.869 \mathrm{~s}$
- Evaluate radial and angular positions, and first and second derivatives at time t.

$$
\begin{array}{ll}
r=0.9-0.12 t^{2}=0.481 \mathrm{~m} & \dot{r}=-0.24 t=-0.449 \mathrm{~m} / \mathrm{s} \\
. \ddot{r} & =-0.24 \mathrm{~m} / \mathrm{s}^{2} \\
\theta & =0.15 t^{2}=0.524 \mathrm{rad} \\
\ddot{\theta}=0.30 \mathrm{rad} / \mathrm{s}^{2} & \dot{\theta}=0.30 t=0.561 \mathrm{rad} / \mathrm{s}
\end{array}
$$

- Calculate velocity and acceleration:

$$
\begin{aligned}
& v_{r}=\dot{r}=-0.449 \mathrm{~m} / \mathrm{s} \\
& v_{\theta}=r \dot{\theta}=(0.481 \mathrm{~m})(0.561 \mathrm{rad} / \mathrm{s})=0.270 \mathrm{~m} / \mathrm{s} \\
& v=\sqrt{v_{r}^{2}+v_{\theta}^{2}}=0.524 \mathrm{~m} / \mathrm{s} \quad \beta=\tan ^{-1} \frac{v_{\theta}}{v_{r}}=31.0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& a_{r}=\ddot{r}-r \dot{\theta}^{2}=-0.240 \mathrm{~m} / \mathrm{s}^{2}-(0.481 \mathrm{~m})(0.561 \mathrm{rad} / \mathrm{s})^{2} \\
& =-0.391 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}=(0.481 \mathrm{~m})\left(0.3 \mathrm{rad} / \mathrm{s}^{2}\right)+2(-0.449 \mathrm{~m} / \mathrm{s})(0.561 \mathrm{rad} / \mathrm{s}) \\
& =-0.359 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{a_{r}^{2}+a_{\theta}^{2}} \quad \gamma=\tan ^{-1} \frac{a_{\theta}}{a_{r}} \\
& a=0.531 \mathrm{~m} / \mathrm{s} \quad \gamma=42.6^{\circ} \\
& \text { - Evaluate acceleration with respect to arm. } \\
& \text { Motion of collar with respect to arm is } \\
& \text { rectilinear and defined by coordinate } r \text {. } \\
& a_{B / O A}=\ddot{r}=-0.240 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 7: The angular acceleration of the centrifuge arm varies according to $\ddot{\theta}=0.05 \theta\left(\mathrm{rad} / \mathrm{s}^{2}\right)$ where θ is measured in radians. If the centrifuge starts from rest, determine the acceleration magnitude after the gondola has traveled two full rotations.

SOLUTION:

- Define your coordinate system

$$
\ddot{\theta}=0.05 \theta\left(\mathrm{rad} / \mathrm{s}^{2}\right)
$$

Acceleration is a function of position, so use: $\quad \ddot{\theta} d \theta=\dot{\theta} d \dot{\theta}$

- Evaluate the integral: $\int_{0}^{(2)(2 \pi)} 0.05 \theta d \theta=\int_{0}^{\dot{\theta}} \dot{\theta} d \dot{\theta}$

$$
\left.\frac{0.05 \theta^{2}}{2}\right|_{0} ^{2(2 \pi)}=\left.\frac{\dot{\theta}^{2}}{2}\right|_{0} ^{\dot{\theta}} \quad \dot{\theta}^{2}=0.05[2(2 \pi)]^{2}
$$

- Determine the angular velocity: $\quad \dot{\theta}^{2}=0.05[2(2 \pi)]^{2}$

- Determine the angular acceleration: $\ddot{\theta}=0.05 \theta=0.05(2)(2 \pi)=0.6283 \mathrm{rad} / \mathrm{s}^{2}$
- Find the radial and transverse accelerations:

$$
\begin{aligned}
\vec{a} & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta} \\
& =\left(0-(8)(2.8099)^{2}\right) \vec{e}_{r}+((8)(0.6283)+0) \vec{e}_{\theta} \\
& =-63.166 \vec{e}_{r}+5.0265 \vec{e}_{\theta}\left(\mathrm{m} / \mathrm{s}^{2}\right) \\
a_{\text {mag }} & =\sqrt{a_{r}^{2}+a_{\theta}^{2}}=\sqrt{(-63.166)^{2}+[5.0265]^{2}} \\
a_{\text {mag }} & =63.365 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

