Chapter Two

Kinetics of Particles

2-1 Newton's Second Law of Motion

If the resultant force acting on a particle is not zero, the particle will have an acceleration proportional to the
 magnitude of resultant and in the direction of the resultant.

$$
\vec{F}=m \vec{a}
$$

If particle is subjected to several forces: $\quad \sum \vec{F}=m \vec{a}$

We must use a Newtonian frame of reference, i.e., one that is not accelerating or rotating. If no force acts on particle, particle will not accelerate, i.e., it will remain stationary or continue on a straight line at constant velocity.

2-2 Linear Momentum of a Particle

The principle of conservation of linear momentum is:

$$
\begin{aligned}
\sum \vec{F} & =m \vec{a}=m \frac{d \vec{v}}{d t} \\
& =\frac{d}{d t}(m \vec{v})=\frac{d}{d t}(\vec{L})
\end{aligned}
$$

Where: $\vec{L}=m \vec{v}=$ Linear momentum
Sum of forces = rate of change of linear momentum $\quad \sum \vec{F}=\dot{\vec{L}}$
If $\sum \vec{F}=0 \quad$ then linear momentum is constant

2-3 Equations of Motion

- Newton's second law $\sum \vec{F}=m \vec{a}$
- Convenient to resolve into components:

$$
\begin{array}{lll}
\sum\left(F_{x} \vec{i}+F_{y} \vec{j}+F_{z} \vec{k}\right)=m\left(a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}\right) \\
\sum F_{x}=m a_{x} & \sum F_{y}=m a_{y} & \sum F_{z}=m a_{z} \\
\sum F_{x}=m \ddot{x} & \sum F_{y}=m \ddot{y} & \sum F_{z}=m \ddot{z}
\end{array}
$$

- For tangential and normal components:

$$
\begin{array}{ll}
\sum F_{t}=m a_{t} & \sum F_{n}=m a_{n} \\
\sum F_{t}=m \frac{d v}{d t} & \sum F_{n}=m \frac{v^{2}}{\rho}
\end{array}
$$

2-4 Dynamic Equilibrium

Alternate expression of Newton's law:: $\sum \vec{F}-m \vec{a}=0$
Where: $-m \vec{a}=$ inertia vector

If we include inertia vector, the system of forces acting on particle is equivalent to zero. The particle is said to be in dynamic equilibrium.
Inertia vectors are often called inertia forces as they measure the resistance that particles offer to changes in motion.

2-5 Equation of Motion for a System of Particles

The summation of the internal forces, if carried out, will equal zero, since internal forces between any two particles occur in equal but opposite collinear pairs. Consequently, only the sum of the external forces will remain, and therefore the equation of motion, written for the system of particles, becomes

$$
\sum \mathrm{F}_{\mathrm{i}}=\sum \mathrm{m}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}
$$

- The equation of motion is based on experimental evidence and is valid only when applied within an inertial frame of reference.
- The equation of motion states that the unbalanced force on a particle causes it to accelerate.
- An inertial frame of reference does not rotate, rather its axes either translate with constant velocity or are at rest.
- Mass is a property of matter that provides a quantitative measure of its resistance to a change in velocity. It is an absolute quantity and so it does not change from one location to another.
- Weight is a force that is caused by the earth's gravitation. It is not absolute; rather it depends on the altitude of the mass from the earth's surface.

2-6 Equations of Motion: Rectangular Coordinates

When a particle moves relative to an inertial x, y, z frame of reference, the forces acting on the particle, as well as its acceleration, can be expressed in terms of their \mathbf{i}, \mathbf{j}, \mathbf{k} components. Applying the equation of motion, we have

$$
\Sigma \mathbf{F}=m \mathbf{a} ; \quad \Sigma F_{x} \mathbf{i}+\Sigma F_{y} \mathbf{j}+\Sigma F_{z} \mathbf{k}=m\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}\right)
$$

For this equation to be satisfied, the respective $\mathrm{i}, \mathrm{j}, \mathrm{k}$ components on the left side must equal the corresponding components on the right side. Consequently, we may write the following three scalar equations:

$$
\begin{aligned}
& \Sigma F_{x}=m a_{y} \\
& \Sigma F_{y}=m a_{3} \\
& \Sigma F_{z}=m a_{3}
\end{aligned}
$$

In particular, if the particle is constrained to move only in the $x-y$ plane, then the first two of these equations are used to specify the motion.

Example 1: The two blocks shown start from rest. The horizontal plane and the pulley are frictionless, and the pulley is assumed to be of negligible mass. Determine the acceleration of each block and the tension in the cord.

SOLUTION:

Kinematic relationship: If A moves x_{A} to the right, B moves down $0.5 \mathrm{x}_{\mathrm{A}}$:

$$
x_{B}=\frac{1}{2} x_{A} \quad a_{B}=\frac{1}{2} a_{A}
$$

Draw free body diagrams \& apply Newton's law:

$$
2940-(300) a_{B}-2 T_{1}=0 \quad 2940-(300) a_{B}-200 a_{A}=0
$$

$$
2940-(300) a_{B}-2 \times 200 a_{B}=0
$$

$$
a_{B}=4.2 \mathrm{~m} / \mathrm{s}^{2} \quad a_{A}=8.4 \mathrm{~m} / \mathrm{s}^{2} \quad T_{1}=840 \mathrm{~N} \quad T_{2}=1680 \mathrm{~N}
$$

$$
\begin{aligned}
& \sum F_{x}=m_{A} a_{A} \\
& \rightleftarrows \\
& T_{1}=(100) a_{A} \\
& \sum F_{y}=m_{B} a_{B} \quad \rightleftarrows m_{B} g-T_{2}=m_{B} a_{B} \\
& 300 \times 9.81-T_{2}=(300) a_{B} \\
& T_{2}=2940-(300) a_{B} \\
& \sum F_{y}=m_{C} a_{C} \Longleftrightarrow T_{2}-2 T_{1}=0
\end{aligned}
$$

Example 2: The $50-\mathrm{kg}$ crate shown in Fig. rests on a horizontal surface for which the coefficient of kinetic friction is $\mu_{k}=0.3$. If the crate is subjected to a $400-\mathrm{N}$ towing force as shown, determine the velocity of the crate in 3 s starting from rest.

SOLUTION:

$W=m g=50 \mathrm{~kg}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=490.5 \mathrm{~N}$.
$\xrightarrow{+} \Sigma F_{x}=m a_{x} ; \quad 400 \cos 30^{\circ}-0.3 N_{C}=50 a$
$+\uparrow \Sigma F_{y}=m a_{y} ; \quad N_{C}-490.5+400 \sin 30^{\circ}=0$

$N_{C}=290.5 \mathrm{~N}$
$a=5.185 \mathrm{~m} / \mathrm{s}^{2}$
$v=v_{0}+a_{c} t=0+5.185(3)$
$=15.6 \mathrm{~m} / \mathrm{s} \rightarrow$

Example 3: A $10-\mathrm{kg}$ projectile is fired vertically upward from the ground, with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$. Determine the maximum height to which it will travel if (a) atmospheric resistance is neglected; and (b) atmospheric resistance is measured as $F_{D}=\left(0.01 v^{2}\right) \mathrm{N}$, where v is the speed of the projectile at any instant, measured in m / s.

SOLUTION:
$W=m g=10(9.81)=98.1 \mathrm{~N}$

$$
+\uparrow \Sigma F_{z}=m a_{z} ; \quad-98.1=10 a, \quad a=-9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

Kinematics. Initially, $z_{0}=0$ and $v_{0}=50 \mathrm{~m} / \mathrm{s}$, and at the maximum height $z=h, v=0$. Since the acceleration is constant, then

$$
\begin{aligned}
(+\uparrow) \quad v^{2} & =v_{0}^{2}+2 a_{c}\left(z-z_{0}\right) \\
0 & =(50)^{2}+2(-9.81)(h-0) \\
h & =127 \mathrm{~m}
\end{aligned}
$$

$F_{D}=\left(0.01 v^{2}\right)$

$+\uparrow \Sigma F_{z}=m a_{z} ; \quad-0.01 v^{2}-98.1=10 a, \quad a=-\left(0.001 v^{2}+9.81\right)$
Kinematics. Here the acceleration is not constant since F_{D} depends on the velocity. Since $a=f(v)$, we can relate a to position using
$(+\uparrow) a d z=v d v ; \quad-\left(0.001 v^{2}+9.81\right) d z=v d v$
Separating the variables and integrating, realizing that initially $z_{0}=0$, $v_{0}=50 \mathrm{~m} / \mathrm{s}$ (positive upward), and at $z=h, v=0$, we have

$$
\begin{align*}
\int_{0}^{h} d z & =-\int_{50 \mathrm{~m} / \mathrm{s}}^{0} \frac{v d v}{0.001 v^{2}+9.81}=-\left.500 \ln \left(v^{2}+9810\right)\right|_{50 \mathrm{~m} / \mathrm{s}} ^{0} \\
h & =114 \mathrm{~m} \tag{Ans.}
\end{align*}
$$

NOTE: The answer indicates a lower elevation than that obtained in part (a) due to atmospheric resistance or drag.

Example 4: The $100-\mathrm{kg}$ block A shown in Fig. is released from rest. If the masses of the pulleys and the cord are neglected, determine the velocity of the $20-\mathrm{kg}$ block B in 2 s .

SOLUTION:

Notice from free body diagram that for A to remain stationary:
$T=1 / 2 * 9.81 * 100=490.5 \mathrm{~N}$,
whereas for B to remain static:
$T=9.81$ *20=196.2 N.

Equations of Motion. Block A,
$+\downarrow \Sigma F_{y}=m a_{y} ;$

$$
981-2 T=100 a_{A}
$$

Block B,

$$
\begin{array}{r}
+\downarrow \Sigma F_{y}=m a_{y} ; \\
196.2-T=20 a_{B} \\
2 s_{A}+s_{B}=l
\end{array}
$$

where l is constant and represents the total vertical length of cord. Differentiating this expression twice with respect to time yields

$$
2 a_{A}=-a_{B}
$$

$$
\begin{aligned}
T & =327.0 \mathrm{~N} \\
a_{A} & =3.27 \mathrm{~m} / \mathrm{s}^{2} \\
a_{B} & =-6.54 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Hence when block A accelerates downward, block B accelerates upward as expected. Since a_{B} is constant, the velocity of block B in 2 s is thus

$$
\begin{aligned}
(+\downarrow) \quad v & =v_{0}+a_{B} t \\
& =0+(-6.54)(2) \\
& =-13.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The negative sign indicates that block B is moving upward.

