CHAPTER THREE Kinematics of Rigid Bodies

3-1 Introduction to Dynamics

Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the particles forming a rigid body.

Classification of rigid body motions:

- translation:
- rectilinear translation
- curvilinear translation
- rotation about a fixed axis
- general plane motion
- motion about a fixed point
- general motion

3-2 Translation

- Consider rigid body in translation:
- direction of any straight line inside the body is constant,
- all particles forming the body move in parallel lines.
- For any two particles in the body:

$$
\vec{r}_{B}=\vec{r}_{A}+\vec{r}_{B / A}
$$

- Differentiating with respect to time: $\dot{\vec{r}}_{B}=\dot{\vec{r}}_{A}+\dot{\vec{r}}_{B / A}=\dot{\vec{r}}_{A} \ldots . \vec{v}_{B}=\vec{v}_{A}$

Then all particles have the same velocity.

- Differentiating with respect to time again:

$$
\ddot{\vec{r}}_{B}=\ddot{\vec{r}}_{A}+\ddot{\vec{r}}_{B / A}=\ddot{\vec{r}}_{A} \ldots \ldots \ldots . . . \vec{a}_{B}=\vec{a}_{A}
$$

And all particles have the same acceleration.

3-3 Rotation About a Fixed Axis: Velocity and Acceleration

Consider rotation of rigid body about a fixed axis $A A^{\prime}$. Velocity vector of the particle P is tangent to the path with magnitude:
$\Delta s=(B P) \Delta \theta=(r \sin \phi) \Delta \theta$
$v=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0}(r \sin \phi) \frac{\Delta \theta}{\Delta t}=r \dot{\theta} \sin \phi$

The same result is obtained from:
$\vec{v}=\frac{d \vec{r}}{d t}=\vec{\omega} \times \vec{r}$
$\vec{\omega}=\omega \vec{k}=\dot{\theta} \vec{k}=$ angular velocity
Differentiating to determine the acceleration:
$\vec{a}=\frac{d \vec{v}}{d t}=\frac{d}{d t}(\vec{\omega} \times \vec{r})=\frac{d \vec{\omega}}{d t} \times \vec{r}+\vec{\omega} \times \frac{d \vec{r}}{d t}=\frac{d \vec{\omega}}{d t} \times \vec{r}+\vec{\omega} \times \vec{v}$

$\frac{d \vec{\omega}}{d t}=\vec{\alpha}=$ angular acceleration $=\alpha \vec{k}=\dot{\omega} \vec{k}=\ddot{\theta} \vec{k}$
Acceleration of P is combination of two vectors: $\vec{a}=\vec{\alpha} \times \vec{r}+\vec{\omega} \times \vec{\omega} \times \vec{r}$ $\vec{\alpha} \times \vec{r}=$ tangential acceleration component
$\vec{\omega} \times \vec{\omega} \times \vec{r}=$ radial acceleration component
Motion of a rigid body rotating around a fixed axis is often specified by the type of angular acceleration.

$$
\omega=\frac{d \theta}{d t} \quad \text { or } \quad d t=\frac{d \theta}{\omega} \ldots . . \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}=\omega \frac{d \omega}{d \theta}
$$

- Uniform Rotation, $a=0: \quad \theta=\theta_{0}+\omega t$
- Uniformly Accelerated Rotation, $a=$ constant:

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha t \\
& \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
& \omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{aligned}
$$

3-4 Comparison Between Rotational and Linear Equations

The kinematics equations for rotational and translation motion:

Rigid Body Under Constant Angular Acceleration	Particle Under Constant Acceleration		
ω_{f}	$=\omega_{i}+\alpha t$	v_{f}	$=v_{i}+a t$
θ_{f}	$=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$	x_{f}	$=x_{i}+v_{i} t+\frac{1}{2} a t^{2}$
ω_{f}^{2}	$=\omega_{i}{ }^{2}+2 \alpha\left(\theta_{f}-\theta_{i}\right)$	v_{f}^{2}	$=v_{i}{ }^{2}+2 a\left(x_{f}-x_{i}\right)$
θ_{f}	$=\theta_{i}+\frac{1}{2}\left(\omega_{i}+\omega_{f}\right) t$	x_{f}	$=x_{i}+\frac{1}{2}\left(v_{i}+v_{f}\right) t$

Example1: Cable C has a constant acceleration of 9 $\mathrm{in} / \mathrm{s} 2$ and an initial velocity of $12 \mathrm{in} / \mathrm{s}$, both directed to the right. Determine (a) the number of revolutions of the pulley in 2 s , (b) the velocity and change in position of the load B after 2 s , and (c) the acceleration of the point D on the rim of the inner pulley at $t=0$.

The tangential velocity and acceleration of D are equal to the velocity and acceleration of C.

$$
\begin{aligned}
\left(\vec{v}_{D}\right)_{0} & =\left(\vec{v}_{C}\right)_{0}=12 \mathrm{in} . / \mathrm{s} \rightarrow & \left(\vec{a}_{D}\right)_{t} & =\vec{a}_{C}=9 \mathrm{in} . / \mathrm{s} \rightarrow \\
\left(v_{D}\right)_{0} & =r \omega_{0} & \left(a_{D}\right)_{t} & =r \alpha \\
\omega_{0} & =\frac{\left(v_{D}\right)_{0}}{r}=\frac{12}{3}=4 \mathrm{rad} / \mathrm{s} & \alpha & =\frac{\left(a_{D}\right)_{t}}{r}=\frac{9}{3}=3 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Apply the relations for uniformly accelerated rotation to
 determine velocity and angular position of pulley after 2 s .

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha t=4 \mathrm{rad} / \mathrm{s}+\left(3 \mathrm{rad} / \mathrm{s}^{2}\right)(2 \mathrm{~s})=10 \mathrm{rad} / \mathrm{s} \\
& \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}=(4 \mathrm{rad} / \mathrm{s})(2 \mathrm{~s})+\frac{1}{2}\left(3 \mathrm{rad} / \mathrm{s}^{2}\right)(2 \mathrm{~s})^{2}=14 \mathrm{rad} \\
& N=(14 \mathrm{rad})\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)=\text { number of revs } \quad N=2.23 \mathrm{rev} \\
& v_{B}=r \omega=(5 \mathrm{in} .)(10 \mathrm{rad} / \mathrm{s}) \ldots \vec{v}_{B}=50 \mathrm{in} . / \mathrm{s} \uparrow \\
& \Delta y_{B}=r \theta=(5 \mathrm{in} .)(14 \mathrm{rad}) \ldots . \ldots . . \Delta y_{B}=70 \mathrm{in} .
\end{aligned}
$$

Evaluate the initial tangential and normal acceleration components of D .

$$
\left(\vec{a}_{D}\right)_{t}=\vec{a}_{C}=9 \mathrm{in} . / \mathrm{s} \rightarrow
$$

$$
\left(a_{D}\right)_{n}=r_{D} \omega_{0}^{2}=(3 \mathrm{in} .)(4 \mathrm{rad} / \mathrm{s})^{2}=48 \mathrm{in} / \mathrm{s}^{2} \downarrow
$$

Magnitude and direction of the total acceleration:

$$
\begin{gathered}
a_{D}=\sqrt{\left(a_{D}\right)_{t}^{2}+\left(a_{D}\right)_{n}^{2}}=\sqrt{9^{2}+48^{2}}=48.8 \mathrm{in} . / \mathrm{s}^{2} \\
\tan \phi=\frac{\left(a_{D}\right)_{n}}{\left(a_{D}\right)_{t}}=\frac{48}{9} \quad \ldots \ldots \ldots \phi=79.4^{\circ}
\end{gathered}
$$

3-5 General Plane Motion

General plane motion is neither a translation nor a rotation. General plane motion can be considered as the sum of a translation and rotation.

Displacement of particles A and B to A_{2} and B_{2} can be divided into two parts:

- translation to A_{2} and
- rotation of about A_{2} to B_{2}

3-6 Absolute and Relative Velocity in Plane Motion

Any plane motion can be replaced by a translation of an arbitrary reference point A and a simultaneous rotation about A.

$$
\begin{aligned}
& \vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A} \\
& \vec{v}_{B / A}=\omega \vec{k} \times \vec{r}_{B / A} \quad v_{B / A}=r \omega \\
& \vec{v}_{B}=\vec{v}_{A}+\omega \vec{k} \times \vec{r}_{B / A}
\end{aligned}
$$

$$
v_{B}=v_{A}+v_{B / A}
$$

Assuming that the velocity v_{A} of end A is known, wish to determine the velocity v_{B} of end B and the angular velocity ω in terms of $v_{\mathrm{A}}, 1$, and θ.

The direction of v_{B} and $v_{B / A}$ are known. Complete the velocity diagram.

$$
\begin{array}{ll}
\frac{v_{B}}{v_{A}}=\tan \theta & \frac{v_{A}}{v_{B / A}}=\frac{v_{A}}{l \omega}=\cos \theta \\
v_{B}=v_{A} \tan \theta & \omega=\frac{v_{A}}{l \cos \theta}
\end{array}
$$

Selecting point B as the reference point and solving for the velocity v_{A} of end A and the angular velocity ω leads to an equivalent velocity triangle.

$v_{A / B}$ has the same magnitude but opposite sense of $v_{B / A}$. The sense of the relative velocity is dependent on the choice of reference point. Angular velocity ω of the rod in its rotation about B is the same as its rotation about A. Angular velocity is not dependent on the choice of reference point.

Example 2: The double gear rolls on the stationary lower rack: the velocity of its center is $1.2 \mathrm{~m} / \mathrm{s}$. Determine (a) the angular velocity of the gear, and (b) the velocities of the upper rack R and point D of the gear.

SOLUTION:

The displacement of the gear center in one revolution is equal to the outer circumference. For $x_{A}>0$ (moves to right), $\theta<0$ (rotates clockwise).

$$
\frac{x_{A}}{2 \pi r}=-\frac{\theta}{2 \pi} \quad x_{A}=-r_{1} \theta
$$

Differentiate to relate the translational and angular velocities.
$v_{A}=-r_{1} \omega$
$\omega=-\frac{v_{A}}{r_{1}}=-\frac{1.2 \mathrm{~m} / \mathrm{s}}{0.150 \mathrm{~m}} \quad \vec{\omega}=\omega \vec{k}=-(8 \mathrm{rad} / \mathrm{s}) \vec{k}$

For any point P on the gear:

Velocity of the upper rack is equal to velocity of point B:

$$
\begin{aligned}
\vec{v}_{R} & =\vec{v}_{B}=\vec{v}_{A}+\omega \vec{k} \times \vec{r}_{B / A} \\
& =(1.2 \mathrm{~m} / \mathrm{s}) \vec{i}+(8 \mathrm{rad} / \mathrm{s}) \vec{k} \times(0.10 \mathrm{~m}) \vec{j} \\
& =(1.2 \mathrm{~m} / \mathrm{s}) \vec{i}+(0.8 \mathrm{~m} / \mathrm{s}) \vec{i}=(2 \mathrm{~m} / \mathrm{s}) \vec{i}
\end{aligned}
$$

Velocity of the point D

$$
\begin{aligned}
\vec{v}_{D} & =\vec{v}_{A}+\omega \vec{k} \times \vec{r}_{D / A} \\
& =(1.2 \mathrm{~m} / \mathrm{s}) \vec{i}+(8 \mathrm{rad} / \mathrm{s}) \vec{k} \times(-0.150 \mathrm{~m}) \vec{i} \\
& =(1.2 \mathrm{~m} / \mathrm{s}) \vec{i}+(1.2 \mathrm{~m} / \mathrm{s}) \vec{j} v_{D}=1.697 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example 3: The crank $A B$ has a constant clockwise angular velocity of 2000 rpm . For the crank position indicated, determine (a) the angular velocity of the connecting rod $B D$, and (b) the velocity of the piston P.

SOLUTION:

The velocity \vec{v}_{B} is obtained from the crank rotation data:

$$
\begin{aligned}
\omega_{A B} & =\left(2000 \frac{\mathrm{rev}}{\mathrm{~min}}\right)\left(\frac{\mathrm{min}}{60 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right)=209.4 \mathrm{rad} / \mathrm{s} \\
v_{B} & =(A B) \omega_{A B}=(3 \mathrm{in} .)(209.4 \mathrm{rad} / \mathrm{s})
\end{aligned}
$$

The direction of the absolute velocity \vec{v}_{D} is horizontal. The direction of the relative velocity $\vec{v}_{D / B}$ is perpendicular to $B D$. Compute the angle between the horizontal and the connecting rod from the law of sines.

$$
\frac{\sin 40^{\circ}}{8 \text { in. }}=\frac{\sin \beta}{3 \text { in. }} \quad \beta=13.95^{\circ}
$$

Determine the velocity magnitudes from the vector triangle:

$$
\frac{v_{D}}{\sin 53.95^{\circ}}=\frac{v_{D / B}}{\sin 50^{\circ}}=\frac{628.3 \mathrm{in} . / \mathrm{s}}{\sin 76.05^{\circ}}
$$

$v_{D}=523.4 \mathrm{in} . / \mathrm{s}=43.6 \mathrm{ft} / \mathrm{s}$
$v_{D / B}=495.9 \mathrm{in} . / \mathrm{s} \quad \ldots \ldots \ldots v_{P}=v_{D}=43.6 \mathrm{ft} / \mathrm{s}$
$v_{D / B}=l \omega_{B D . \ldots} \omega_{B D}=\frac{v_{D / B}}{l}=\frac{495.9 \mathrm{in.} / \mathrm{s}}{8 \mathrm{in} .}=62.0 \mathrm{rad} / \mathrm{s}$
$\vec{\omega}_{B D}=(62.0 \mathrm{rad} / \mathrm{s}) \vec{k}$

