# Seismic Reflection Data Processing

Emad A. Al-Heety Department of Applied Geology University of Anbar Email: emadsalah@uoanbar.edu.iq

## Seismic processing

Alteration of seismic data to suppress noise, enhance signal and migrate seismic events to the appropriate location in space.

| Field tapes                                                                                         | Observer's logs      |
|-----------------------------------------------------------------------------------------------------|----------------------|
| PREPROCESSING                                                                                       |                      |
| - Demultiplex<br>- Editing<br>- Gain recovery<br>- Field geometry<br>- Application of field statics |                      |
| DECONVOLUTION                                                                                       |                      |
| - Deconvolution<br>- Trace equalisation                                                             |                      |
| CMP SORTING                                                                                         |                      |
| VELOCITY ANALYSIS                                                                                   |                      |
| - Residual statics                                                                                  |                      |
| VELOCITY ANALYSIS                                                                                   |                      |
| NMO CORRECTION                                                                                      |                      |
| STACKING-                                                                                           | -BRUTE STACK DISPLAY |
| - Time-varying filter                                                                               | -MIGRATION           |
| - Gain                                                                                              | Gain                 |
| Display                                                                                             | Display              |

#### **Flow overview**

## Preprocessing

Preprocessing includes the following steps:

- Demultiplex
- Editing
- Gain recovery
- Field geometry
- Application of field statics

### Preprocessing Demultiplexing

- Four geophones: A, B, C, D, recording samples 1, 2, 3, 4 ...
- The recording device stores samples in the order recorded.
  - Demultiplexing is separating all the samples to produce a time sequence for each geophone.



## Preprocessing Editing and muting

- The typical targets for muting are:
- To detect and kill the unwanted traces
- Remove dead traces
- Remove noisy traces
- "Cut" out unwanted signal e.g. pre-arrival noise, direct arrival, ground roll.



### Preprocessing Gain recovery

- Turn up the volume" to account for seismic attenuation
- As seismic waves moves forward it experienced decay in amplitude in all direction.
- Both laterally with offset and vertically with depth.
- In processing lose amplitude, we could calculate the energy/amplitude loss using geometric spreading and apply a correction.
- Automatic gain control (AGC) apply a gain to equalize amplitude along the trace.



Pre-AGC

#### Post-AGC

#### Preprocessing Static Correction

- Often called statics, a bulk shift in time of a seismic trace during seismic processing.
- A common static correction is the *weathering correction*, which compensates for a layer of low seismic velocity material near the surface of the Earth.

## Preprocessing Static Correction

- Other correction is *topographic correction* which compensates for differences in topography and differences in the elevations of sources and receivers.
- Correct for surface topography and the weathered surface layer



#### **Pre-correction**

#### **Post-correction**

![](_page_13_Figure_2.jpeg)

An example for static correction

# Reflectivity and convolution

 The seismic wave is sensitive to the sequence of impedance contrasts.
The reflectivity series (R)

![](_page_14_Figure_2.jpeg)

# Reflectivity and convolution

- We input a source wavelet (W) which is reflected at each impedance contrast.
- The seismogram recorded at the surface (S) is the convolution of the two

S = W \* R

![](_page_16_Figure_0.jpeg)

## Convolution

It is defined as change in the wave shape as a result of passing through a linear filter.

It is a mathematical operation between two functions to obtain a desired function.

![](_page_18_Figure_0.jpeg)

## Textbook

Alsadi, H.N. (2017) Seismic Hydrocarbon Exploration: 2D and 3D Techniques. Springer International Publishing, Switzerland, 331p.