

Chapter Three

Partial Differential Equations (PDE)

Functions of Independent Variables

Suppose D is a set of n-tuples of real numbers $(x_1, x_2, ..., x_n)$. A **real-valued** function f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, ..., x_n)$$

to each element in D. The set D is the function's **domain**. The set of w-values taken on by f is the function's **range**. The symbol w is the **dependent variable** of f, and f is said to be a function of the n **independent variables** x_1 to x_n . We also call the x_j 's the function's **input variables** and call w the function's **output variable**.

Example

The value of
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
 at the point (3,0,4) is
$$f(3,0,4) = \sqrt{(3)^2 + (0)^2 + (4)^2} = \sqrt{25} = 5$$

Domains and Ranges

Example

Function	Domain	Range
$w = \sqrt{y - x^2}$	$y \ge x^2$	$[0,\infty)$
$w = \frac{1}{xy}$	$xy \neq 0$	$\bigl(-\infty,\!0\bigr)\!\cup\!\bigl(0,\infty\bigr)$
$w = \sin xy$	Both $x & y (-\infty, +\infty)$ or Entire plane	[-1,+1]

Function	Domain	Range
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$(x, y, z) \neq (0,0,0)$	$(0,\infty)$
$w = xy \ln z$	Half-space $z > 0$	$(-\infty,\infty)$

Partial Derivatives

The partial derivative of f(x, y) with respect to x at the point (x_0, y_0) is

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \frac{d}{dx} f(x, y_0) = f_x = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

provided the limit exists.

The partial derivative of f(x, y) with respect to y at the point (x_0, y_0) is

$$\frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = \frac{d}{dy} f(x_0, y) = f_y = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

provided the limit exists.

Example

Find the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point (4,-5) if

$$f(x, y) = x^2 + 3xy + y - 1$$

Solution

To find $\partial f / \partial x$, we treat y as a constant and differentiate with respect to x

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + 3xy + y - 1) = 2x + 3y + 0 - 0 = 2x + 3y$$

The values of $\partial f / \partial x$ at (4,-5) is 2(4) + 3(-5) = -7

To find $\partial f / \partial y$, we treat x as a constant and differentiate with respect to y

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 + 3xy + y - 1) = 0 + 3x + 1 - 0 = 3x + 1$$

The values of $\partial f / \partial y$ at (4,-5) is 3(4)+1=13

Example

Find
$$\partial f / \partial y$$
 if $f(x, y) = y \sin(xy)$

Solution

We treat x as a constant and f as a product of y and sin(xy)

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (y \sin(xy)) = y \frac{\partial}{\partial y} \sin(xy) + \sin(xy) \frac{\partial}{\partial y} (y)$$
$$= (y \cos(xy)) \frac{\partial}{\partial y} (xy) + \sin(xy) = xy \cos(xy) + \sin(xy)$$

Example

Find
$$f_x$$
 and f_y if $f(x, y) = \frac{2y}{y + \cos x}$

Solution

We treat f as a quotient

$$f_x = \frac{\partial}{\partial x} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial x} (2y) - 2y \frac{\partial}{\partial x} (y + \cos x)}{(y + \cos x)^2}$$
$$= \frac{(y + \cos x)(0) - 2y(-\sin x)}{(y + \cos x)^2} = \frac{2y \sin x}{(y + \cos x)^2}$$

$$f_{y} = \frac{\partial}{\partial y} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial y} (2y) - 2y \frac{\partial}{\partial y} (y + \cos x)}{(y + \cos x)^{2}}$$
$$= \frac{(y + \cos x)(2) - 2y(1)}{(y + \cos x)^{2}} = \frac{2\cos x}{(y + \cos x)^{2}}$$

Example

Find
$$\partial z / \partial x$$
 for $yz - \ln z = x + y$

Solution

We differentiate both sides of the equation with respect to x, holding y constant and treating z as a differentiable function of x

$$\frac{\partial}{\partial x}(yz) - \frac{\partial}{\partial x}(\ln z) = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial x}(y)$$

$$y\frac{\partial z}{\partial x} - \frac{1}{z}\frac{\partial z}{\partial x} = 1 + 0$$

$$\left(y - \frac{1}{z}\right)\frac{\partial z}{\partial x} = 1 \qquad \Rightarrow \qquad \frac{\partial z}{\partial x} = \frac{z}{yz - 1}$$

Example

If x, y and z are independent variables and

$$f(x, y, z) = x\sin(y + 3z)$$

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[x \sin(y + 3z) \right] = x \frac{\partial}{\partial z} \sin(y + 3z)$$
$$= x \cos(y + 3z) \frac{\partial}{\partial z} (y + 3z) = 3x \cos(y + 3z)$$

Dr. Zevid Tariq Ibraheem

Second Order Partial Derivatives

$$\frac{\partial^2 f}{\partial \mathbf{r}^2} = f_{xx},$$

$$\frac{\partial^2 f}{\partial y^2} = f_{yy},$$

$$\frac{\partial^2 f}{\partial y^2} = f_{yy}, \qquad \frac{\partial^2 f}{\partial x \partial y} = f_{yx}, \qquad \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

$$\frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

The defining equations are

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right),$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Differentiate first with respect to y, then with respect to x.

$$f_{yx} = (f_y)_x$$

Means the same thing

The Mixed Derivative Theorem

If f(x, y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} are defined throughout a region containing a point (a,b) and are all continuous at (a,b), then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Example

If
$$f(x, y) = x \cos y + ye^x$$
, find

$$\frac{\partial^2 f}{\partial x^2}$$
,

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$, and $\frac{\partial^2 f}{\partial x \partial y}$,

$$\frac{\partial^2 f}{\partial v^2}$$
,

$$\frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x \cos y + y e^x) = \cos y + y e^x, \qquad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^x$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^{x}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = y e^x$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x \cos y + y e^x) = -x \sin y + e^x, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\sin y + e^x$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\sin y + e^{-\frac{1}{2}}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -x \cos y$$

Partial Derivatives of Higher Order

Example

Find
$$f_{yxyz}$$
 if $f(x, y, z) = 1 - 2xy^2z + x^2y$

Solution

We first differentiate with respect to the variable y, then x, then y again, and finally with respect to z

$$f_y = -4xyz + x^2$$
, $f_{yx} = -4yz + 2x$, $f_{yxy} = -4z$, $f_{yxyz} = -4z$

Exercises

Find the Partial Derivatives of the functions with respect to each variable

1)
$$f(x,y) = 2x^2 - 3y - 4$$

Ans.
$$f_x = 4x$$
, $f_y = -3$

2)
$$f(x,y) = (x^2-1)(y+2)$$

2)
$$f(x,y) = (x^2 - 1)(y + 2)$$
 Ans. $f_x = 2x(y + 2)$, $f_y = x^2 - 1$

3)
$$f(x, y) = (xy-1)^2$$

Ans.
$$f_x = 2y(xy-1), f_y = 2x(xy-1)$$

4)
$$f(x,y) = \sqrt{x^2 + y^2}$$

Ans.
$$f_x = \frac{x}{\sqrt{x^2 + y^2}}, f_y = \frac{y}{\sqrt{x^2 + y^2}}$$

5)
$$f(x,y) = \frac{1}{x+y}$$

Ans.
$$f_x = \frac{-1}{(x+y)^2}, f_y = \frac{-1}{(x+y)^2}$$

$$6) f(x,y) = \frac{x+y}{xy-1}$$

Ans.
$$f_x = \frac{-y^2 - 1}{(xy - 1)^2}, f_y = \frac{-x^2 - 1}{(xy - 1)^2}$$

7)
$$f(x, y) = e^{(x+y+1)}$$

Ans.
$$f_x = e^{(x+y+1)}, f_y = e^{(x+y+1)}$$

$$8) f(x,y) = \ln(x+y)$$

Ans.
$$f_x = \frac{1}{x+y}, \ f_y = \frac{1}{x+y}$$

9)
$$f(x, y) = \sin^2(x-3y)$$

Ans.
$$f_x = 2\sin(x-3y)\cos(x-3y)$$
,
 $f_y = -6\sin(x-3y)\cos(x-3y)$

10)
$$f(x,y) = x^y$$

Ans.
$$f_x = yx^{y-1}$$
, $f_y = x^y \ln(x)$

11)
$$f(x,y) = \int_{x}^{y} g(t)dt$$
,

Ans.
$$f_x = -g(x), f_y = g(y)$$

(g continuous for all t)

12)
$$f(x, y, z) = 1 + xy^2 - 2z^2$$

Ans.
$$f_x = y^2$$
, $f_y = 2xy$, $f_z = -4z$

13)
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

Ans.
$$f_x = 1$$
, $f_y = -y(y^2 + z^2)^{-1/2}$, $f_z = -z(y^2 + z^2)^{-1/2}$

14)
$$f(x, y, z) = \sin^{-1}(xyz)$$

Ans.
$$f_x = \frac{yz}{\sqrt{1 - x^2 y^2 z^2}}$$
,

$$f_{y} = \frac{xz}{\sqrt{1 - x^2 y^2 z^2}},$$

$$f_z = \frac{xy}{\sqrt{1 - x^2 y^2 z^2}}$$

15)
$$f(x,y,z) = \ln(x+2y+3z)$$
 Ans. $f_x = \frac{1}{x+2y+3z}$, $f_y = \frac{2}{x+2y+3z}$, $f_z = \frac{3}{x+2y+3z}$

16) $f(x,y,z) = e^{-(x^2+y^2+z^2)}$ Ans. $f_x = -2xe^{-(x^2+y^2+z^2)}$, $f_y = -2ye^{-(x^2+y^2+z^2)}$, $f_z = -2ze^{-(x^2+y^2+z^2)}$

17) $f(x,y,z) = \tanh(x+2y+3z)$ Ans. $f_x = \operatorname{sech}^2(x+2y+3z)$, $f_y = 2\operatorname{sech}^2(x+2y+3z)$, $f_z = 3\operatorname{sech}^2(x+2y+3z)$

18) $f(t,\alpha) = \cos(2\pi t - \alpha)$ Ans. $f_t = -2\pi\sin(2\pi t - \alpha)$, $f_\alpha = \sin(2\pi t - \alpha)$, $f_\alpha = \sin(2\pi t - \alpha)$ $h_\rho = \sin(\rho)\cos(\theta)$, $h_\rho = -\rho\sin(\rho)\cos(\theta)$, $h_\rho = -\rho\sin(\rho)\sin(\theta)$

Find the second order Partial Derivatives of the functions with respect to each variable

1)
$$f(x,y) = x + y + xy$$
 Ans. $f_{xx} = 0, f_{yy} = 0, f_{xy} = 1$

2)
$$g(x, y) = x^2y + \cos(y) + y\sin(x)$$

Ans.
$$g_{xx} = 2y - y\sin(x)$$
,
 $g_{yy} = -\cos(y)$,
 $g_{xy} = 2x + \cos(x)$

$$3) r(x,y) = \ln(x+y)$$

Ans.
$$r_{xx} = \frac{-1}{(x+y)^2}$$
, $r_{yy} = \frac{-1}{(x+y)^2}$, $r_{xy} = \frac{-1}{(x+y)^2}$

Find the mixed Partial Derivatives for the following functions

1)
$$w = \ln(2x + 3y)$$

2)
$$w = e^x + x \ln(y) + y \ln(x)$$

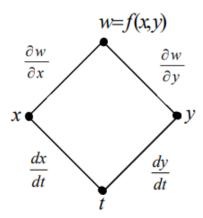
3)
$$w = xy^2 + x^2y^3 + x^3y^4$$

4)
$$w = x \sin(y) + y \sin(x) + xy$$

Chain Rule

If w = f(x, y) has continuous partial derivatives f_x and f_y and if x = x(t), y = y(t) are differentiable functions of t, then the composite w = f(x(t), y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}$$



Example

Use the Chain Rule to find the derivative of

$$w = xy$$

with respect to t along the path

$$x = \cos(t)$$
 & $y = \sin(t)$

What is the derivative's value at $t = \pi/2$?

Solution

We apply the Chain Rule to find dw/dt as follows

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

$$= \frac{\partial}{\partial x} (xy) \times \frac{d}{dt} (\cos(t)) + \frac{\partial}{\partial y} (xy) \times \frac{d}{dt} (\sin(t))$$

$$= y \times (-\sin(t)) + x \times (\cos(t))$$

$$= (\sin(t)) \times (-\sin(t)) + (\cos(t)) \times (\cos(t))$$

$$= -\sin^2(t) + \cos^2(t)$$

$$= \cos(2t)$$

We can check the result with a more direct calculation as a function of t

$$w = xy = \cos(t).\sin(t) = \frac{1}{2}\sin(2t)$$
So,
$$\frac{dw}{dt} = \frac{d}{dt}\left(\frac{1}{2}\sin(2t)\right) = \frac{1}{2} \times 2\cos(2t) = \cos(2t)$$

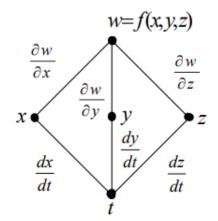
In either case, at a given value of t,

$$\left(\frac{dw}{dt}\right)_{t=\pi/2} = \cos\left(2 \times \frac{\pi}{2}\right) = \cos\pi = -1$$

Chain Rule for Functions of Three Independent Variables

Here we have three routes from w to t instead of two, but finding dw/dt is still the same. Read each route, multiplying derivatives along the way; then add.

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$



Example

Find dw/dt if

$$w = xy + z$$
, $x = \cos(t)$, $y = \sin(t)$, $z = t$

What is the derivative's value at t = 0?

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

$$= (y)(-\sin(t)) + (x)(\cos(t)) + (1)(1)$$

$$= (\sin(t))(-\sin(t)) + (\cos(t))(\cos(t)) + 1$$

$$= -\sin^2(t) + \cos^2(t) + 1 = 1 + \cos(2t)$$

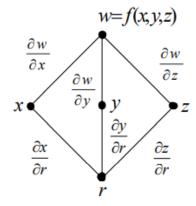
$$\left(\frac{dw}{dt}\right)_{t=0} = 1 + \cos(0) = 2$$

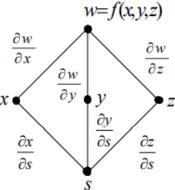
Chain Rule for Two Independent Variables and Three Intermediate

<u>Variables</u>

Suppose that w = f(x, y, z), x = g(r, s), y = h(r, s), z = k(r, s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$
$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$





Example

Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if

$$w = x + 2y + z^2$$
, $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r} = (1) \left(\frac{1}{s}\right) + (2)(2r) + (2z)(2)$$

$$= \frac{1}{s} + 4r + 4(2r) = \frac{1}{s} + 12r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} = (1) \left(-\frac{r}{s^2}\right) + (2)\left(\frac{1}{s}\right) + (2z)(0)$$

$$= \frac{2}{s} - \frac{r}{s^2}$$

Example

Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if

$$w = x^2 + y^2$$
, $x = r - s$, $y = r + s$

Solution

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} = (2x)(1) + (2y)(1)$$
$$= 2(r-s) + 2(r+s) = 4r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} = (2x)(-1) + (2y)(1)$$
$$= -2(r-s) + 2(r+s) = 4s$$

Implicit Differentiation

Suppose that F(x, y) = 0 is differentiable and that the equation F(x, y) = 0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

Example

Find
$$dy/dx$$
 if $y^2 - x^2 = \sin xy$

Take
$$F(x, y) = y^2 - x^2 - \sin xy$$
. Then
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{-2x - y\cos xy}{2y - x\cos xy} = \frac{2x + y\cos xy}{2y - x\cos xy}$$

Exercises

Find dw/dt at the given value for the following functions

1)
$$w = x^2 + y^2$$
, $x = \cos(t)$, $y = \sin(t)$, at $t = \pi$ Ans. $\frac{dw}{dt} = 0$

2)
$$w = \frac{x}{z} + \frac{y}{z}, x = \cos^2(t), y = \sin^2(t), z = \frac{1}{t}, \text{ at } t = 3$$
 Ans. $\frac{dw}{dt}\Big|_{t=3} = 1$

3)
$$w = 2ye^x - \ln(z)$$
, $x = \ln(t^2 + 1)$, $y = \tan^{-1}(t)$, $z = e^t$, at $t = 1$ Ans. $\frac{dw}{dt}\Big|_{t=1} = \pi + 1$

Answer the following questions:

1) Find $\partial z/\partial u$ and $\partial z/\partial v$ for $z = 4e^x \ln(y)$, $x = \ln(u\cos(v))$, $y = u\sin(v)$ at the point $(u,v) = (2,\pi/4)$.

Ans.
$$z_u = \sqrt{2}(\ln 2 + 2), z_v = -2\sqrt{2}(\ln 2 - 2)$$

2) Find $\partial w/\partial u$ and $\partial w/\partial v$ for w = xy + yz + xz, x = u + v, y = u - v, z = uv at the point (u, v) = (1/2, 1).

Ans.
$$z_u = 3$$
, $z_v = -\frac{3}{2}$

Dr. Zevid Tariq Ibraheem

3) Find
$$\partial u/\partial x$$
, $\partial u/\partial y$ and $\partial u/\partial z$ for $u = \frac{p-q}{q-r}$, $p = x+y+z$, $q = x-y+z$, $r = x+y-z$ at the point $(x,y,z) = (\sqrt{3},2,1)$

Ans. $u_x = 0$, $u_y = 1$, $u_z = -2$

4) Find $\partial w/\partial r$ if $w = (x+y+z)^2$, x = r-s, $y = \cos(r+s)$, $z = \sin(r+s)$ at the point (r,s)=(1,-1)

Ans. 12

5) Find $\partial w / \partial v$ if $w = x^2 + (y/x)$, x = u - 2v + 1, and y = 2u + v - 2, at the **point** (u,v)=(0,0)

Ans.
$$-7$$

6) Find $\partial z/\partial u$ and $\partial z/\partial v$ if $z=5\tan^{-1}(x)$ and $x=e^u+\ln v$ at the point $(u,v) = (\ln 2,1)$

Ans.
$$z_u = 2, z_v = 1$$

Find dy/dx at the given point for the following functions

1)
$$x^3 - 2y^2 + xy = 0$$
, (1,1)

2)
$$x^2 + xy + y^2 - 7 = 0$$
, (1,2)

Ans.
$$-4/5$$