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CHAPTER 

7 Laplace Transforms

7.1 Introduction: A Mixing Problem

We analyzed a simpler version of this problem in Example 1 of Section 3.2. Let x1t2 be the 
amount of salt (in kilograms) in the tank at time t. Then of course x1t2 >1000 is the concentration, 
in kilograms per liter. The salt content is depleted at the rate 16 L/min2 * 1x1t2 >1000 kg/L2 =
3x1t2 >500 kg/min through the exit valve. Simultaneously, it is enriched through valves A and B 
at the rate g1t2, given by

(1) g1t2 = e0.04 kg/L * 6 L/min = 0.24 kg/min , 0 6 t 6 10 (valve A) ,
0.02 kg/L * 6 L/min = 0.12 kg/min , t 7 10 (valve B) .

Thus, x1t2 changes at a rate

d
dt

  x1t2 = g1t2 -
3x1t2
500

  ,

or

(2) 
dx
dt

+
3

500
  x = g1t2 ,

Figure 7.1 depicts a mixing problem with valved input feeders. At time 
t = 0, valve A is opened, delivering 6 L/min of a brine solution contain-
ing 0.04 kg of salt per liter. At t = 10 min, valve A is closed and valve B 
is opened, delivering 6 L /min of brine at a concentration of 0.02 kg/L. 
Initially, 30 kg of salt are dissolved in 1000 L of water in the tank. The exit 
valve C, which empties the tank at 6 L /min, maintains the contents of the 
tank at constant volume. Assuming the solution is kept well stirred, deter-
mine the amount of salt in the tank at all times t + 0.

x(t)

x (0) 5 30 kg 6 L/min 

1000 L 
C

6 L/min,
0.04 kg/L 

6 L/min,
0.02 kg/L 

A

B

Figure 7.1 Mixing tank with valve A open
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Section 7.1  Introduction: A Mixing Problem     351

with initial condition

(3) x102 = 30 .

To solve the initial value problem (2) – (3) using the techniques of Chapter 4, we would 
have to break up the time interval 10, ∞ 2 into two subintervals 10, 102 and 110, ∞ 2. On these 
subintervals, the nonhomogeneous term g1t2 is constant, and the method of undetermined 
coefficients could be applied to equation (2) to determine general solutions for each subin-
terval, each containing one arbitrary constant (in the associated homogeneous solutions). The 
initial condition (3) would fix this constant for 0 6 t 6 10, but then we would need to evaluate 
x1102 and use it to reset the constant in the general solution for t 7 10.

Our purpose here is to illustrate a new approach using Laplace transforms. As we will 
see, this method offers several advantages over the previous techniques. For one thing, it is 
much more convenient in solving initial value problems for linear constant coefficient equa-
tions when the forcing term contains jump discontinuities.

The Laplace transform of a function f1t2, defined on 30, ∞ 2, is given by†

(4) F1s2 J L
∞

0
 e-stf1t2dt .

Thus we multiply f1t2 by e-st and integrate with respect to t from 0 to ∞ . This takes a function 
of t and produces a function of s.

In this chapter we’ll scrutinize many of the details on this “exchange of functions,” but for 
now let’s simply state the main advantage of executing the transform. The Laplace transform 
replaces linear constant coefficient differential equations in the t-domain by (simpler) algebraic 
equations in the s-domain! In particular, if X1s2 is the Laplace transform of x1t2, then the trans-
form of x′1t2 is simply sX1s2 - x102. Therefore, the information in the differential equation (2) 
and initial condition (3) is transformed from the t-domain to the s-domain simply as

t-Domain                                               s-Domain

(5) x′1t2 +
3

500
  x1t2 = g1t2 ,  x102 = 30 ;  sX1s2 - 30 +

3
500

X1s2 = G1s2 ,

where G1s2 is the Laplace transform of g1t2. (Notice that we have taken certain linearity 
properties for granted, such as the fact that the transform preserves sums and multiplications 
by constants.) We can find X1s2 in the s-domain without solving any differential equations: the 
solution is simply

(6) X1s2 =
30

s + 3>500
+

G1s2
s + 3>500

 .

For this procedure to be useful, there has to be an easy way to convert from the t-domain to 
the s-domain and vice versa. There are, in fact, tables and theorems that facilitate this conver-
sion in many useful circumstances. We’ll see, for instance, that the transform of g1t2, despite 
its unpleasant piecewise specification in equation (1), is given by the single formula

G1s2 =
0.24

s
-

0.12
s

 e-10s ,

and as a consequence the transform of x1t2 equals

X1s2 =
30

s + 3>500
+

0.24
s1s + 3>5002 -

0.12e-10s

s1s + 3>5002  .

†Historical Footnote: The Laplace transform was first introduced by Pierre Laplace in 1779 in his research on prob-
ability. G. Doetsch helped develop the use of Laplace transforms to solve differential equations. His work in the 1930s 
served to justify the operational calculus procedures earlier used by Oliver Heaviside.
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352     Chapter 7  Laplace Transforms

Again by table lookup (and a little theory), we can deduce that

(7) x1t2 = 200 - 170e-3t>500 - 100 # e0 , t … 10 ,
31 - e-31t- 102>5004  , t Ú 10 .

See Figure 7.2.

t

x(t)

500
0

25

50

75

100

100 150 200 250

Figure 7.2 Solution to mixing tank example

Note that to arrive at (7) we did not have to take derivatives of trial solutions, break up 
intervals, or evaluate constants through initial data. The Laplace transform machinery replaces 
all of these operations by basic algebra: addition, subtraction, multiplication, division—and, 
of course, the judicious use of the table. Figure 7.3 depicts the advantages of the transform 
method.

Unfortunately, the Laplace transform method is less helpful with equations containing 
variable coefficients or nonlinear equations (and sometimes determining inverse transforms 
can be a Herculean task!). But it is ideally suited for many problems arising in applications. 
Thus, we devote the present chapter to this important topic.

Di�erential
equation

Inverse
transform

Laplace
transform

Break into subintervals

Trial solutions

Solution

Algebra: 1, 2, 3, 4

, ∫ dt Calculus:

Fit constants to
initial data

t-domain

s-domain

d
dt

Figure 7.3 Comparison of solution methods
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Section 7.2  Definition of the Laplace Transform     353

In earlier chapters we studied differential operators. These operators took a function and 
mapped or transformed it (via differentiation) into another function. The Laplace transform, 
which is an integral operator, is another such transformation.

7.2 Definition of the Laplace Transform

Laplace Transform

Definition 1. Let f1t2 be a function on 30, ∞ 2. The Laplace transform of f is the 
function F defined by the integral

(1) F1s2 J L
H

0
 e-stf1t2  dt .

The domain of F1s2 is all the values of s for which the integral in (1) exists.† The  
Laplace transform of f is denoted by both F and ℒ5f6.

Notice that the integral in (1) is an improper integral. More precisely,

L
∞

0
e-stf1t2  dt J lim

NS ∞ L
N

0
e-stf1t2  dt

whenever the limit exists.

Example 1 Determine the Laplace transform of the constant function f1t2 = 1, t Ú 0 .

Solution Using the definition of the transform, we compute

 F1s2 = L
∞

0
e-st # 1 dt = lim

NS ∞
 L

N

0
e-st dt

 = lim
NS ∞

-e-st

s
 2 t=N

t= 0
= lim

NS ∞
c 1

s
-

e-sN

s
d  .

Since e-sN S 0 when s 7 0 is fixed and N S ∞ , we get

F1s2 =
1
s
  for  s 7 0 .

When s … 0, the integral 1∞
0  e-st dt diverges. (Why?) Hence F1s2 = 1>s, with the domain of 

F1s2 being all s 7 0. ◆

†We treat s as real-valued, but in certain applications s may be a complex variable. For a detailed treatment of complex-
valued Laplace transforms, see Complex Variables and the Laplace Transform for Engineers, by Wilbur R. LePage 
(Dover Publications, New York, 2010), or Fundamentals of Complex Analysis with Applications to Engineering and 
Science (3rd ed.), by E. B. Saff and A. D. Snider (Pearson Education, Boston, MA, 2003).
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354     Chapter 7  Laplace Transforms

Example 2 Determine the Laplace transform of f1t2 = eat, where a is a constant.

Solution Using the definition of the transform,

 F1s2 = L
∞

0
e-steat dt = L

∞

0
e-1s - a2t dt

 = lim
NS ∞ L

N

0
e-1s - a2t dt = lim

NS ∞

-e-1s - a2t

s - a
2 N
0

 = lim
NS ∞
c 1
s - a

-
e-1s - a2N

s - a
d

 =
1

s - a
 for s 7 a .

Again, if s … a the integral diverges, and hence the domain of F1s2 is all s 7 a. ◆

It is comforting to note from Example 2 that the transform of the constant function 
f1t2 = 1 = e0t is 1> 1s - 02 = 1>s, which agrees with the solution in Example 1.

Example 3 Find ℒ5sin bt6, where b is a nonzero constant.

Solution We need to compute

ℒ5sin bt61s2 = L
∞

0
e-st sin bt dt = lim

NS ∞ L
N

0
e-st sin bt dt .

Referring to the table of integrals at the back of the book, we see that

 ℒ5sin bt61s2 = lim
NS ∞
c e-st

s2 + b2 1-s sin bt - b cos bt2  2 N
0
d

 = lim
NS ∞
c b

s2 + b2 -
e-sN

s2 + b2  1s sin bN + b cos bN2 d

 =
b

s2 + b2 for s 7 0

(since for such s we have limNS ∞ e-sN1s sin bN + b cos bN2 = 0; see Problem 32). ◆

Example 4 Determine the Laplace transform of

f1t2 = •
2 , 0 6 t 6 5 ,
0 , 5 6 t 6 10 ,
e4t , 10 6 t .
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Section 7.2  Definition of the Laplace Transform     355

Solution Since f1t2 is defined by a different formula on different intervals, we begin by breaking up the 
integral in (1) into three separate parts.† Thus,

 F1s2 = L
∞

0
e-stf1t2  dt

 = L
5

0
e-st # 2 dt + L

10

5
e-st # 0 dt + L

∞

10
e-ste4t dt

 = 2L
5

0
e-st dt + lim

NS ∞ L
N

10
e-1s - 42t dt

 =
2
s

-
2e-5s

s
+ lim

NS ∞
c e

-101s - 42

s - 4
-

e-1s - 42N

s - 4
d

 =
2
s

-
2e-5s

s
+

e-101s - 42

s - 4
  for s 7 4 . ◆

Notice that the function f1t2 of Example 4 has jump discontinuities at t = 5 and t = 10.  
These values are reflected in the exponential terms e-5s and e-10s that appear in the formula 
for F1s2. We’ll make this connection more precise when we discuss the unit step function in 
Section 7.6.

An important property of the Laplace transform is its linearity. That is, the Laplace trans-
form ℒ is a linear operator.

†Notice that f1t2 is not defined at the points t = 0, 5, and 10. Nevertheless, the integral in (1) is still meaningful and 
unaffected by the function’s values at finitely many points.

Linearity of the Transform

Theorem 1. Let f, f1, and f2 be functions whose Laplace transforms exist for s 7 a and 
let c be a constant. Then, for s 7 a,

(2)  ℒ5f1 + f26 = ℒ5f16 + ℒ5f26 ,

(3)  ℒ5cf6 = cℒ5f6 .

Proof. Using the linearity properties of integration, we have for s 7 a

 ℒ5f1 + f261s2 = L
∞

0
e-st3f11t2 + f21t24dt

 = L
∞

0
e-stf11t2  dt + L

∞

0
e-stf21t2  dt

 = ℒ5f161s2 + ℒ5f261s2 .

Hence, equation (2) is satisfied. In a similar fashion, we see that

 ℒ5cf61s2 = L
∞

0
e-st3cf1t24dt = c L

∞

0
e-stf1t2  dt

 = cℒ5f61s2 . ◆
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356     Chapter 7  Laplace Transforms

Example 5 Determine ℒ511 + 5e4t - 6 sin 2t6 .

Solution From the linearity property, we know that the Laplace transform of the sum of any finite num-
ber of functions is the sum of their Laplace transforms. Thus,

 ℒ511 + 5e4t - 6 sin 2t6 = ℒ5116 + ℒ55e4t6 + ℒ5-6 sin 2t6
 = 11ℒ516 + 5ℒ5e4t6 - 6ℒ5sin 2t6 .

In Examples 1, 2, and 3, we determined that

ℒ5161s2 =
1
s
 ,  ℒ5e4t61s2 =

1
s - 4

 ,  ℒ5sin 2t61s2 =
2

s2 + 22 .

Using these results, we find

 ℒ511 + 5e4t - 6 sin 2t61s2 = 11 a 1
s
b + 5 a 1

s - 4
b - 6 a 2

s2 + 4
b

 =
11
s

+
5

s - 4
-

12

s2 + 4
 .

Since ℒ516, ℒ5e4t6, and ℒ5sin 2t6 are all defined for s 7 4, so is the transform 
ℒ511 + 5e4t - 6 sin 2t6. ◆

Table 7.1 lists the Laplace transforms of some of the elementary functions. You should 
become familiar with these, since they are frequently encountered in solving linear differential 
equations with constant coefficients. The entries in the table can be derived from the defini-
tion of the Laplace transform. A more elaborate table of transforms is given on the inside back 
cover of this book.

TABLE 7.1  Brief Table of Laplace Transforms

f1t2 F1s2 = ℒ5f61s2

1 1
s
 ,  s 7 0

eat 1
s - a

 ,  s 7 a

tn , n = 1, 2, . . .
n!

sn+1 ,  s 7 0

sin bt
b

s2 + b2 ,  s 7 0

cos bt
s

s2 + b2 ,  s 7 0

eattn , n = 1, 2, . . .
n!

1s - a2n+1 ,  s 7 a

eat sin bt
b

1s - a22 + b2 ,  s 7 a

eat cos bt
s - a

1s - a22 + b2 ,  s 7 a
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Section 7.2  Definition of the Laplace Transform     357

Example 6 Use Table 7.1 to determine ℒ55t2e-3t - e12t cos 8t6 .

Solution From the table,

ℒ5t2e-3t6 =
2!

3s - 1-3242 + 1 =
2

1s + 323 for s 7 -3, 

and 

ℒ5e12t cos 8t6 =
s - 12

1s - 1222 + 82 for s 7 12 .

Therefore, by linearity,

ℒ55t2e-3t - e12t cos 8t6 =
10

1s + 323 -
s - 12

1s - 1222 + 64
 for s 7 12 . ◆

Existence of the Transform
There are functions for which the improper integral in (1) fails to converge for any value of s. 
For example, this is the case for the function f1t2 = 1>t, which grows too fast near zero. 
Likewise, no Laplace transform exists for the function f1t2 = et2, which increases too rap-
idly as t S ∞ . Fortunately, the set of functions for which the Laplace transform is defined 
includes many of the functions that arise in applications involving linear differential equa-
tions. We now discuss some properties that will (collectively) ensure the existence of the 
Laplace transform.

A function f1t2 on 3a, b4 is said to have a jump discontinuity at t0 ∈ 1a, b2 if f1t2 is 
discontinuous at t0, but the one-sided limits

lim
tS t-

0  
f1t2 and lim

tS t+
0
  f1t2

exist as finite numbers. We have encountered jump discontinuities in Example 4 (page 354) 
and in the input to the mixing tank in Section 7.1 (page 350). If the discontinuity occurs 
at an endpoint, t0 = a (or b), a jump discontinuity occurs if the one-sided limit of f1t2 as 
t S a+1t S b-2 exists as a finite number. We can now define piecewise continuity.

Piecewise Continuity

Definition 2. A function f1t2 is said to be piecewise continuous on a finite interval 
3a, b4 if f1t2 is continuous at every point in 3a, b4, except possibly for a finite number 
of points at which f1t2 has a jump discontinuity.

A function f1t2 is said to be piecewise continuous on 30, H 2 if f1t2 is piecewise 
continuous on 30, N4 for all N 7 0.

Example 7 Show that

f1t2 = •
t , 0 6 t 6 1 ,
2 , 1 6 t 6 2 ,
1t - 222 , 2 … t … 3 ,

whose graph is sketched in Figure 7.4 (on page 358), is piecewise continuous on 30, 34.
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358     Chapter 7  Laplace Transforms

Solution From the graph of f1t2 we see that f1t2 is continuous on the intervals (0, 1), (1, 2), and (2, 3]. 
Moreover, at the points of discontinuity, t = 0, 1, and 2, the function has jump discontinuities, 
since the one-sided limits exist as finite numbers. In particular, at t = 1, the left-hand limit is 1 
and the right-hand limit is 2. Therefore f1t2 is piecewise continuous on 30, 34. ◆

Observe that the function f1t2 of Example 4 on page 354 is piecewise continuous on 
30, ∞ 2 because it is piecewise continuous on every finite interval of the form 30, N4, with 
N 7 0. In contrast, the function f1t2 = 1>t is not piecewise continuous on any interval 
 containing the origin, since it has an “infinite jump” at the origin (see Figure 7.5).

A function that is piecewise continuous on a finite interval is necessarily integrable over 
that interval. However, piecewise continuity on 30, ∞ 2 is not enough to guarantee the exis-
tence (as a finite number) of the improper integral over 30, ∞ 2; we also need to consider the 

f (t)

0 1 2 3

1

2

t

Figure 7.4 Graph of f1t2 in Example 7

-10 

-5

5 

0

10 

-10 -5 5 10 
t 

f ( t ) = 1/ t 

1 – t = +` 

1 – t = - ` 

lim 

lim 

t S 0+

t S 0-

Figure 7.5 Infinite jump at origin
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Section 7.2  Definition of the Laplace Transform     359

growth of the integrand for large t. Roughly speaking, we’ll show that the Laplace transform 
of a piecewise continuous function exists, provided the function does not grow “faster than an 
exponential.”

Exponential Order A

Definition 3. A function f1t2 is said to be of exponential order A if there exist positive 
constants T and M such that

(4) 0 f1t2 0 … Meat ,    for all t Ú T .

Conditions for Existence of the Transform

Theorem 2. If f1t2 is piecewise continuous on 30, ∞ 2 and of exponential order a, 
then ℒ5f61s2 exists for s 7 a.

For example, f1t2 = e5t sin 2t is of exponential order a = 5 since

0 e5t sin 2t 0 … e5t ,

and hence (4) holds with M = 1 and T any positive constant.
We use the phrase f1t2 is of exponential order to mean that for some value of a, the func-

tion f1t2 satisfies the conditions of Definition 3; that is, f1t2 grows no faster than a function of 
the form Meat. The function et2 is not of exponential order. To see this, observe that

lim
tS ∞

 
et2

eat = lim
tS ∞  

et1t-a2 = + ∞

for any a. Consequently, et2 grows faster than eat for every choice of a.
The functions usually encountered in solving linear differential equations with constant 

coefficients (e.g., polynomials, exponentials, sines, and cosines) are both piecewise continuous 
and of exponential order. As we now show, the Laplace transforms of such functions exist for 
large enough values of s.

Proof. We need to show that the integral

L
∞

0
e-stf1t2  dt

converges for s 7 a. We begin by breaking up this integral into two separate integrals:

(5) L
T

0
e-stf1t2  dt + L

∞

T
e-stf1t2  dt ,

where T is chosen so that inequality (4) holds. The first integral in (5) exists because f1t2 and 
hence e-stf1t2 are piecewise continuous on the interval 30, T4 for any fixed s. To see that the 
second integral in (5) converges, we use the comparison test for improper integrals.

Since f1t2 is of exponential order a, we have for t Ú T

0 f1t2 0 … Meat ,
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360     Chapter 7  Laplace Transforms

and hence

0 e-stf1t2 0 = e-st 0 f1t2 0 … Me-1s -a2t ,

for all t Ú T. Now for s 7 a.

L
∞

T
Me-1s -a2t dt = ML

∞

T
e-1s -a2t dt =

Me-1s -a2T

s - a 6 ∞  .

Since 0 e-stf1t2 0 … Me-1s -a2t for t Ú T  and the improper integral of the larger function con-
verges for s 7 a, then, by the comparison test, the integral

L
∞

T
e-stf1t2  dt

converges for s 7 a. Finally, because the two integrals in (5) exist, the Laplace transform 
ℒ5f61s2 exists for s 7 a. ◆

In Problems 1–12, use Definition 1 to determine the Laplace 
transform of the given function.

In Problems 21–28, determine whether f1t2 is continuous, 
piecewise continuous, or neither on 30, 104 and sketch the 
graph of f1t2.
21. f1t2 = e1 , 0 … t … 1 ,

1t - 222 , 1 6 t … 10 

22. f1t2 = e0 , 0 … t 6 2 ,
t , 2 … t … 10

23. f1t2 = •
1 , 0 … t 6 1 ,
t - 1 , 1 6 t 6 3 ,
t2 - 4 , 3 6 t … 10

24. f1t2 =
t2 - 3t + 2

t2 - 4

25. f1t2 =
t2 - t - 20

t2 + 7t + 10

26. f1t2 =
t

t2 - 1

27. f1t2 = •
1>t , 0 6 t 6 1 ,
1 , 1 … t … 2 ,
1 - t , 2 6 t … 10

28. f1t2 = •
sin t

t
 , t ≠ 0 ,

1 , t = 0

29. Which of the following functions are of exponential order?

  (a) t3 sin t (b) 100e49t (c) et3

  (d) t ln t (e) cosh1t22 (f ) 
1

t2 + 1
  (g) sin1t22 + t4e6t (h) 3 - et2 + cos 4t

  (i) exp5t2> 1t + 126 ( j) sin1et22 + esin t

30. For the transforms F1s2 in Table 7.1, what can be said 
about limsS ∞ F1s2?

7.2 EXERCISES

1. t 2. t2

3. e6t 4. te3t

5. cos 2t 6. cos bt, b a constant

7. e2t cos 3t 8. e-t sin 2t

9. f1t2 = e0 , 0 6 t 6 2 ,
t , 2 6 t

10. f1t2 = e1 - t , 0 6 t 6 1 ,
0 , 1 6 t

11. f1t2 = e sin t , 0 6 t 6 p ,
0 , p 6 t

12. f1t2 = e e2t , 0 6 t 6 3 ,
1 , 3 6 t

In Problems 13–20, use the Laplace transform table and the 
linearity of the Laplace transform to determine the following 
transforms.

13. ℒ56e-3t - t2 + 2t - 86

14. ℒ55 - e2t + 6t26

15. ℒ5t3 - tet + e4t cos t6

16. ℒ5t2 - 3t - 2e-t sin 3t6

17. ℒ5e3t sin 6t - t3 + et6

18. ℒ5t4 - t2 - t + sin22 t6

19. ℒ5t4e5t - et cos27t6

20. ℒ5e-2t cos23t - t2e-2t6
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31. Thanks to Euler’s formula (page 166) and the algebraic 
properties of complex numbers, several of the entries 
of Table 7.1 can be derived from a single formula; 
namely,

(6) ℒ5e1a + ib2t6 1s2 =
s - a + ib

1s - a22 + b2 ,  s 7 a.

  (a)  By computing the integral in the definition of the 
Laplace transform on page 353 with f1t2 = e1a+ib2t, 
show that

ℒ5e1a+ib2t6 1s2 =
1

s - 1a + ib2  ,  s 7 a.

 (b) Deduce (6) from part (a) by showing that
1

s - 1a + ib2 =
s - a + ib

1s - a22 + b2 .

 (c)  By equating the real and imaginary parts in formula 
(6), deduce the last two entries in Table 7.1.

32. Prove that for fixed s 7 0, we have

lim
NS ∞

e-sN1s sin bN + b cos bN2 = 0 .

33. Prove that if f is piecewise continuous on 3a, b4 and g 
is continuous on 3a, b4, then the product fg is piecewise 
continuous on 3a, b4.

In the previous section, we defined the Laplace transform of a function f1t2 as

ℒ5f61s2 J L
∞

0
 e-stf1t2dt .

Using this definition to get an explicit expression for ℒ5f6 requires the evaluation of the 
improper integral—frequently a tedious task! We have already seen how the linearity property 
of the transform can help relieve this burden. In this section we discuss some further properties 
of the Laplace transform that simplify its computation. These new properties will also enable 
us to use the Laplace transform to solve initial value problems.

7.3 Properties of the Laplace Transform

Translation in s

Theorem 3. If the Laplace transform ℒ5f61s2 = F1s2 exists for s 7 a, then

(1) ℒ5eatf1t261s2 = F1s - a2
for s 7 a + a .

Proof. We simply compute

 ℒ5eatf1t261s2 = L
∞

0
e-steatf1t2  dt

 = L
∞

0
e-1s - a2tf1t2  dt

 = F1s - a2 . ◆

Theorem 3 illustrates the effect on the Laplace transform of multiplication of a function 
f1t2 by eat .
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362     Chapter 7  Laplace Transforms

Example 1 Determine the Laplace transform of eat sin bt.

Solution In Example 3 in Section 7.2, page 354, we found that

ℒ5sin bt61s2 = F1s2 =
b

s2 + b2 .

Thus, by the translation property of F1s2, we have

ℒ5eat sin bt61s2 = F1s - a2 =
b

1s - a22 + b2 . ◆

Laplace Transform of the Derivative

Theorem 4. Let f1t2 be continuous on 30, ∞ 2 and f ′1t2 be piecewise continuous on 
30, ∞ 2, with both of exponential order a. Then, for s 7 a ,

(2) ℒ5f ′61s2 = sℒ5f61s2 − f102 .

Proof. Since ℒ5f ′6 exists, we can use integration by parts 3with u = e-st and dy =
f ′1t2dt4 to obtain

(3)  ℒ5f ′61s2 = L
∞

0
e-stf ′1t2  dt = lim

NS ∞ L
N

0
e-stf ′1t2  dt

  = lim
NS ∞
c e-stf1t2 2 N

0
+ s L

N

0
e-stf1t2  dt d

  = lim
NS ∞  

e-sNf1N2 - f102 + s lim
NS ∞ L

N

0
e-stf1t2  dt

  = lim
NS ∞  

e-sNf1N2 - f102 + sℒ5f61s2 .

To evaluate limNS ∞ e-sNf1N2, we observe that since f1t2 is of exponential order a, there exists 
a constant M such that for N large,

0 e-sNf1N2 0 … e-sNMeaN = Me-1s -a2N .

Hence, for s 7 a,

0 … lim
NS ∞
0 e-sNf1N2 0 … lim

NS ∞
Me-1s -a2N = 0 ,

so

lim
NS ∞

e-sNf1N2 = 0

for s 7 a. Equation (3) now reduces to

ℒ5f ′61s2 = sℒ5f61s2 - f102 . ◆

Using induction, we can extend the last theorem to higher-order derivatives of f1t2. For 
example,

 ℒ5f ″61s2 = sℒ5f ′61s2 - f ′102
 = s3sℒ5f61s2 - f1024 - f ′102 ,
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Section 7.3  Properties of the Laplace Transform     363

which simplifies to

ℒ5f ″61s2 = s2ℒ5f61s2 - sf102 - f ′102 .
In general, we obtain the following result.

Laplace Transform of Higher-Order Derivatives

Theorem 5. Let f1t2, f ′1t2, . . . , f 1n - 121t2 be continuous on 30, ∞ 2 and let f 1n21t2 
be piecewise continuous on 30, ∞ 2, with all these functions of exponential order a. 
Then, for s 7 a,

(4) ℒ5f 1n261s2 = snℒ5f61s2 − sn − 1f102 − sn − 2f ′102 − P − f 1n − 12102 .

The last two theorems shed light on the reason why the Laplace transform is such a useful 
tool in solving initial value problems. Roughly speaking, they tell us that by using the Laplace 
transform we can replace “differentiation with respect to t” with “multiplication by s,” thereby 
converting a differential equation into an algebraic one. This idea is explored in Section 7.5. 
For now, we show how Theorem 4 can be helpful in computing a Laplace transform.

Example 2 Using Theorem 4 and the fact that

ℒ5sin bt61s2 =
b

s2 + b2 ,

determine ℒ5cos bt6 .

Solution Let f1t2J sin bt. Then f102 = 0 and f ′1t2 = b cos bt. Substituting into equation (2), we have

 ℒ5f ′61s2 = sℒ5f61s2 - f102 ,
 ℒ5b cos bt61s2 = sℒ5sin bt61s2 - 0 ,

 bℒ5cos bt61s2 =
sb

s2 + b2 .

Dividing by b gives

ℒ5cos bt61s2 =
s

s2 + b2 . ◆

Example 3 Prove the following identity for continuous functions f1t2 (assuming the transforms exist):

(5) ℒe L
t

0
f1t2dt f 1s2 =

1
s

 ℒ5f1t261s2 .

Use it to verify the solution to Example 2.

Solution Define the function g1t2 by the integral

g1t2 J L
t

0
f1t2  dt .
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364     Chapter 7  Laplace Transforms

Observe that g102 = 0 and g′1t2 = f1t2. Thus, if we apply Theorem 4 to g1t2 3instead of 
f1t24, equation (2) on page 362 reads

ℒ5f1t261s2 = sℒe L
t

0
f1t2  dt f 1s2 - 0 ,

which is equivalent to equation (5).
Now since

sin bt = L
t

0
 b cos bt dt ,

equation (5) predicts

ℒ5sin bt61s2 =
1
s

 ℒ5b cos bt61s2 =
b
s

 ℒ5cos bt61s2 .

This identity is indeed valid for the transforms in Example 2. ◆

Another question arises concerning the Laplace transform. If F1s2  is the Laplace 
transform of f1t2, is F′1s2 also a Laplace transform of some function of t ? The answer is yes:

F′1s2 = ℒ5- t f1t261s2 .
In fact, the following more general assertion holds.

Derivatives of the Laplace Transform

Theorem 6. Let F1s2 = ℒ5f61s2 and assume f1t2 is piecewise continuous on 
30, ∞ 2 and of exponential order a. Then, for s 7 a,

(6) ℒ5tnf1t261s2 = 1−12n 
dnF
dsn  1s2 .

Proof. Consider the identity

dF
ds

 1s2 =
d
ds

 L
∞

0
e-stf1t2  dt .

Because of the assumptions on f1t2, we can apply a theorem from advanced calculus (some-
times called Leibniz’s rule) to interchange the order of integration and differentiation:

 
dF
ds

 1s2 = L
∞

0
 
d
ds
1e-st2f1t2  dt

 = - L
∞

0
e-stt f1t2  dt = -ℒ5t f1t261s2 .

Thus,

ℒ5t f1t261s2 = 1-12  
dF
ds

 1s2 .

The general result (6) now follows by induction on n. ◆

A consequence of the above theorem is that if f1t2 is piecewise continuous and of 
exponential order, then its transform F1s2 has derivatives of all orders.
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Section 7.3  Properties of the Laplace Transform     365

Example 4 Determine ℒ5t sin bt6.

Solution We already know that

ℒ5sin bt61s2 = F1s2 =
b

s2 + b2 .

Differentiating F1s2, we obtain

dF
ds

 1s2 =
-2bs

1s2 + b222 .

Hence, using formula (6), we have

ℒ5t sin bt61s2 = -   
dF
ds

 1s2 =
2bs

1s2 + b222 . ◆

For easy reference, Table 7.2 lists some of the basic properties of the Laplace transform 
derived so far.

TABLE 7.2  Properties of Laplace Transforms

ℒ5f + g6 = ℒ5f6 + ℒ5g6 .

ℒ5cf6 = cℒ5f6    for any constant c .

ℒ5eatf1t261s2 = ℒ5f61s - a2 .
ℒ5f ′61s2 = sℒ5f61s2 - f102 .
ℒ5f ″61s2 = s2ℒ5f61s2 - sf102 - f ′102 .
ℒ5 f 1n26 1s2 = s  

nℒ5f61s2 - s  

n - 1f102 - s  

n - 2f ′102 - g - f 1n - 12102 .

ℒ5tnf1t261s2 = 1-12n 
dn

dsn  1ℒ5f61s2 2  .

In Problems 1–20, determine the Laplace transform of the 
given function using Table 7.1 on page 356 and the properties 
of the transform given in Table 7.2. [Hint: In Problems 12–20, 
use an appropriate trigonometric identity.]

21. Given that ℒ5cos bt61s2 = s> 1s2 + b22, use the trans-
lation property to compute ℒ5eat cos bt6.

22. Starting with the transform ℒ5161s2 = 1>s, use for-
mula (6) for the derivatives of the Laplace transform 
to show that ℒ5t61s2 = 1>s2, ℒ5t261s2 = 2!>s3,  
and, by using induction, that ℒ5tn61s2 = n!>sn+1, 
n = 1, 2, . . . .

23. Use Theorem 4 on page 362 to show how entry 32 fol-
lows from entry 31 in the Laplace transform table on the 
inside back cover of the text.

24. Show that ℒ5eattn61s2 = n!> 1s - a2n+1 in two ways:

  (a) Use the translation property for F1s2.
  (b)  Use formula (6) for the derivatives of the Laplace 

transform.

7.3 EXERCISES

1. t2 + et sin 2t 2. 3t2 - e2t

3. e-t cos 3t + e6t - 1 4. 3t4 - 2t2 + 1

5. 2t2e-t - t + cos 4t 6. e-2t sin 2t + e3tt2

7. 1t - 124 8. 11 + e-t22

9. e-tt sin 2t 10. te2t cos 5t
11. cosh bt 12. sin 3t cos 3t

13. sin2 t 14. e7t sin2 t

19. cos nt sin mt , m ≠ n 20. t sin 2t sin 5t

17. sin 2t sin 5t 18. cos nt cos mt , m ≠ n

15. cos3 t 16. t sin2 t
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366     Chapter 7  Laplace Transforms

25. Use formula (6) to help determine

  (a) ℒ5t cos bt6 . (b) ℒ5t2cos bt6 .

26. Let f1t2 be piecewise continuous on 30, ∞ 2 and of 
exponential order.

  (a)  Show that there exist constants K and a such that

0 f1t2 0 … Keat    for all t Ú 0 .

  (b)  By using the definition of the transform and estimat-
ing the integral with the help of part (a), prove that

lim
sS ∞

ℒ5f61s2 = 0 .

27. Let f1t2 be piecewise continuous on 30, ∞ 2 and of 
exponential order a and assume limtS0+3f1t2 >t4 exists. 
Show that

ℒe f1t2
t
f  1s2 = L

∞

s
F1u2  du ,

where F1s2 = ℒ5f61s2. [Hint: First show that 
d
ds ℒ5f1t2 >t61s2 = -F1s2 and then use the result of 
Problem 26.]

28. Verify the identity in Problem 27 for the following func-
tions. (Use the table of Laplace transforms on the inside 
back cover.)

  (a) f1t2 = t5  (b) f1t2 = t3>2 
29. The transfer function of a linear system is defined as 

the ratio of the Laplace transform of the output function 
y1t2 to the Laplace transform of the input function g1t2, 
when all initial conditions are zero. If a linear system is 
governed by the differential equation

y″1t2 + 6y′1t2 + 10y1t2 = g1t2 ,  t 7 0 ,

use the linearity property of the Laplace transform and 
Theorem 5 on page 363 on the Laplace transform of 
higher-order derivatives to determine the transfer func-
tion H1s2 = Y1s2 >G1s2 for this system.

30. Find the transfer function, as defined in Problem 29, for 
the linear system governed by

y″1t2 + 5y′1t2 + 6y1t2 = g1t2 ,  t 7 0 .

31. Translation in t. Show that for c 7 0, the translated 
function

g1t2 = e0 , 0 6 t 6 c ,
f1t - c2 , c 6 t

has Laplace transform

ℒ5g61s2 = e-csℒ5f61s2 .
In Problems 32–35, let g1t2 be the given function f1t2 trans-
lated to the right by c units. Sketch f1t2 and g1t2 and find 
ℒ5g1t261s2. (See Problem 31.)

32. f1t2 K 1 , c = 2

33. f1t2 = t , c = 1

34. f1t2 = sin t , c = p
35. f1t2 = sin t , c = p>2

36. Use equation (5) to provide another derivation of 
the formula ℒ5tn61s2 = n!>sn+1. [Hint: Start with 
ℒ5161s2 = 1>s and use induction.]

37. Initial Value Theorem. Apply the relation

(7) ℒ5f ′61s2 = L
∞

0
e-stf ′1t2  dt = sℒ5f61s2 - f102

to argue that for any function f1t2 whose derivative 
is piecewise continuous and of exponential order on 
30, ∞ 2,

f102 = lim
sS ∞  

sℒ5f61s2 .
38. Verify the initial value theorem (Problem 37) for the fol-

lowing functions. (Use the table of Laplace transforms 
on the inside back cover.)

  (a) 1  (b) et  (c) e-t  (d) cos t
 (e) sin t  (f ) t2  (g) t cos t

In Section 7.2 we defined the Laplace transform as an integral operator that maps a function f1t2 
into a function F1s2. In this section we consider the problem of finding the function f1t2 when 
we are given the transform F1s2. That is, we seek an inverse mapping for the Laplace transform.

To see the usefulness of such an inverse, let’s consider the simple initial value problem

(1) y″ - y = - t ;  y102 = 0 ,  y′102 = 1 .

If we take the transform of both sides of equation (1) and use the linearity property of the 
transform, we find

ℒ5y″61s2 - Y1s2 = -  
1

s2 ,

7.4 Inverse Laplace Transform
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Section 7.4  Inverse Laplace Transform     367

where Y1s2J ℒ5y61s2. We know the initial values of the solution y1t2, so we can use  
Theorem 5, page 363, on the Laplace transform of higher-order derivatives to express

ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - 1 .

Substituting for ℒ5y″61s2 yields

s2Y1s2 - 1 - Y1s2 = -  
1

s2 .

Solving this algebraic equation for Y1s2 gives

Y1s2 =
1 - a 1

s2 b
s2 - 1

=
s2 - 1

s21s2 - 12 =
1

s2 .

We now recall that ℒ5t61s2 = 1>s2, and since Y1s2 = ℒ5y61s2, we have

ℒ5y61s2 = 1>s2 = ℒ5t61s2 .
It therefore seems reasonable to conclude that y1t2 = t is the solution to the initial value prob-
lem (1). A quick check confirms this!

Notice that in the above procedure, a crucial step is to determine y1t2 from its Laplace 
transform Y1s2 = 1>s2. As we noted, y1t2 = t is such a function, but it is not the only func-
tion whose Laplace function is 1>s2. For example, the transform of

g1t2 J e t , t ≠ 6 ,
0 , t = 6

is also 1>s2. This is because the transform is an integral, and integrals are not affected by 
changing a function’s values at isolated points. The significant difference between y1t2 and 
g1t2 as far as we are concerned is that y1t2 is continuous on 30, ∞ 2, whereas g1t2 is not. 
Naturally, we prefer to work with continuous functions, since solutions to differential equa-
tions are continuous. Fortunately, it can be shown that if two different functions have the same 
Laplace transform, at most one of them can be continuous.† With this in mind we give the  
following definition.

Inverse Laplace Transform

Definition 4. Given a function F1s2, if there is a function f1t2 that is continuous on 
30, ∞ 2 and satisfies

(2) ℒ5f6 = F ,

then we say that f1t2 is the inverse Laplace transform of F1s2 and employ the notation 
f = ℒ-15F6.

In case every function f1t2 satisfying (2) is discontinuous (and hence not a solution of a 
differential equation), one could choose any one of them to be the inverse transform; the dis-
tinction among them has no physical significance. [Indeed, two piecewise continuous functions 
satisfying (2) can only differ at their points of discontinuity.]

†For this result and further properties of the Laplace transform and its inverse, we refer you to Operational Mathematics, 
3rd ed., by R. V. Churchill (McGraw-Hill, New York, 1971).
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368     Chapter 7  Laplace Transforms

Naturally the Laplace transform tables will be a great help in determining the inverse 
Laplace transform of a given function F1s2.

Linearity of the Inverse Transform

Theorem 7. Assume that ℒ-15F6, ℒ-15F16, and ℒ-15F26 exist and are continuous 
on 30, ∞ 2 and let c be any constant. Then

(3)  ℒ-15F1 + F26 = ℒ-15F16 + ℒ-15F26 ,

(4)  ℒ-15cF6 = cℒ-15F6 .

Example 1 Determine ℒ-15F6, where

Solution To compute ℒ-15F6, we refer to the Laplace transform table on page 356.

(a) ℒ-1e 2

s3 f 1t2 = ℒ-1e 2!

s3 f 1t2 = t2 

(b) ℒ-1e 3

s2 + 9
f 1t2 = ℒ-1e 3

s2 + 32 f 1t2 = sin 3t 

(c) ℒ-1e s - 1

s2 - 2s + 5
f 1t2 = ℒ-1e s - 1

1s - 122 + 22 f 1t2 = et cos 2t 

In part (c) we used the technique of completing the square to rewrite the denominator in a form 
that we could find in the table. ◆

In practice, we do not always encounter a transform F1s2 that exactly corresponds to an 
entry in the second column of the Laplace transform table. To handle more complicated func-
tions F1s2, we use properties of ℒ-1, just as we used properties of ℒ. One such tool is the 
linearity of the inverse Laplace transform, a property that is inherited from the linearity of the 
operator ℒ.

(a) F1s2 =
2

s3 . (b) F1s2 =
3

s2 + 9
 . (c) F1s2 =

s - 1

s2 - 2s + 5
 .

The proof of Theorem 7 is outlined in Problem 37. We illustrate the usefulness of this 
theorem in the next example.

Example 2 Determine ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

2s2 + 8s + 10
f .

Solution We begin by using the linearity property. Thus,

ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

21s2 + 4s + 52 f

   = 5ℒ-1e 1
s - 6

f - 6ℒ-1e s

s2 + 9
f +

3
2

 ℒ-1e 1

s2 + 4s + 5
f  .

M07_NAGL7069_09_SE_C07_350-420.indd   368 12/09/16   8:43 AM

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Section 7.4  Inverse Laplace Transform     369

Referring to the Laplace transform tables, we see that

ℒ-1e 1
s - 6

f 1t2 = e6t   and   ℒ-1e s

s2 + 32 f 1t2 = cos 3t .

This gives us the first two terms. To determine ℒ-151> 1s2 + 4s + 526, we complete the 
square of the denominator to obtain s2 + 4s + 5 = 1s + 222 + 1. We now recognize from the 
tables that

ℒ-1e 1

1s + 222 + 12 f 1t2 = e-2t sin t .

Hence,

ℒ-1e 5
s - 6

-
6s

s2 + 9
+

3

2s2 + 8s + 10
f 1t2 = 5e6t - 6 cos 3t +

3e-2t

2
  sin t . ◆

Example 3 Determine ℒ-1e 5

1s + 224 f .

Solution The 1s + 224 in the denominator suggests that we work with the formula

ℒ-1e n!

1s - a2n+1 f 1t2 = eattn .

Here we have a = -2 and n = 3, so ℒ-156> 1s + 22461t2 = e-2tt3. Using the linearity 
property, we find

ℒ-1e 5

1s + 224 f 1t2 =
5
6

 ℒ-1e 3!

1s + 224 f 1t2 =
5
6

 e-2tt3 . ◆

Example 4 Determine ℒ-1e 3s + 2

s2 + 2s + 10
f  .

Solution By completing the square, the quadratic in the denominator can be written as

s2 + 2s + 10 = s2 + 2s + 1 + 9 = 1s + 122 + 32 .

The form of F1s2 now suggests that we use one or both of the formulas

ℒ-1e s - a

1s - a22 + b2 f 1t2 = eat cos bt ,

ℒ-1e b

1s - a22 + b2 f 1t2 = eat sin bt .

In this case, a = -1 and b = 3. The next step is to express

(5) 
3s + 2

s2 + 2s + 10
= A 

s + 1

1s + 122 + 32 + B 
3

1s + 122 + 32 ,

where A, B are constants to be determined. Multiplying both sides of (5) by s2 + 2s + 10 leaves

3s + 2 = A1s + 12 + 3B = As + 1A + 3B2 ,
which is an identity between two polynomials in s. Equating the coefficients of like terms gives

A = 3 ,  A + 3B = 2 ,
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370     Chapter 7  Laplace Transforms

so A = 3 and B = -1>3. Finally, from (5) and the linearity property, we find

 ℒ-1e 3s + 2

s2 + 2s + 10
f 1t2 = 3ℒ-1e s + 1

1s + 122 + 32 f 1t2 -
1
3

 ℒ-1e 3

1s + 122 + 32 f 1t2

 = 3e-t cos 3t -
1
3

 e-t sin 3t . ◆

Given the choice of finding the inverse Laplace transform of

F11s2 =
7s2 + 10s - 1

s3 + 3s2 - s - 3

or of

F21s2 =
2

s - 1
+

1
s + 1

+
4

s + 3
 ,

which would you select? No doubt F21s2 is the easier one. Actually, the two functions F11s2 
and F21s2 are identical. This can be checked by combining the simple fractions that form 
F21s2. Thus, if we are faced with the problem of computing ℒ-1 of a rational function such as 
F11s2, we will first express it, as we did F21s2, as a sum of simple rational functions. This is 
accomplished by the method of partial fractions.

We briefly review this method. Recall from calculus that a rational function of the form 
P1s2 >Q1s2, where P1s2 and Q1s2 are polynomials with the degree of P less than the degree 
of Q, has a partial fraction expansion whose form is based on the linear and quadratic factors 
of Q1s2. (We assume the coefficients of the polynomials to be real numbers.) There are three 
cases to consider:

1. Nonrepeated linear factors.
2. Repeated linear factors.
3. Quadratic factors.

1. Nonrepeated Linear Factors
If Q1s2 can be factored into a product of distinct linear factors,

Q1s2 = 1s - r121s - r22g1s - rn2 ,
where the ri’s are all distinct real numbers, then the partial fraction expansion has the form

P1s2
Q1s2 =

A1

s − r1
+

A2

s − r2
+ P +

An

s − rn
 ,

where the Ai’s are real numbers. There are various ways of determining the constants 
A1, . . . , An. In the next example, we demonstrate two such methods.

Example 5 Determine ℒ-15F6, where

F1s2 =
7s - 1

1s + 121s + 221s - 32  .

Solution We begin by finding the partial fraction expansion for F1s2. The denominator consists of three 
distinct linear factors, so the expansion has the form

(6) 
7s - 1

1s + 121s + 221s - 32 =
A

s + 1
+

B
s + 2

+
C

s - 3
 ,

where A, B, and C are real numbers to be determined.
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Section 7.4  Inverse Laplace Transform     371

One procedure that works for all partial fraction expansions is first to multiply the expan-
sion equation by the denominator of the given rational function. This leaves us with two 
identical polynomials. Equating the coefficients of sk leads to a system of linear equations 
that we can solve to determine the unknown constants. In this example, we multiply (6) by 
1s + 121s + 221s - 32 and find

(7) 7s - 1 = A1s + 221s - 32 + B1s + 121s - 32 + C1s + 121s + 22 ,†

which reduces to

7s - 1 = 1A + B + C2s2 + 1-A - 2B + 3C2s + 1-6A - 3B + 2C2 .
Equating the coefficients of s2, s, and 1 gives the system of linear equations

 A + B + C = 0 ,

 -A - 2B + 3C = 7 ,

 -6A - 3B + 2C = -1 .

Solving this system yields A = 2, B = -3, and C = 1. Hence,

(8) 
7s - 1

1s + 121s + 221s - 32 =
2

s + 1
-

3
s + 2

+
1

s - 3
 .

An alternative method for finding the constants A, B, and C from (7) is to choose three 
values for s and substitute them into (7) to obtain three linear equations in the three unknowns. 
If we are careful in our choice of the values for s, the system is easy to solve. In this case, equa-
tion (7) obviously simplifies if s = -1, -2, or 3. Putting s = -1 gives

 -7 - 1 = A1121-42 + B102 + C102 ,
 -8 = -4A .

Hence A = 2. Next, setting s = -2 gives

 -14 - 1 = A102 + B1-121-52 + C102 ,
 -15 = 5B ,

and so B = -3. Finally, letting s = 3, we similarly find that C = 1. In the case of  
nonrepeated linear factors, the alternative method is easier to use.

Now that we have obtained the partial fraction expansion (8), we use linearity to compute

 ℒ-1e 7s - 1
1s + 121s + 221s - 32 f 1t2 = ℒ-1e 2

s + 1
-

3
s + 2

+
1

s - 3
f 1t2

 = 2ℒ-1e 1
s + 1

f 1t2 - 3ℒ-1e 1
s + 2

f 1t2

 = + ℒ-1e 1
s - 3

f 1t2

 = 2e-t - 3e-2t + e3t . ◆

†Rigorously speaking, equation (7) was derived for s different from -1, -2, and 3, but by continuity it holds for these 
values as well.
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372     Chapter 7  Laplace Transforms

2. Repeated Linear Factors
If s - r is a factor of Q1s2 and 1s - r2m is the highest power of s - r that divides Q1s2, 
then the portion of the partial fraction expansion of P1s2 >Q1s2 that corresponds to the term 
1s - r2m is

A1

s − r
+

A2

1s − r22 + P +
Am

1s − r2m ,

where the Ai’s are real numbers.

Example 6 Determine ℒ-1e s2 + 9s + 2

1s - 1221s + 32 f  .

Solution Since s - 1 is a repeated linear factor with multiplicity two and s + 3 is a nonrepeated linear 
factor, the partial fraction expansion has the form

s2 + 9s + 2

1s - 1221s + 32 =
A

s - 1
+

B

1s - 122 +
C

s + 3
 .

We begin by multiplying both sides by 1s - 1221s + 32 to obtain

(9) s2 + 9s + 2 = A1s - 121s + 32 + B1s + 32 + C1s - 122 .

Now observe that when we set s = 1 (or s = -3), two terms on the right-hand side of (9) 
vanish, leaving a linear equation that we can solve for B (or C). Setting s = 1 in (9) gives

 1 + 9 + 2 = A102 + 4B + C102 ,
 12 = 4B ,

and, hence, B = 3. Similarly, setting s = -3 in (9) gives

 9 - 27 + 2 = A102 + B102 + 16C

 -16 = 16C .

Thus, C = -1. Finally, to find A, we pick a different value for s, say s = 0. Then, since B = 3 
and C = -1, plugging s = 0 into (9) yields

2 = -3A + 3B + C = -3A + 9 - 1

so that A = 2. Hence,

(10) 
s2 + 9s + 2

1s - 1221s + 32 =
2

s - 1
+

3

1s - 122 -
1

s + 3
 .

We could also have determined the constants A, B, and C by first rewriting equation (9) in 
the form

s2 + 9s + 2 = 1A + C2s2 + 12A + B - 2C2s + 1-3A + 3B + C2 .
Then, equating the corresponding coefficients of s2, s, and 1 and solving the resulting system, 
we again find A = 2, B = 3, and C = -1 .
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Section 7.4  Inverse Laplace Transform     373

Now that we have derived the partial fraction expansion (10) for the given rational func-
tion, we can determine its inverse Laplace transform:

 ℒ-1e s2 + 9s + 2

1s - 1221s + 32 f 1t2 = ℒ-1e 2
s - 1

+
3

1s - 122 -
1

s + 3
f 1t2

 = 2ℒ-1e 1
s - 1

f 1t2 + 3ℒ-1e 1

1s - 122 f 1t2

 = - ℒ-1e 1
s + 3

f 1t2
 = 2et + 3tet - e-3t . ◆

3. Quadratic Factors
If 1s - a22 + b2 is a quadratic factor of Q1s2 that cannot be reduced to linear factors with real 
coefficients and m is the highest power of 1s - a22 + b2 that divides Q1s2, then the portion of 
the partial fraction expansion that corresponds to 1s - a22 + b2 is

C1s + D1

1s - a22 + b2 +
C2s + D2

31s - a22 + b242 + g +
Cms + Dm

31s - a22 + b24m .

As we saw in Example 4, page 369, it is more convenient to express Cis + Di in the form 
Ai1s - a2 + bBi when we look up the Laplace transforms. So let’s agree to write this 
 portion of the partial fraction expansion in the equivalent form

A11s − A2 + BB1

1s − A22 + B2 +
A21s − A2 + BB2

31s − A22 + B242 + P +
Am1s − A2 + BBm

31s − A22 + B24m .

Example 7 Determine ℒ-1e 2s2 + 10s

1s2 - 2s + 521s + 12 f  .

Solution We first observe that the quadratic factor s2 - 2s + 5 is irreducible (check the sign of the 
discriminant in the quadratic formula). Next we write the quadratic in the form 1s - a22 + b2 
by completing the square:

s2 - 2s + 5 = 1s - 122 + 22 .

Since s2 - 2s + 5 and s + 1 are nonrepeated factors, the partial fraction expansion has the form

2s2 + 10s

1s2 - 2s + 521s + 12 =
A1s - 12 + 2B

1s - 122 + 22 +
C

s + 1
 .

When we multiply both sides by the common denominator, we obtain

(11) 2s2 + 10s = 3A1s - 12 + 2B41s + 12 + C1s2 - 2s + 52 .
In equation (11), let’s put s = -1, 1, and 0. With s = -1, we find

 2 - 10 = 3A1-22 + 2B4102 + C182 ,
 -8 = 8C ,
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374     Chapter 7  Laplace Transforms

and, hence, C = -1. With s = 1 in (11), we obtain

2 + 10 = 3A102 + 2B4122 + C142 ,
and since C = -1, the last equation becomes 12 = 4B - 4. Thus B = 4. Finally, setting 
s = 0 in (11) and using C = -1 and B = 4 gives

 0 = 3A1-12 + 2B4112 + C152 ,
 0 = -A + 8 - 5 ,

 A = 3 .

Hence, A = 3, B = 4, and C = -1 so that

2s2 + 10s

1s2 - 2s + 521s + 12 =
31s - 12 + 2142
1s - 122 + 22  -  

1
s + 1

 .

With this partial fraction expansion in hand, we can immediately determine the inverse 
Laplace transform:

 ℒ-1e 2s2 + 10s

1s2 - 2s + 521s + 12 f 1t2 = ℒ-1e 31s - 12 + 2142
1s - 122 + 22  -  

1
s + 1

f 1t2

 = 3ℒ-1e s - 1

1s - 122 + 22 f 1t2

 = + 4ℒ-1e 2

1s - 122 + 22 f 1t2 - ℒ-1e 1
s + 1

f 1t2

 = 3et cos 2t + 4et sin 2t - e-t . ◆

In Section 7.8, we discuss a different method (involving convolutions) for computing 
inverse transforms that does not require partial fraction decompositions. Moreover, the convo-
lution method is convenient in the case of a rational function with a repeated quadratic factor in 
the denominator. Other helpful tools are described in Problems 33–36 and 38–43.

In Problems 1–10, determine the inverse Laplace transform  
of the given function.

In Problems 11–20, determine the partial fraction expansion 
for the given rational function.

7.4 EXERCISES

1. 
6

1s - 124 2. 
2

s2 + 4

3. 
s + 1

s2 + 2s + 10
4. 

4

s2 + 9

5. 
1

s2 + 4s + 8
6. 

3

12s + 523

7. 
2s + 16

s2 + 4s + 13
8. 

1

s5

9. 
3s - 15

2s2 - 4s + 10
10. 

s - 1

2s2 + s + 6

11. 
s2 - 26s - 47

1s - 121s + 221s + 52
12. 

-s - 7
1s + 121s - 22

13. 
-2s2 - 3s - 2

s1s + 122 14. 
-8s2 - 5s + 9

1s + 121s2 - 3s + 22

15. 
8s - 2s2 - 14

1s + 121s2 - 2s + 52
16. 

-5s - 36

1s + 221s2 + 92

17. 
3s + 5

s1s2 + s - 62 18. 
3s2 + 5s + 3

s4 + s3
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In Problems 21–30, determine ℒ-15F6.

21. F1s2 =
6s2 - 13s + 2

s1s - 121s - 62
22. F1s2 =

s + 11
1s - 121s + 32

23. F1s2 =
5s2 + 34s + 53

1s + 3221s + 12

24. F1s2 =
7s2 - 41s + 84

1s - 121s2 - 4s + 132

25. F1s2 =
7s2 + 23s + 30

1s - 221s2 + 2s + 52

26. F1s2 =
7s3 - 2s2 - 3s + 6

s31s - 22
27. s2F1s2 - 4F1s2 =

5
s + 1

28. s2F1s2 + sF1s2 - 6F1s2 =
s2 + 4

s2 + s

29. sF1s2 + 2F1s2 =
10s2 + 12s + 14

s2 - 2s + 2

30. sF1s2 - F1s2 =
2s + 5

s2 + 2s + 1

31. Determine the Laplace transform of each of the follow-
ing functions:

  (a) f11t2 = e0 , t = 2 ,
t , t ≠ 2 .

  (b) f21t2 = •
5 , t = 1 ,
2 , t = 6 ,
t , t ≠ 1, 6 .

  (c) f31t2 = t .

Which of the preceding functions is the inverse Laplace 
transform of 1>s2?

32. Determine the Laplace transform of each of the follow-
ing functions:

  (a) f11t2 = e t , t = 1, 2, 3, . . . ,
et , t ≠ 1, 2, 3, . . . .

  (b) f21t2 = •
et , t ≠ 5, 8 ,
6 , t = 5 ,
0 , t = 8 .

  (c) f31t2 = e t .

Which of the preceding functions is the inverse Laplace 
transform of 1> 1s - 12?

Theorem 6 in Section 7.3 on page 364 can be expressed in 
terms of the inverse Laplace transform as

ℒ-1e dnF
dsn f 1t2 = 1- t2nf1t2 ,

where f = ℒ-15F6. Use this equation in Problems 33–36 to 
compute ℒ-15F6.

19. 
1

1s - 321s2 + 2s + 22
20. 

s

1s - 121s2 - 12

†Historical Footnote: This formula played an important role in the “operational solution” to ordinary differential equations developed by Oliver 
Heaviside in the 1890s.

33. F1s2 = ln a s + 2
s - 5

b  34. F1s2 = ln a s - 4
s - 3

b  

35. F1s2 = ln a s2 + 9

s2 + 1
b  36. F1s2 = arctan11>s2 

37. Prove Theorem 7, page 368, on the linearity of the 
inverse transform. [Hint: Show that the right-hand side of 
equation (3) is a continuous function on 30, ∞ 2 whose 
Laplace transform is F11s2 + F21s2.4

38. Residue Computation. Let P1s2 >Q1s2 be a rational 
function with deg P 6  deg Q and suppose s - r is a non-
repeated linear factor of Q1s2. Prove that the portion of 
the partial fraction expansion of P1s2 >Q1s2 correspond-
ing to s - r is

A
s − r

 ,

where A (called the residue) is given by the formula

A = lim
sSr

1s − r2P1s2
Q1s2 =  

P1r2
Q′1r2  .

39. Use the residue computation formula derived in  
Problem 38 to determine quickly the partial fraction 
expansion for

F1s2 =
2s + 1

s1s - 121s + 22  .

40. Heaviside’s Expansion Formula.† Let P1s2 and 
Q1s2 be polynomials with the degree of P1s2 less than 
the degree of Q1s2. Let

Q1s2 = 1s - r121s - r22g1s - rn2 ,
where the ri’s are distinct real numbers. Show that

ℒ-1e P
Q
f 1t2 = an

i= 1

P1ri2
Q′1ri2  eri t .
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376     Chapter 7  Laplace Transforms

41. Use Heaviside’s expansion formula derived in Prob-
lem 40 to determine the inverse Laplace transform of

F1s2 =
3s2 - 16s + 5

1s + 121s - 321s - 22  .

42. Complex Residues. Let P1s2 >Q1s2 be a rational 
function with deg P 6 deg Q and suppose 1s - a22 + b2 
is a nonrepeated quadratic factor of Q. (That is, a { ib 
are complex conjugate zeros of Q.) Prove that the  
portion of the partial fraction expansion of P1s2 >Q1s2 
corresponding to 1s - a22 + b2 is

A1s - a2 + bB

1s - a22 + b2  ,

where the complex residue bB + ibA is given by the 
formula

bB + ibA = lim
sSa+ ib

31s - a22 + b24P1s2
Q1s2  .

(Thus we can determine B and A by taking the real  
and imaginary parts of the limit and dividing them  
by b.2

43. Use the residue formulas derived in Problems 38 and 42 
to determine the partial fraction expansion for

F1s2 =
6s2 + 28

1s2 - 2s + 521s + 22  .

Our goal is to show how Laplace transforms can be used to solve initial value problems for 
linear differential equations. Recall that we have already studied ways of solving such initial 
value problems in Chapter 4. These previous methods required that we first find a general 
solution of the differential equation and then use the initial conditions to determine the desired 
solution. As we will see, the method of Laplace transforms leads to the solution of the initial 
value problem without first finding a general solution.

Other advantages to the transform method are worth noting. For example, the technique can 
easily handle equations involving forcing functions having jump discontinuities, as illustrated 
in Section 7.1. Further, the method can be used for certain linear differential equations with 
variable coefficients, a special class of integral equations, systems of differential equations, and 
partial differential equations.

7.5 Solving Initial Value Problems

Method of Laplace Transforms

To solve an initial value problem:

(a) Take the Laplace transform of both sides of the equation.
(b) Use the properties of the Laplace transform and the initial conditions to obtain an 

equation for the Laplace transform of the solution and then solve this equation for 
the transform.

(c) Determine the inverse Laplace transform of the solution by looking it up in a table or 
by using a suitable method (such as partial fractions) in combination with the table.

In step (a) we are tacitly assuming the solution is piecewise continuous on 30, ∞ 2 and of  
exponential order. Once we have obtained the inverse Laplace transform in step (c), we can 
verify that these tacit assumptions are satisfied.

Example 1 Solve the initial value problem

(1) y″ - 2y′ + 5y = -8e-t ;  y102 = 2 ,  y′102 = 12 .
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Section 7.5  Solving Initial Value Problems     377

Solution The differential equation in (1) is an identity between two functions of t. Hence equality holds 
for the Laplace transforms of these functions:

ℒ5y″ - 2y′ + 5y6 = ℒ5-8e-t6 .

Using the linearity property of ℒ and the previously computed transform of the exponential 
function, we can write

(2) ℒ5y″61s2 - 2ℒ5y′61s2 + 5ℒ5y61s2 =
-8

s + 1
 .

Now let Y1s2 J ℒ5y61s2. From the formulas for the Laplace transform of higher-order 
derivatives (see Section 7.3) and the initial conditions in (1), we find

 ℒ5y′61s2 = sY1s2 - y102 = sY1s2 - 2 ,

 ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - 2s - 12 .

Substituting these expressions into (2) and solving for Y1s2 yields

3s2Y1s2 - 2s - 124 - 23sY1s2 - 24 + 5Y1s2 =
-8

s + 1

 1s2 - 2s + 52Y1s2 = 2s + 8 -
8

s + 1

 1s2 - 2s + 52Y1s2 =
2s2 + 10s

s + 1

 Y1s2 =
2s2 + 10s

1s2 - 2s + 521s + 12  .

Our remaining task is to compute the inverse transform of the rational function Y1s2. This 
was done in Example 7 of Section 7.4, page 373, where, using a partial fraction expansion, we 
found

(3) y1t2 = 3et cos 2t + 4et sin 2t - e-t ,

which is the solution to the initial value problem (1). ◆

As a quick check on the accuracy of our computations, the reader is advised to verify that 
the computed solution satisfies the given initial conditions.

The reader is probably questioning the wisdom of using the Laplace transform method to 
solve an initial value problem that can be easily handled by the methods discussed in Chapter 4.  
The objective of the first few examples in this section is simply to make the reader familiar  
with the Laplace transform procedure. We will see in Example 4 and in later sections that the 
method is applicable to problems that cannot be readily handled by the techniques discussed in 
the previous chapters.

Example 2 Solve the initial value problem

(4) y″ + 4y′ - 5y = tet ;  y102 = 1 ,  y′102 = 0 .

Solution Let Y1s2 J ℒ5y61s2. Taking the Laplace transform of both sides of the differential equation 
in (4) gives

(5) ℒ5y″61s2 + 4ℒ5y′61s2 - 5Y1s2 =
1

1s - 122 .
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378     Chapter 7  Laplace Transforms

Using the initial conditions, we can express ℒ5y′61s2 and ℒ5y″61s2 in terms of Y1s2. That is,

 ℒ5y′61s2 = sY1s2 - y102 = sY1s2 - 1 ,

 ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2 - s .

Substituting back into (5) and solving for Y1s2 gives

 3s2Y1s2 - s4 + 43sY1s2 - 14 - 5Y1s2 =
1

1s - 122

 1s2 + 4s - 52Y1s2 = s + 4 +
1

1s - 122

 1s + 521s - 12Y1s2 =
s3 + 2s2 - 7s + 5

1s - 122

 Y1s2 =
s3 + 2s2 - 7s + 5

1s + 521s - 123  .

The partial fraction expansion for Y1s2 has the form

(6) 
s3 + 2s2 - 7s + 5

1s + 521s - 123 =
A

s + 5
+

B
s - 1

+
C

1s - 122 +
D

1s - 123 .

Solving for the numerators, we ultimately obtain A = 35>216, B = 181>216, C = -1>36, 
and D = 1>6. Substituting these values into (6) gives

Y1s2 =
35
216

 a 1
s + 5

b +
181
216

 a 1
s - 1

b -
1
36

 a 1

1s - 122 b +
1
12

 a 2

1s - 123 b  ,

where we have written D = 1>6 = (1>12)2 to facilitate the final step of taking the inverse 
transform. From the tables, we now obtain

(7) y1t2 =
35
216

 e-5t +
181
216

 et -
1
36

 tet +
1
12

 t2et

as the solution to the initial value problem (4). ◆

Example 3 Solve the initial value problem

(8) w″1t2 - 2w′1t2 + 5w1t2 = -8ep- t ; w1p2 = 2 , w′1p2 = 12 .

Solution To use the method of Laplace transforms, we first move the initial conditions to t = 0. This 
can be done by setting y1t2 J w1t + p2. Then

y′1t2 = w′1t + p2 ,  y″1t2 = w″1t + p2 .
Replacing t by t + p in the differential equation in (8), we have

(9) w″1t + p2 - 2w′1t + p2 + 5w1t + p2 = -8ep-1t+p2 = -8e-t .

Substituting y1t2 = w1t + p2 in (9), the initial value problem in (8) becomes

y″1t2 - 2y′1t2 + 5y1t2 = -8e-t ;  y102 = 2 ,  y′102 = 12 .

Because the initial conditions are now given at the origin, the Laplace transform method is 
applicable. In fact, we carried out the procedure in Example 1, page 376, where we found

(10) y1t2 = 3et cos 2t + 4et sin 2t - e-t .
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Section 7.5  Solving Initial Value Problems     379

Since w1t + p2 = y1t2, then w1t2 = y1t - p2. Hence, replacing t by t - p in (10) gives

 w1t2 = y1t - p2 = 3et-pcos 321t - p24 + 4et-psin 321t - p24 - e-1t-p2

 = 3et-pcos 2t + 4et-psin 2t - ep- t . ◆

Thus far we have applied the Laplace transform method only to linear equations with 
constant coefficients. Yet several important equations in mathematical physics involve linear 
equations whose coefficients are polynomials in t. To solve such equations using Laplace trans-
forms, we apply Theorem 6, page 364, where we proved that

(11) ℒ5tnf1t261s2 = 1-12n 
dnℒ5f6

dsn 1s2 .

If we let n = 1 and f1t2 = y′1t2, we find

 ℒ5ty′1t261s2 = -  
d
ds

 ℒ5y′61s2

 = -  
d
ds

 3sY1s2 - y1024 = -sY′1s2 - Y1s2 .

Similarly, with n = 1 and f1t2 = y″1t2, we obtain from (11)

 ℒ5ty″1t261s2 = -  
d
ds

 ℒ5y″61s2

 = -  
d
ds

 3s2Y1s2 - sy102 - y′1024
 = -s2Y′1s2 - 2sY1s2 + y102 .

Thus, we see that for a linear differential equation in y1t2 whose coefficients are polynomials 
in t, the method of Laplace transforms will convert the given equation into a linear differential 
equation in Y1s2 whose coefficients are polynomials in s. Moreover, if the coefficients of the 
given equation are polynomials of degree 1 in t, then (regardless of the order of the given equa-
tion) the differential equation for Y1s2 is just a linear first-order equation. Since we know how 
to solve this first-order equation, the only serious obstacle we may encounter is obtaining the 
inverse Laplace transform of Y1s2. [This problem may be insurmountable, since the solution 
y1t2 may not have a Laplace transform.]

In illustrating the technique, we make use of the following fact. If f1t2  is piecewise 
continuous on 30, ∞ 2 and of exponential order, then

(12) lim
sS ∞

ℒ5f61s2 = 0 .

(You may have already guessed this from the entries in Table 7.1, page 356.) An outline of the 
proof of (12) is given in Exercises 7.3, page 366, Problem 26.

Example 4 Solve the initial value problem

(13) y″ + 2ty′ - 4y = 1 ,  y102 = y′102 = 0 .

Solution Let Y1s2 = ℒ5y61s2 and take the Laplace transform of both sides of the equation in (13):

(14) ℒ5y″61s2 + 2ℒ5ty′1t261s2 - 4Y1s2 =
1
s
 .

Using the initial conditions, we find

ℒ5y″61s2 = s2Y1s2 - sy102 - y′102 = s2Y1s2
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380     Chapter 7  Laplace Transforms

and

 ℒ5ty′1t261s2 = -  
d
ds

 ℒ5y′61s2

 = -  
d
ds

 3sY1s2 - y1024 = -sY′1s2 - Y1s2 .

Substituting these expressions into (14) gives

 s2Y1s2 + 23-sY′1s2 - Y1s24 - 4Y1s2 =
1
s

 -2sY′1s2 + 1s2 - 62Y1s2 =
1
s

(15)  Y′1s2 + a 3
s

-
s
2
bY1s2 =

-1

2s2 .

Equation (15) is a linear first-order equation and has the integrating factor

m1s2 = e113>s - s>22ds = eln s3 - s2>4 = s3e-s2>4

(see Section 2.3). Multiplying (15) by m1s2, we obtain

d
ds

 5m1s2Y1s26 =
d
ds

 5s3e-s2>4Y1s2 6 = -  
s
2

 e-s2>4 .

Integrating and solving for Y1s2 yields

 s3e-s2>4Y1s2 = - L
s
2

 e-s2>4 ds = e-s2>4 + C

(16)  Y1s2 =
1

s3 + C 
es2>4

s3  .

Now if Y1s2 is the Laplace transform of a piecewise continuous function of exponential order, 
then it follows from equation (12) that

lim
sS ∞

Y1s2 = 0 .

For this to occur, the constant C in equation (16) must be zero. Hence, Y1s2 = 1>s3, and  
taking the inverse transform gives y1t2 = t2>2. We can easily verify that y1t2 = t2>2 is the 
solution to the given initial value problem by substituting it into (13). ◆

We end this section with an application from control theory. Let’s consider a servomecha-
nism that models an automatic pilot. Such a mechanism applies a torque to the steering control 
shaft so that a plane or boat will follow a prescribed course. If we let y1t2 be the true direction 
(angle) of the craft at time t and g1t2 be the desired direction at time t, then

e1t2 J y1t2 - g1t2
denotes the error or deviation between the desired direction and the true direction.

Let’s assume that the servomechanism can measure the error e1t2 and feed back to the 
steering shaft a component of torque that is proportional to e1t2 but opposite in sign (see 
Figure 7.6 on page 381). Newton’s second law, expressed in terms of torques, states that

1moment of inertia2 : 1angular acceleration2 = total torque.

M07_NAGL7069_09_SE_C07_350-420.indd   380 12/09/16   8:44 AM

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Section 7.5  Solving Initial Value Problems     381

For the servomechanism described, this becomes

(17) Iy″1t2 = -ke1t2 ,
where I is the moment of inertia of the steering shaft and k is a positive proportionality 
constant.

e ( t ) 5 y(t) 2 g(t)    

Desired 
direction 

Error 

Feedback 

True 
direction 

y ( t ) 

y ( t ) 
Iy" 5 2  ke 

g(t)

Figure 7.6 Servomechanism with feedback

Example 5 Determine the error e1t2 for the automatic pilot if the steering shaft is initially at rest in the 
zero direction and the desired direction is given by g1t2 = at, where a is a constant.

Solution Based on the discussion leading to equation (17), a model for the mechanism is given by the 
initial value problem

(18) Iy″1t2 = -ke1t2 ;  y102 = 0 ,  y′102 = 0 ,

where e1t2 = y1t2 - g1t2 = y1t2 - at. We begin by taking the Laplace transform of both 
sides of (18):

 Iℒ5y″61s2 = -kℒ5e61s2
 I3s2Y1s2 - sy102 - y′1024 = -kE1s2

(19)  s2IY1s2 = -kE1s2 ,
where Y1s2 = ℒ5y61s2 and E1s2 = ℒ5e61s2. Since

E1s2 = ℒ5y1t2 - at61s2 = Y1s2 - ℒ5at61s2 = Y1s2 - as-2 ,

we find from (19) that

s2IE1s2 + aI = -kE1s2 .
Solving this equation for E1s2 gives

E1s2 = -  
aI

s2I + k
=

-a2k>I
 
2k>I

s2 + k>I .

Hence, on taking the inverse Laplace transform, we obtain the error

(20) e1t2 = -  
a2k>I

 sin12k>I t2  . ◆

As we can see from equation (20), the automatic pilot will oscillate back and forth about 
the desired course, always “oversteering” by the factor a>2k>I. Clearly, we can make the 
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382     Chapter 7  Laplace Transforms

error small by making k large relative to I, but then the term 2k>I becomes large, causing the 
error to oscillate more rapidly. (See Figure 7.7.) As with vibrations, the oscillations or over-
steering can be controlled by introducing a damping torque proportional to e′1t2 but opposite 
in sign (see Problem 40).

e(t)

8642

1

0.5
k

5 16
I

I

0

20.5

21

t

k
5 1

Figure 7.7 Error for automatic pilot when k>I = 1 and when k>I = 16

In Problems 1–14, solve the given initial value problem using 
the method of Laplace transforms.

1. y″ - 2y′ + 5y = 0 ;  y102 = 2 ,  y′102 = 4

2. y″ - y′ - 2y = 0 ;  y102 = -2 ,  y′102 = 5

3. y″ + 6y′ + 9y = 0 ;  y102 = -1 ,  y′102 = 6

4. y″ + 6y′ + 5y = 12e t ; y102 = -1 ,  y′102 = 7

5. w″ + w = t2 + 2 ;  w102 = 1 ,  w′102 = -1

6. y″ - 4y′ + 5y = 4e3t ;  y102 = 2 ,  y′102 = 7

7. y″ - 7y′ + 10y = 9 cos t + 7 sin t ;

y102 = 5 ,  y′102 = -4

8. y″ + 4y = 4t2 - 4t + 10 ;

y102 = 0 ,  y′102 = 3

9. z″ + 5z′ - 6z = 21e t- 1 ;

z112 = -1 ,  z′112 = 9

10. y″ - 4y = 4t - 8e-2t ;  y102 = 0 ,  y′102 = 5

11. y″ - y = t - 2 ;  y122 = 3 ,  y′122 = 0

12. w″ - 2w′ + w = 6t - 2 ;

w1-12 = 3 ;  w′1-12 = 7

13. y″ - y′ - 2y = -8 cos t - 2 sin t ;

y1p>22 = 1 ,  y′1p>22 = 0

14. y″ + y = t ;  y1p2 = 0 ,  y′1p2 = 0

In Problems 15–24, solve for Y1s2, the Laplace transform  
of the solution y1t2 to the given initial value problem.

15. y″ - 3y′ + 2y = cos t ; y102 = 0 ,  y′102 = -1

16. y″ + 6y = t2 - 1 ;  y102 = 0 ,  y′102 = -1

17. y″ + y′ - y = t3 ;  y102 = 1 ,  y′102 = 0

18. y″ - 2y′ - y = e 2t - e t ;  y102 = 1 ,  y′102 = 3

19. y″ + 5y′ - y = e t - 1 ;  y102 = 1 ,  y′102 = 1

20. y″ + 3y = t3 ;  y102 = 0 ,  y′102 = 0

21. y″ - 2y′ + y = cos t - sin t ; y102 = 1 , y′102 = 3

7.5 EXERCISES
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Section 7.6  Transforms of Discontinuous Functions     383

22. y″ - 6y′ + 5y = tet ;  y102 = 2 ,  y′102 = -1

23. y″ + 4y = g1t2 ;  y102 = -1 ,  y′102 = 0 , 
where

g1t2 = e t , t 6 2 ,
5 , t 7 2

24. y″ - y = g1t2 ;  y102 = 1 ,  y′102 = 2 ,  
where 

g1t2 = e1 , t 6 3 ,
t , t 7 3

In Problems 25–28, solve the given third-order initial value 
problem for y1t2 using the method of Laplace transforms.

25. y‴ - y″ + y′ - y = 0 ;

y102 = 1 ,  y′102 = 1 ,  y″102 = 3

26. y‴ + 4y″ + y′ - 6y = -12 ;

y102 = 1 ,  y′102 = 4 ,  y″102 = -2

27. y‴ + 3y″ + 3y′ + y = 0 ;

y102 = -4 ,  y′102 = 4 ,  y″102 = -2

28. y‴ + y″ + 3y′ - 5y = 16e-t ;

y102 = 0 ,  y′102 = 2 ,  y″102 = -4

In Problems 29–32, use the method of Laplace transforms 
to find a general solution to the given differential equation 
by assuming y102 = a and y′102 = b, where a and b are  
arbitrary constants.

34. Use Theorem 6 in Section 7.3, page 364, to show that

ℒ5t2y″1t261s2 = s2Y″1s2 + 4sY′1s2 + 2Y1s2 ,
where Y1s2 = ℒ5y61s2 .

In Problems 35–38, find solutions to the given initial value 
problem.

35. y″ + 3ty′ - 6y = 1 ;  y102 = 0 ,  y′102 = 0

36. ty″ - ty′ + y = 2 ;  y102 = 2 ,  y′102 = -1

37. ty″ - 2y′ + ty = 0 ;  y102 = 1 ,  y′102 = 0

[Hint: ℒ-151> 1s2 + 12261t2 = 1sin t - t cos t2 >2.4
38. y″ + ty′ - y = 0 ;

y102 = 0 ,  y′102 = 3

39. Determine the error e1t2 for the automatic pilot in 
Example 5, page 381, if the shaft is initially at rest in 
the zero direction and the desired direction is g1t2 = a, 
where a is a constant.

40. In Example 5 assume that in order to control oscillations, 
a component of torque proportional to e′1t2, but oppo-
site in sign, is also fed back to the steering shaft. Show 
that equation (17) is now replaced by

Iy″1t2 = -ke1t2 - me′1t2 ,
where m is a positive constant. Determine the error 
e1t2 for the automatic pilot with mild damping (i.e., 
m 6 22Ik2 if the steering shaft is initially at rest in 
the zero direction and the desired direction is given by 
g1t2 = a, where a is a constant.

41. In Problem 40 determine the error e1t2 when the  
desired direction is given by g1t2 = at, where a is a 
constant.

29. y″ - 4y′ + 3y = 0 30. y″ + 6y′ + 5y = t

31. y″ + 2y′ + 2y = 5 32. y″ - 5y′ + 6y = -6te2t

33. Use Theorem 6 in Section 7.3, page 364, to show that

ℒ5t2y′1t261s2 = sY″1s2 + 2Y′1s2 ,
where Y1s2 = ℒ5y61s2 .

In this section we study special functions that often arise when the method of Laplace trans-
forms is applied to physical problems. Of particular interest are methods for handling func-
tions with jump discontinuities. As we saw in the mixing problem of Section 7.1, jump 
discontinuities occur naturally in any physical situation that involves switching. Finding the 
Laplace transforms of such functions is straightforward; however, we need some theory for 
inverting these transforms. To facilitate this, Oliver Heaviside introduced the following step 
function.

7.6 Transforms of Discontinuous Functions
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384     Chapter 7  Laplace Transforms

By shifting the argument of u1t2, the jump can be moved to a different location. That is,

(2) u1t - a2 = e0 , t - a 6 0 ,
1 , 0 6 t - a

  = e0 , t 6 a
1 , a 6 t

has its jump at t = a. By multiplying by a constant M, the height of the jump can also be 
modified:

Mu1t - a2 = e0 , t 6 a ,
M , a 6 t .

See Figure 7.8.

Unit Step Function

Definition 5. The unit step function u1t2 is defined by

(1) u1t2 J e0 , t 6 0 ,
1 , 0 6 t .

(Any Riemann integral, like the Laplace transform, of a function is unaffected if the 
integrand’s value at a single point is changed by a finite amount. Therefore, we do not 
specify a value for u1t2 at t = 0.)

2 

1 

1 2 3 4 0 
t 

2 u ( t  - 1) 

u ( t  - 2) 

Figure 7.8 Two-step functions expressed using the unit step function

To simplify the formulas for piecewise continuous functions, we employ the rectangular 
window, which turns the step function on and then turns it back off.

†Also known as the square pulse, or the boxcar function.

Rectangular Window Function

Definition 6. The rectangular window function Πa,b1t2 is defined by†

(3) Πa,b1t2 J u1t - a2 - u1t - b2 = •
0 ,     t 6 a ,

1 ,      a 6 t 6 b ,

0 ,      b 6 t  .
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Section 7.6  Transforms of Discontinuous Functions     385

The function Πa,b1t2 is displayed in Figure 7.9, and Figure 7.10, illustrating multiplication of a 
function by Πa,b1t2, justifies its name.

1

a b

Pa,b(t)

Figure 7.9 The rectangular window

a b

f (t)

a b

f (t)Pa,b(t)

Figure 7.10 The windowing effect of Πa,b1t2

Any piecewise continuous function can be expressed in terms of window and step 
functions.

Example 1 Write the function

(4) f1t2 = µ
3 , t 6 2 ,
1 , 2 6 t 6 5 ,
t , 5 6 t 6 8 ,
t2>10 , 8 6 t 

(see Figure 7.11 on page 386) in terms of window and step functions.

Solution Clearly, from the figure we want to window the function in the intervals (0, 2), (2, 5), and  
(5, 8), and to introduce a step for t 7 8. From (5) we read off the desired representation as

(5) f1t2 = 3Π0,21t2 + 1Π2,51t2 + tΠ5,81t2 + 1t2>10)u1t - 82. ◆

The Laplace transform of u1t - a2 with a Ú 0 is

(6) ℒ5u1t − a261s2 =
e−as

s
 ,

since, for s 7 0,

 ℒ5u1t - a261s2 = L
∞

0
e-stu1t - a2  dt = L

∞

a
e-st dt

 = lim
NS ∞

 
-e-st

s
 2 N

a
=

e-as

s
 .
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386     Chapter 7  Laplace Transforms

Conversely, for a 7 0, we say that the piecewise continuous function u1t - a2 is an 
inverse Laplace transform for e-as>s and we write

ℒ- 1e e-as

s
f 1t2 = u1t - a2 .

For the rectangular window function, we deduce from (6) that

(7) ℒ5Πa,b1t261s2 = ℒ5u1t - a2 - u1t - b261s2 = 3e-sa - e-sb4 >s  ,   0 6 a 6 b.

The translation property of F1s2 discussed in Section 7.3 described the effect on the 
Laplace transform of multiplying a function by eat. The next theorem illustrates an analogous 
effect of multiplying the Laplace transform of a function by e-as.

t

f(t)

2

3

0 4 6 8 1210

Figure 7.11 Graph of f1t2 in equation (4)

Translation in t

Theorem 8. Let F1s2 = ℒ5f61s2 exist for s 7 a Ú 0. If a is a positive constant, then

(8) ℒ5f1t − a2u1t − a261s2 = e−asF1s2 ,
and, conversely, an inverse Laplace transform† of e-asF1s2 is given by

(9) ℒ−15e−asF1s261t2 = f1t − a2u1t − a2 .

Proof. By the definition of the Laplace transform,

(10)  ℒ5f1t - a2u1t - a261s2 = L
∞

0
e-stf1t - a2u1t - a2  dt

  = L
∞

a
e-stf1t - a2  dt ,

†This inverse transform is in fact a continuous function of t if f102 = 0 and f1t2 is continuous for t Ú 0; the values of 
f1t2 for t 6 0 are of no consequence, since the factor u1t - a2 is zero there.
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Section 7.6  Transforms of Discontinuous Functions     387

where, in the last equation, we used the fact that u(t - a2 is zero for t 6 a and equals 1 for 
t 7 a. Now let y = t - a. Then we have dy = dt, and equation (10) becomes

 ℒ5f1t - a2u1t - a261s2 = L
∞

0
e-ase-syf1y2  dy

 = e-as L
∞

0
e-syf1y2  dy = e-asF1s2 . ◆

Notice that formula (8) includes as a special case the formula for ℒ5u1t - a26; indeed, if 
we take f1t2 K 1, then F1s2 = 1>s and (8) becomes ℒ5u1t - a261s2 = e-as>s.

In practice it is more common to be faced with the problem of computing the trans-
form of a function expressed as g1t2u1t - a2 rather than f1t - a2u1t - a2. To compute 
ℒ5g1t2u1t - a26, we simply identify g1t2 with f1t - a2 so that f1t2 = g1t + a2. Equation 
(8) then gives

(11) ℒ5g1t2u1t − a261s2 = e−asℒ5g1t + a261s2 .

Example 2 Determine the Laplace transform of t2u1t - 12 .
Solution To apply equation (11), we take g1t2 = t2 and a = 1. Then

g1t + a2 = g1t + 12 = 1t + 122 = t2 + 2t + 1 .

Now the Laplace transform of g1t + a2 is

ℒ5g1t + a261s2 = ℒ5t2 + 2t + 161s2 =
2

s3 +
2

s2 +
1
s
 .

So, by formula (11), we have

ℒ5t2u1t - 1261s2 = e-se 2

s3 +
2

s2 +
1
s
f  . ◆

Example 3 Determine ℒ51cos t2  u1t - p26 .

Solution Here g1t2 = cos t and a = p. Hence,

g1t + a2 = g1t + p2 = cos1t + p2 = -cos t ,

and so the Laplace transform of g1t + a2 is

ℒ5g1t + a261s2 = -ℒ5cos t61s2 = -  
s

s2 + 1
 .

Thus, from formula (11), we get

ℒ51cos t2u1t - p261s2 = -e-ps 
s

s2 + 1
 . ◆

M07_NAGL7069_09_SE_C07_350-420.indd   387 9/27/16   3:26 PM

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


388     Chapter 7  Laplace Transforms

In Examples 2 and 3, we could also have computed the Laplace transform directly from 
the definition. In dealing with inverse transforms, however, we do not have a simple alternative 
formula† upon which to rely, and so formula (9) is especially useful whenever the transform 
has e-as as a factor.

(t - 2) u(t - 2)

0 2
t

Figure 7.12 Graph of solution to Example 4

Example 4 Determine ℒ-1 e e-2s

s2 f  and sketch its graph.

Solution To use the translation property (9), we first express e-2s>s2 as the product e-asF1s2. For this 
purpose, we put e-as = e-2s and F1s2 = 1>s2. Thus, a = 2 and

f1t2 = ℒ-1 e 1

s2 f  1t2 = t .

It now follows from the translation property that

ℒ-1 e e-2s

s2 f 1t2 = f1t - 22u1t - 22 = 1t - 22u1t - 22 .

See Figure 7.12. ◆

As we anticipated in the beginning of this section, step functions arise in the modeling of 
on/off switches, changes in polarity, etc.

Example 5 The current I in an LC series circuit is governed by the initial value problem

(12) I″1t2 + 4I1t2 = g1t2 ;  I102 = 0 ,  I′102 = 0 ,

where

g1t2 J •
1 , 0 6 t 6 1 ,

-1 , 1 6 t 6 2 ,
0 , 2 6 t .

Determine the current as a function of time t.

Solution Let J1s2 J ℒ5I61s2. Then we have ℒ5I″61s2 = s2J1s2.

†Under certain conditions, the inverse transform is given by the contour integral

ℒ-15F61t2 =
1

2pi
 L

a + i ∞

a - i ∞
 estF1s2  ds .

See, for example, Complex Variables and the Laplace Transform for Engineers, by Wilbur R. LePage (Dover Publications, New York, 2010), or 
Fundamentals of Complex Analysis with Applications to Engineering and Science, 3rd ed., by E. B. Saff and A. D. Snider (Pearson Education, 
Boston. MA, 2003).
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Section 7.6  Transforms of Discontinuous Functions     389

Writing g1t2 in terms of the rectangular window function Πa,b1t2 = u1t - a2 - u1t - b2, 
we get

 g1t2 = Π0,11t2 + 1-12Π1,21t2 = u1t2 - u1t - 12 - 3u1t - 12 - u1t - 224
 = 1 - 2u1t - 12 + u1t - 22 ,

and so

ℒ5g61s2 =
1
s

-
2e-s

s
+

e-2s

s
 .

Thus, when we take the Laplace transform of both sides of (12), we obtain

 ℒ5I″61s2 + 4ℒ5I61s2 = ℒ5g61s2
 s2J1s2 + 4J1s2 =

1
s

-
2e-s

s
+

e-2s

s

 J1s2 =
1

s1s2 + 42 -
2e-s

s1s2 + 42 +
e-2s

s1s2 + 42  .

To find I = ℒ-15J6, we first observe that

J1s2 = F1s2 - 2e-sF1s2 + e-2sF1s2 ,
where

F1s2 J
1

s1s2 + 42 =
1
4
a 1

s
b -

1
4
a s

s2 + 4
b  .

Computing the inverse transform of F1s2 gives

f1t2 J ℒ-15F61t2 =
1
4

-
1
4

 cos 2t .

Hence, via the translation property (9), we find

 I1t2 = ℒ-15F1s2 - 2e-sF1s2 + e-2sF1s261t2
 = f1t2 - 2 f1t - 12u1t - 12 + f1t - 22u1t - 22
 = a 1

4
-

1
4

 cos 2tb - c 1
2

-
1
2

 cos 21t - 12 du1t - 12

 = + c 1
4

-
1
4

 cos 21t - 22 du1t - 22 .

The current is graphed in Figure 7.13. Note that I1t2 is smoother than g1t2; the former has 
discontinuities in its second derivative at the points where the latter has jumps. ◆

t

I(t)

10

1

2 3 4

Figure 7.13 Solution to Example 5

M07_NAGL7069_09_SE_C07_350-420.indd   389 20/10/16   8:41 AM

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


390     Chapter 7  Laplace Transforms

In Problems 1– 4, sketch the graph of the given function  
and determine its Laplace transform.

10. 

t
43

(t - 1)2

21

1

2

3

0

g(t)

Figure 7.17 Function in Problem 10

In Problems 11–18, determine an inverse Laplace transform 
of the given function.

7.6 EXERCISES

1. 1t - 122u1t - 12 2. u1t - 12 - u1t - 42
3. t2u1t - 22 4. tu1t - 12

In Problems 5–10, express the given function using window 
and step functions and compute its Laplace transform.

5. g1t2 = µ
0 , 0 6 t 6 1 ,
2 , 1 6 t 6 2 ,
1 , 2 6 t 6 3 ,
3 , 3 6 t

6. g1t2 = e0 , 0 6 t 6 2 ,
t + 1 , 2 6 t

7. g ( t ) 

t

2

1

0
1 2

Figure 7.14 Function in Problem 7

8. 

1 

t 

g ( t ) 

-1

sin t

Figure 7.15 Function in Problem 8

9. g ( t ) 

t

1

10 2 3 4

Figure 7.16 Function in Problem 9

11. 
e-2s

s - 1
12. 

e-3s

s2

13. 
e-2s - 3e-4s

s + 2
14. 

e-3s

s2 + 9

15. 
se-3s

s2 + 4s + 5
16. 

e-s

s2 + 4

17. 
e-3s1s - 52
1s + 121s + 22 18. 

e-s13s2 - s + 22
1s - 121s2 + 12

19. The current I1t2 in an RLC series circuit is governed by 
the initial value problem

I″1t2 + 2I′1t2 + 2I1t2 = g1t2 ;
I102 = 10 ,  I′102 = 0 ,

where

g1t2 J •
20 , 0 6 t 6 3p ,
0 , 3p 6 t 6 4p ,
20 , 4p 6 t .

Determine the current as a function of time t. Sketch I1t2 
for 0 6 t 6 8p.

20. The current I1t2 in an LC series circuit is governed by 
the initial value problem

I″1t2 + 4I1t2 = g1t2 ;
I102 = 1 ,  I′102 = 3 ,

where

g1t2 J e3 sin t , 0 … t … 2p ,
0 , 2p 6 t .

Determine the current as a function of time t.
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Section 7.6  Transforms of Discontinuous Functions     391

In Problems 21–24, solve the given initial value problem 
using the method of Laplace transforms. Sketch the graph of 
the solution.

21. y″ + y = u1t - 32 ;
y102 = 0 ,  y′102 = 1

22. w″ + w = u1t - 22 - u1t - 42 ;
w102 = 1 ,  w′102 = 0

23. y″ + y = t - 1t - 42u1t - 22 ;
y102 = 0 ,  y′102 = 1

24. y″ + y = 3 sin 2t - 31sin 2t2u1t - 2p2 ;
y102 = 1 ,  y′102 = -2

In Problems 25–32, solve the given initial value problem 
using the method of Laplace transforms.

25. y″ + 2y′ + 2y = u1t - 2p2 - u1t - 4p2 ;
y102 = 1 ,  y′102 = 1

26. y″ + 4y′ + 4y = u1t - p2 - u1t - 2p2 ;
y102 = 0 ,  y′102 = 0

27. z″ + 3z′ + 2z = e-3t u1t - 22 ;
z102 = 2 ,  z′102 = -3

28. y″ + 5y′ + 6y = tu1t - 22 ;
y102 = 0 ,  y′102 = 1

29. y″ + 4y = g1t2 ;  y102 = 1 ,  y′102 = 3 ,

where g1t2 = e sin t , 0 … t … 2p ,
0 , 2p 6 t

30. y″ + 2y′ + 10y = g1t2 ;
y102 = -1 ,  y′102 = 0 ,

where g1t2 = •
10 , 0 … t … 10 ,
20 , 10 6 t 6 20 ,
0 , 20 6 t

31. y″ + 5y′ + 6y = g1t2 ;    
y102 = 0 ,    y′102 = 2 ,

where g1t2 = •
0 , 0 … t 6 1 ,
t , 1 6 t 6 5 ,
1 , 5 6 t

32. y″ + 3y′ + 2y = g1t2 ;    
y102 = 2 ,  y′102 = -1 ,

where g1t2 = e e-t , 0 … t 6 3 ,
1 , 3 6 t

33. The mixing tank in Figure 7.18 initially holds 500 L  
of a brine solution with a salt concentration of  
0.02 kg/L. For the first 10 min of operation, valve A is 
open, adding 12 L/min of brine containing a 0.04 kg/L 
salt concentration. After 10 min, valve B is switched in, 
adding a 0.06 kg/L concentration at 12 L/min. The exit 
valve C removes 12 L/min, thereby keeping the volume 
constant. Find the concentration of salt in the tank as a 
function of time.

C

A

12 L/min
0.04 kg/L

12 L/min
0.06 kg/L

B

Figure 7.18 Mixing tank

34. Suppose in Problem 33 valve B is initially opened for  
10 min and then valve A is switched in for 10 min. 
Finally, valve B is switched back in. Find the concentra-
tion of salt in the tank as a function of time.

35. Suppose valve C removes only 6 L/min in Problem 33. 
Can Laplace transforms be used to solve the problem? 
Discuss.

36. The unit triangular pulse Λ1t2 is defined by

Λ1t2 J µ
0 , t 6 0 ,
2t , 0 6 t 6 1>2 ,
2 - 2t , 1>2 6 t 6 1 ,
0 , t 7 1 .

  (a)  Sketch the graph of Λ1t2. Why is it so named? Why 
is its symbol appropriate?

 (b) Show that Λ1t2 = L
t

-∞
25Π0, 1/21t2 - Π1/2, 11t26 dt.

 (c) Find the Laplace transform of Λ1t2.
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392     Chapter 7  Laplace Transforms

*The volume of a body increases as the cube of its length; its surface area increases as the square of the length. First 
formulated by Galileo in 1638 (Discourses and Mathematical Demonstrations Relating to Two New Sciences), this 
principle is useful in explaining the limitations on animal growth.

Periodic functions arise frequently in physical situations such as sinusoidal vibrations in struc-
tures, and in electromagnetic oscillations in AC machinery and microwave transmission. Power 
functions 1tn2 occur in more specialized applications: the square-cube law of biomechanics*, 
the cube rule of electoral politics,† Coulomb’s inverse-square force, and, most significantly, the 
Taylor series of Section 3.7 and Chapter 8. The manipulation of these functions’ transforms 
(when they exist) is facilitated by the techniques described in this section.

7.7 Transforms of Periodic and Power Functions

†In a two-party system, the ratio of the seats won equals the cube of the ratio of the votes cast. (G. Upton, “Blocks of 
voters and the cube law,” British Journal of Political Science. Vol. 15, Issue 03 (1985): 388–398.)

Periodic Function

Definition 7. A function f1t2 is said to be periodic of period T 1≠02 if
f1t + T2 = f1t2

for all t in the domain of f.

As we know, the sine and cosine functions are periodic with period 2p and the tangent 
function is periodic with period p.‡ To specify a periodic function, it is sufficient to give its 
values over one period. For example, the square wave function in Figure 7.19 can be expressed 
as

(1) f1t2 J e1 , 0 6 t 6 1 ,
-1 , 1 6 t 6 2 ,

     and f1t2 has period 2.

t
-2 -1

-1

0 1

1

2 3

Figure 7.19 Graph of square wave function f1t2

t
0 T

fT (t)
f (t)

Figure 7.20 Windowed version of periodic function

‡A function that has period T will also have period 2T, 3T, etc. For example, the sine function has periods 2p, 4p,  
6p, etc. Some authors refer to the smallest period as the fundamental period or just the period of the function.
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Section 7.7  Transforms of Periodic and Power Functions     393

It is convenient to introduce a notation for the “windowed” version of a periodic function 
f1t2, using a rectangular window whose width is the period:

(2) fT1t2 J f1t2Π0,T1t2 = f1t23u1t2 - u1t - T24 = e f1t2 , 0 6 t 6 T ,
0 , otherwise .

(See Figure 7.20 on page 392.) The Laplace transform of fT1t2 is given by

FT1s2 = L
∞

0
 e-st fT1t2  dt = L

T

0
 e-st f1t2  dt .

It is related to the Laplace transform of f1t2 as follows.

Transform of Periodic Function

Theorem 9. If  f  has period T and is piecewise continuous on 30, T4, then the Laplace 
transforms

F1s2 = L
∞

0
 e-st f1t2  dt  and  FT1s2 = L

∞

0
 e-st fT1t2  dt = L

T

0
 e-st f1t2  dt 

are related by

(3) FT1s2 = F1s2  31 - e-sT4     or  F1s2 =
FT1s2

1−e−sT .

Proof. From (2) and the periodicity of ƒ, we have

(4) fT1t2 = f1t2u1t2 - f1t2u1t - T2 = f1t2u1t2 - f1t - T2u1t - T2 ,
so taking transforms and applying the translation-in-t property (Theorem 8, page 386) yields 
FT1s2 = F1s2  - e-sTF1s2, which is equivalent to (3). ◆

Example 1 Determine ℒ5f6, where  f  is the periodic square wave function in Figure 7.19.

Solution Here T = 2. Windowing the function results in fT1t2 = Π0,11t2 - Π1,21t2, so from the for-
mula for the transform of the window function (equation (7) in Section 7.6, page 386) we get 
FT1s2 = 11 - e-s2 >s - 1e-s - e-2s2 >s = 11 - e-s22>s. Therefore (3) implies

ℒ5f61s2 =
11 - e-s22>s

1 - e-2s =
1 - e-s

11 + e-s2s . ◆

Example 2 Determine ℒ5f6, where

f1t2 J •
sin t

t
 , t ≠ 0 ,

1 , t = 0 .

We next turn to the problem of finding transforms of functions given by a power series. 
Our approach is simply to apply the formula ℒ5tn61s2 = n!/sn+1, n = 0, 1, 2, . . . , to the 
terms of the series.

M07_NAGL7069_09_SE_C07_350-420.indd   393 12/09/16   8:44 AM

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


394     Chapter 7  Laplace Transforms

Solution We begin by expressing f1t2 in a Taylor series† about t = 0. Since

sin t = t -
t3

3!
+

t5

5!
-

t7

7!
+ g ,

then dividing by t, we obtain

f1t2 =
sin t

t
= 1 -

t2

3!
+

t4

5!
-

t6

7!
+ g

for t 7 0. This representation also holds at t = 0 since

lim
tS0  

 f1t2 = lim
tS0

 
sin t

t
= 1 .

Observe that f1t2 is continuous on 30, ∞ 2 and of exponential order. Hence, its Laplace trans-
form exists for all s sufficiently large. Because of the linearity of the Laplace transform, we 
would expect that

 ℒ5f61s2 = ℒ5161s2 -
1
3!

 ℒ5t261s2 +
1
5!

 ℒ5t461s2 + g

 =
1
s

-
2!

3!s3 +
4!

5!s5 -
6!

7!s7 + g

 =
1
s

-
1

3s3 +
1

5s5 -
1

7s7 + g .

Indeed, using tools from analysis, it can be verified that this series representation is valid for 
all s 7 1. Moreover, one can show that the series converges to the function arctan11>s2 (see 
Problem 22). Thus,

(5) ℒe sin t
t
f 1s2 = arctan  

1
s
 . ◆

A similar procedure involving the series expansion for F1s2 in powers of 1>s can be used 
to compute f1t2 = ℒ-15F61t2 (see Problems 23–25).

We have previously shown, for every nonnegative integer n, that ℒ5tn61s2 = n!>sn+1. 
But what if the power of t is not an integer? Is this formula still valid? To answer this question, 
we need to extend the idea of “factorial.” This is accomplished by the gamma function.‡

Gamma Function

Definition 8. The gamma function Γ1r2 is defined by

(6) �1r2 J L
H

0
 e−uu r − 1 du ,  r + 0 .

†For a discussion of Taylor series, see Sections 8.1 and 8.2.
‡Historical Footnote: The gamma function was introduced by Leonhard Euler.

It can be shown that the integral in (6) converges for r 7 0. A useful property of the 
gamma function is the recursive relation

(7) �1r + 12 = r�1r2 .
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Section 7.7  Transforms of Periodic and Power Functions     395

This identity follows from the definition (6) after performing an integration by parts:

 Γ1r + 12 = L
∞

0
e-uu r du = lim

NS ∞ L
N

0
e-uu r du

 = lim
NS ∞
e e-uu r `

N

0
+ L

N

0
re-uu r - 1 du f

 = lim
NS ∞
1e-NNr2 + r lim

NS ∞ L
N

0
e-uu r - 1 du

 = 0 + r Γ1r2 = r Γ1r2 .
When r is a positive integer, say r = n, then the recursive relation (7) can be repeatedly 

applied to obtain

 Γ1n + 12 = nΓ1n2 = n1n - 12Γ1n - 12 = g
 = n1n - 121n - 22g2Γ112 .

It follows from the definition (6) that Γ112 = 1, so we find

�1n + 12 = n! .

Thus, the gamma function extends the notion of factorial.
As an application of the gamma function, let’s return to the problem of determining the 

Laplace transform of an arbitrary power of t. We will verify that the formula

(8) ℒ5t r61s2 =
�1r + 12

s r + 1

holds for every constant r 7 -1 .
By definition,

ℒ5tr61s2 = L
∞

0
e-sttr dt .

Let’s make the substitution u = st. Then du = s dt, and we find

 ℒ5tr61s2 = L
∞

0
e-ua u

s
b

r

a 1
s
b  du

 =
1

sr + 1 L
∞

0
e-uu r du =

Γ1r + 12
s r + 1  .

Notice that when r = n is a nonnegative integer, then Γ1n + 12 = n!, and so formula (8) 
reduces to the familiar formula for ℒ5tn6.

Example 3 Given that Γ11>22 = 1p (see Problem 26), find the Laplace transform of f1t2 = t3>2e2t.

Solution We’ll apply the translation-in-s property (Theorem 3, page 361) to the transform for t3>2, which from 

(8) is given by Γ13
2 + 12 >s 

3
2 + 1. Thanks to the basic gamma function property (7), we can write

Γa 3
2

+ 1b =
3
2

Γa 3
2
b =

3
2

Γa 1
2

+ 1b = a 3
2
b a 1

2
bΓa 1

2
b =

3
4
1p .

Hence ℒ5t3>261s2 = 31p
4s5>2 , and so

ℒ5 t3>2e2t6 1s2 =
31p

41s - 225>2 . ◆
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396     Chapter 7  Laplace Transforms

In Problems 1 – 4, determine ℒ5f6, where f1t2 is periodic 
with the given period. Also graph f1t2.
1. f1t2 = t , 0 6 t 6 2 , and f1t2 has period 2.

2. f1t2 = et , 0 6 t 6 1 , and f1t2 has period 1.

3. f1t2 = e e-t, 0 6 t 6 1 ,
1, 1 6 t 6 2 ,

 and f1t2 has period 2.

4. f1t2 = e t, 0 6 t 6 1 ,
1 - t, 1 6 t 6 2 ,

 and f1t2 has period 2.

In Problems 5–8, determine ℒ5f6, where the periodic function 
is described by its graph.

5. 

2a

f (t)

t 
a 3a 4a0

1

Figure 7.21 Square wave

6. 

5a2a

f (t)

t 
a 3a 4a0

1

Figure 7.22 Sawtooth wave

7. 

2a

f (t)

t 
a 3a 4a0

1

Figure 7.23 Triangular wave

8. f (t)

t 
0

1

Figure 7.24 Half-rectified sine wave

9. Show that if ℒ5g61s2 = 31s + a211 - e-Ts24-1, where 
T 7 0 is fixed, then

(9) g1t2 = e−at + e−A1t− T2u1t − T2
+ e−A1t− 2T2u1t − 2T2
+ e−A1t− 3T2u1t − 3T2 + P .

[Hint: Use the fact that 1 + x + x2 + g = 1> 11 - x2.4
10. The function g1t2 in (9) can be expressed in a more con-

venient form as follows:

  (a) Show that for each n = 0, 1, 2, . . . ,

g1t2 = e-at c e
1n+12aT - 1

eaT - 1
d  for nT 6 t 6 1n + 12T.

  [Hint: Use the fact that 1 + x + x2 + g + xn =
1xn+1 - 12 >1x - 12.4

 (b)  Let y = t - 1n + 12T. Show that when  
nT 6 t 6 1n + 12T, then -T 6 y 6 0 and

(10) g1t2 =
e−AY

eAT − 1
-

e−At

eAT − 1
 .

 (c)  Use the facts that the first term in (10) is periodic 
with period T and the second term is independent of 
n to sketch the graph of g1t2 in (10) for a = 1 and 
T = 2.

11. Show that if ℒ5g61s2 = b31s2 + b2211 - e-Ts24-1, 
then

 g1t2 = sin Bt + 3sin B1t − T24u1t − T2
 + 3sin B1t − 2T24u1t − 2T2
 + 3sin B1t − 3T24u1t − 3T2 + P .

12. Use the result of Problem 11 to show that

ℒ-1e 1

1s2 + 1211 - e-ps2 f 1t2 = g1t2 ,

where g1t2 is periodic with period 2p and

g1t2 J e sin t , 0 … t … p ,
0 , p … t … 2p .

In Problems 13 and 14, use the method of Laplace transforms 
and the results of Problems 9 and 10 to solve the initial value 
problem.

y″ + 3y′ + 2y = f1t2 ;    
y102 = 0 ,  y′102 = 0 ,

where f1t2 is the periodic function defined in the stated  
problem.

13. Problem 2

14. Problem 5 with a = 1

7.7 EXERCISES
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Section 7.8  Convolution     397

In Problems 15–18, find a Taylor series for f1t2 about t = 0. 
Assuming the Laplace transform of f1t2 can be computed 
term by term, find an expansion for ℒ5f61s2 in powers of 
1>s. If possible, sum the series.

in terms of 1>sn+1>2. Assuming the inverse Laplace trans-
form can be computed term by term, show that

ℒ-15s-1>2e-1>s61t2 =
11pt

 cos 21t .

[Hint: Use the result of Problem 20.]

24. Use the procedure discussed in Problem 23 to show that

ℒ-15s-3>2e-1>s61t2 =
11p 

 sin 21t .

25. Find an expansion for ln31 + 11>s224 in powers of 1>s.  
Assuming the inverse Laplace transform can be com-
puted term by term, show that

ℒ-1e ln a1 +
1

s2 b f 1t2 =
2
t

 11 - cos t2 .
26. Evaluate Γ11>22 by setting r = x2 in (6) and relating it

to the Gaussian integral 1 ∞
- ∞e-x2

dx = 1p. (The latter 
formula is proved by using polar coordinates to evaluate its 
square; type “Gaussian integral” into your web browser.)

27. Which of these periodic functions coincides with the 
square wave in Figure 7.19?

  (a)  f1t2 = -1, -1 6 t 6 0; f1t2 = 1, 0 6 t 6 1; 
and f  has period 2.

  (b)  f1t2 = 1, 2 6 t 6 3; f1t2 = -1, 3 6 t 6 4; 
and f  has period 2. 

  (c)  f1t2 = 1, 3 6 t 6 4; f1t2 = -1, 4 6 t 6 5; 
and f  has period 2. 

15. f1t2 = et 16. f1t2 = sin t

17. f1t2 =
1 - cos t

t
18. f1t2 = e-t2

19. Using the recursive relation (7) and the fact that 
Γ11>22 = 1p, determine

  (a) ℒ5t-1>26 . (b) ℒ5t7>26 .

20. Use the recursive relation (7) and the fact that 
Γ11>22 = 1p to show that

ℒ-15s-1n+1>226 1t2 =
2ntn - 1>2

1 # 3 # 5g12n - 121p ,

where n is a positive integer.

21. Verify (3) in Theorem 9 for the function ƒ1t2 = sin t, 
taking the period as 2p. Repeat, taking the period as 4p.

22. By replacing s by 1>s in the Maclaurin series expansion 
for arctan s, show that

arctan  
1
s
=

1
s

-
1

3s3 +
1

5s5 -
1

7s7 + g .

23. Find an expansion for e-1>s in powers of 1>s. Use the 
expansion for e-1>s to obtain an expansion for s-1>2e-1>s 

Consider the initial value problem

(1) y″ + y = g1t2 ;  y102 = 0 ,  y′102 = 0 .

If we let Y1s2 = ℒ5y61s2 and G1s2 = ℒ5g61s2, then taking the Laplace transform of 
both sides of (1) yields

s2Y1s2 + Y1s2 = G1s2 ,

and hence

(2) Y1s2 = a 1

s2 + 1
b  G1s2 .

That is, the Laplace transform of the solution to (1) is the product of the Laplace transform 
of sin t and the Laplace transform of the forcing term g1t2. What we would now like to have 
is a simple formula for y1t2 in terms of sin t and g1t2. Just as the integral of a product is not 
the product of the integrals, y1t2 is not the product of sin t and g1t2. However, we can express 
y1t2 as the “convolution” of sin t and g1t2.

7.8 Convolution
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398     Chapter 7  Laplace Transforms

For example, the convolution of t and t2 is

 t * t2 = L
t

0
1t - y2y2 dy = L

t

0
1ty2 - y32  dy

 = a ty3

3
-
y4

4
b 2 t

0
=

t4

3
-

t4

4
=

t4

12
 .

Convolution is certainly different from ordinary multiplication. For example, 
1 * 1 = t ≠ 1 and in general 1 * f ≠ f. However, convolution does satisfy some of the same 
properties as multiplication.

Convolution

Definition 9. Let f1t2 and g1t2 be piecewise continuous on 30, ∞ 2. The convolution 
of f1t2 and g1t2, denoted f * g, is defined by

(3) 1f * g21t2 J L
t

0
 f1t − Y2g1Y2  dY .

Properties of Convolution

Theorem 10. Let f1t2, g1t2, and h1t2 be piecewise continuous on 30, ∞ 2. Then

(4) f * g = g * f ,

(5) f *1g + h2 = 1f * g2 + 1f * h2 ,
(6) 1f * g2 * h = f * 1g * h2 ,
(7) f * 0 = 0 .

Proof. To prove equation (4), we begin with the definition

1f * g21t2 J L
t

0
 f1t - y2g1y2  dy .

Using the change of variables w = t - y, we have

1f * g21t2 = L
0

t
 f1w2g1t - w21-dw2 = L

t

0
g1t - w2f1w2  dw = 1g * f21t2 ,

which proves (4). The proofs of equations (5) and (6) are left to the exercises (see Problems 33 
and 34). Equation (7) is obvious, since f1t - y2 # 0 K 0. ◆

Returning to our original goal, we now prove that if Y1s2 is the product of the Laplace 
transforms F1s2 and G1s2, then y1t2 is the convolution 1f * g21t2.
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Section 7.8  Convolution     399

Proof. Starting with the left-hand side of (8), we use the definition of convolution to 
write for s 7 a

ℒ5f * g61s2 = L
∞

0
e-st c L

t

0
 f1t - y2g1y2 dy d  dt .

To simplify the evaluation of this iterated integral, we introduce the unit step function u1t - y2 
and write

ℒ5f * g61s2 = L
∞

0
e-st c L

∞

0
 u1t - y2f1t - y2g1y2 dy d  dt ,

where we have used the fact that u1t - y2 = 0 if y 7 t. Reversing the order of integration† 
gives

(10) ℒ5f * g61s2 = L
∞

0
g1y2 c L

∞

0
 e-stu1t - y2f1t - y2 dt d  dy .

Recall from the translation property in Section 7.6 that the integral in brackets in equation (10) 
equals e-syF1s2. Hence,

ℒ5f * g61s2 = L
∞

0
g1y2e-syF1s2 dy = F1s2L

∞

0
e-syg1y2 dy = F1s2G1s2 .

This proves formula (8). ◆

For the initial value problem (1), recall that we found

Y1s2 = a 1

s2 + 1
bG1s2 = ℒ5sin t61s2 ℒ5g61s2 .

It now follows from the convolution theorem that

y1t2 = sin t * g1t2 = L
t

0
 sin1t - y2g1y2  dy .

Thus we have obtained an integral representation for the solution to the initial value problem (1) 
for any forcing function g1t2 that is piecewise continuous on 30, ∞ 2 and of exponential order.

Convolution Theorem

Theorem 11. Let f1t2 and g1t2 be piecewise continuous on 30, ∞ 2 and of exponential 
order a and set F1s2 = ℒ5f61s2 and G1s2 = ℒ5g61s2. Then

(8) ℒ5f * g61s2 = F1s2G1s2 ,
or, equivalently,

(9) ℒ−15F1s2G1s261t2 = 1f * g21t2 .

†This is permitted since, for each s 7 a, the absolute value of the integrand is integrable on 10, ∞ 2 * 10, ∞ 2.

Example 1 Use the convolution theorem to solve the initial value problem

(11) y″ - y = g1t2 ;  y102 = 1 ,  y′102 = 1 ,

where g1t2 is piecewise continuous on 30, ∞ 2 and of exponential order.
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400     Chapter 7  Laplace Transforms

Solution Let Y1s2 = ℒ5y61s2 and G1s2 = ℒ5g61s2. Taking the Laplace transform of both sides of 
the differential equation in (11) and using the initial conditions gives

s2Y1s2 - s - 1 - Y1s2 = G1s2 .
Solving for Y1s2, we have

Y1s2 =
s + 1

s2 - 1
+ a 1

s2 - 1
bG1s2 =

1
s - 1

+ a 1

s2 - 1
bG1s2 .

Hence,

 y1t2 = ℒ-1e 1
s - 1

f 1t2 + ℒ-1e 1

s2 - 1
  G1s2 f 1t2

 = et + ℒ-1e 1

s2 - 1
  G1s2 f 1t2 .

Referring to the table of Laplace transforms on the inside back cover, we find

ℒ5sinh t61s2 =
1

s2 - 1
 ,

so we can now express

ℒ-1e 1

s2 - 1
 G1s2 f 1t2 = sinh t * g1t2 .

Thus,

y1t2 = et + L
t

0
 sinh1t - y2g1y2  dy

is the solution to the initial value problem (11). ◆

Example 2 Use the convolution theorem to find ℒ-151> 1s2 + 1226.

Solution Write

1

1s2 + 122 = a 1

s2 + 1
b a 1

s2 + 1
b  .

Since ℒ5sin t61s2 = 1> 1s2 + 12, it follows from the convolution theorem that

 ℒ-1e 1

1s2 + 122 f 1t2 = sin t * sin t = L
t

0
 sin1t - y2  sin y dy

 =
1
2

 L
t

0
3cos12y - t2 - cos t4dy†

 =
1
2
c sin12y - t2

2
d

t

0
-

1
2

 t cos t

 =
1
2
c sin t

2
-

sin1- t2
2

d -
1
2

 t cos t

 =
sin t - t cos t

2
 . ◆

†Here we used the identity sin a sin b = 1
23cos1b - a2 - cos1b + a24.
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Section 7.8  Convolution     401

As the preceding example attests, the convolution theorem is useful in determining the 
inverse transforms of rational functions of s. In fact, it provides an alternative to the method of 
partial fractions. For example,

ℒ-1e 1
1s - a21s - b2 f 1t2 = ℒ-1e a 1

s - a
b a 1

s - b
b f 1t2 = eat * ebt ,

and all that remains in finding the inverse is to compute the convolution eat * ebt.

In the early 1900s, V. Volterra introduced integro-differential equations in his study of 
population growth. These equations enabled him to take into account “hereditary influences.” 
In certain cases, these equations involved a convolution. As the next example shows, the con-
volution theorem helps to solve such integro-differential equations.

Example 3 Solve the integro-differential equation

(12) y′1t2 = 1 - L
t

0
 y1t - y2e-2y dy ,  y102 = 1 .

Solution Equation (12) can be written as

(13) y′1t2 = 1 - y1t2 * e-2t .

Let Y1s2 = ℒ5y61s2. Taking the Laplace transform of (13) (with the help of the convolution 
theorem) and solving for Y1s2, we obtain

 sY1s2 - 1 =
1
s

- Y1s2 a 1
s + 2

b

 sY1s2 + a 1
s + 2

bY1s2 = 1 +
1
s

 a s2 + 2s + 1
s + 2

bY1s2 =
s + 1

s

 Y1s2 =
1s + 121s + 22

s1s + 122 =
s + 2

s1s + 12

 Y1s2 =
2
s

-
1

s + 1
 .

Hence, y1t2 = 2 - e-t . ◆

The transfer function H1s2 of a linear system is defined as the ratio of the Laplace trans-
form of the output function y1t2 to the Laplace transform of the input function g1t2, under 
the assumption that all initial conditions are zero. That is, H1s2 = Y1s2 >G1s2. If the linear 
system is governed by the differential equation

(14) ay″ + by′ + cy = g1t2 ,  t 7 0 ,

where a, b, and c are constants, we can compute the transfer function as follows. Take the 
Laplace transform of both sides of (14) to get

as2Y1s2 - asy102 - ay′102 + bsY1s2 - by102 + cY1s2 = G1s2 .
Because the initial conditions are assumed to be zero, the equation reduces to

1as2 + bs + c2Y1s2 = G1s2 .
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402     Chapter 7  Laplace Transforms

Thus the transfer function for equation (14) is

(15) H1s2 =
Y1s2
G1s2 =

1

as2 + bs + c
 .

You may note the similarity of these calculations to those for finding the auxiliary  
equation for the homogeneous equation associated with (14) (recall Section 4.2, page 157). 
Indeed, the first step in inverting Y1s2 = G1s2 >1as2 + bs + c2 would be to find the roots 
of the denominator as2 + bs + c, which is identical to solving the characteristic equation  
for (14).

The function h1t2 J ℒ-15H61t2 is called the impulse response function for the system 
because, physically speaking, it describes the solution when a mass–spring system is struck by 
a hammer (see Section 7.9). We can also characterize h1t2 as the unique solution to the homo-
geneous problem

(16) ah″ + bh′ + ch = 0 ;  h102 = 0 ,  h′102 = 1>a .

Indeed, observe that taking the Laplace transform of the equation in (16) gives

(17) a3s2H1s2 - sh102 - h′1024 + b3sH1s2 - h1024 + cH1s2 = 0 .

Substituting in h102 = 0 and h′102 = 1>a and solving for H1s2 yields

H1s2 =
1

as2 + bs + c
 ,

which is the same as the formula for the transfer function given in equation (15).
One nice feature of the impulse response function h is that it can help us describe the 

solution to the general initial value problem

(18) ay″ + by′ + cy = g1t2 ;  y102 = y0 ,  y′102 = y1 .

From the discussion of equation (14), we can see that the convolution h * g is the solution to (18) in 
the special case when the initial conditions are zero (i.e., y0 = y1 = 02. To deal with nonzero 
initial conditions, let yk denote the solution to the corresponding homogeneous initial value 
problem; that is, yk solves

(19) ay″ + by′ + cy = 0 ;  y102 = y0 ,  y′102 = y1 .

Then, the desired solution to the general initial value problem (18) must be h * g + yk. 
Indeed, it follows from the superposition principle (see Theorem 3 in Section 4.5) that since 
h * g is a solution to equation (14) and yk is a solution to the corresponding homogeneous 
equation, then h * g + yk is a solution to equation (14). Moreover, since h * g has initial con-
ditions zero,

1h * g2102 + yk102 = 0 + y0 = y0 ,

1h * g2 ′102 + y=k102 = 0 + y1 = y1 .

We summarize these observations in the following theorem.
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Section 7.8  Convolution     403

Equation (20) is instructive in that it highlights how the value of y at time t depends on the 
initial conditions (through yk1t22 and on the nonhomogeneity g1t2 (through the convolution 
integral). It even displays the causal nature of the dependence, in that the value of g1y2 cannot 
influence y1t2 until t Ú y.

A proof of Theorem 12 that does not involve Laplace transforms is outlined in Project E 
in Chapter 4.

In the next example, we use Theorem 12 to find a formula for the solution to an initial 
value problem.

Solution Using Impulse Response Function

Theorem 12. Let I be an interval containing the origin. The unique solution to the initial 
value problem

ay″ + by′ + cy = g ;  y102 = y0 ,  y′102 = y1 ,

where a, b, and c are constants and g is continuous on I, is given by

(20) y1t2 = 1h * g21t2 + yk1t2 = L
t

0
 h1t - y2g1y2dy + yk1t2 ,

where h is the impulse response function for the system and yk is the unique solution to (19).

Example 4 A linear system is governed by the differential equation

(21) y″ + 2y′ + 5y = g1t2 ;  y102 = 2 ,  y′102 = -2 .

Find the transfer function for the system, the impulse response function, and a formula for the 
solution.

Solution According to formula (15), the transfer function for (21) is

H1s2 =
1

as2 + bs + c
=

1

s2 + 2s + 5
=

1

1s + 122 + 22 .

The inverse Laplace transform of H1s2 is the impulse response function

 h1t2 = ℒ-15H61t2 =
1
2

 ℒ-1e 2

1s + 122 + 22 f 1t2

 =
1
2

 e-t sin 2t .

To solve the initial value problem, we need the solution to the corresponding homogeneous 
problem. The auxiliary equation for the homogeneous equation is r2 + 2r + 5 = 0, which has 
roots r = -1 { 2i. Thus a general solution is C1e

-t cos 2t + C2e
-t sin 2t. Choosing C1 and C2 

so that the initial conditions in (21) are satisfied, we obtain yk1t2 = 2e-t cos 2t.
Hence, a formula for the solution to the initial value problem (21) is

1h * g21t2 + yk1t2 =
1
2

 L
t

0
e-1t-y2 sin321t - y24g1y2  dy + 2e-t cos 2t . ◆
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404     Chapter 7  Laplace Transforms

In Problems 1– 4, use the convolution theorem to obtain a for-
mula for the solution to the given initial value problem, where 
g1t2 is piecewise continuous on 30, ∞ 2 and of exponential 
order.

1. y″ - 2y′ + y = g1t2 ;  y102 = -1 ,  y′102 = 1

2. y″ + 9y = g1t2 ;  y102 = 1 ,  y′102 = 0

3. y″ + 4y′ + 5y = g1t2 ;  y102 = 1 ,  y′102 = 1

4. y″ + y = g1t2 ;  y102 = 0 ,  y′102 = 1

In Problems 5–12, use the convolution theorem to find the 
inverse Laplace transform of the given function.

20. y′1t2 + L
t

0
1t - y2y1y2  dy = t ,  y102 = 0

21. y′1t2 + y1t2 - L
t

0
 y1y2sin1t - y2  dy = -sin t ,

y102 = 1

22. y′1t2 - 2 L
t

0
 et-yy1y2  dy = t ,  y102 = 2

In Problems 23–28, a linear system is governed by the given 
initial value problem. Find the transfer function H1s2 for the 
system and the impulse response function h1t2 and give a  
formula for the solution to the initial value problem.

23. y″ + 9y = g1t2 ;  y102 = 2 ,  y′102 = -3

24. y″ - 9y = g1t2 ;  y102 = 2 ,  y′102 = 0

25. y″ - y′ - 6y = g1t2 ;  y102 = 1 ,  y′102 = 8

26. y″ + 2y′ - 15y = g1t2 ;    y102 = 0 ,  y′102 = 8

27. y″ - 2y′ + 5y = g1t2 ;  y102 = 0 ,  y′102 = 2

28. y″ - 4y′ + 5y = g1t2 ;  y102 = 0 ,  y′102 = 1

In Problems 29 and 30, the current I1t2 in an RLC circuit 
with voltage source E1t2 is governed by the initial value 
problem

LI ″1t2 + RI′1t2 +
1
C

 I1t2 = e1t2 ,
I102 = a ,  I′102 = b ,

where e1t2 = E′1t2 (see Figure 7.25). For the given con-
stants R, L, C, a, and b, find a formula for the solution I1t2 in 
terms of e1t2 .

E 

Resistance R 

Voltage
source

Capacitance C 

Inductance L 

Figure 7.25 Schematic representation of an RLC series circuit

29. R = 20 Ω, L = 5 H, C = 0.005 F, a = -1 A,  
b = 8 A/sec.

7.8 EXERCISES

5. 
1

s1s2 + 12 6. 
1

1s + 121s + 22
7. 

14
1s + 221s - 52 8. 

1

1s2 + 422

9. 
s

1s2 + 122 10. 
1

s31s2 + 12

11. 
s

1s - 121s + 22  cHint: 
s

s - 1
= 1 +

1
s - 1

 . d

12. 
s + 1

1s2 + 122

13. Find the Laplace transform of

f1t2 J L
t

0
1t - y2e3ydy .

14. Find the Laplace transform of

f1t2 J L
t

0
 ey sin1t - y2   dy .

In Problems 15–22, solve the given integral equation or  
integro-differential equation for y1t2.
15. y1t2 + 3 L

t

0
 y1y2sin1t - y2  dy = t

16. y1t2 + L
t

0
 et-yy1y2  dy = sin t

17. y1t2 + L
t

0
1t - y2y1y2  dy = 1

18. y1t2 + L
t

0
1t - y2y1y2  dy = t2

19. y1t2 + L
t

0
1t - y22y1y2  dy = t3 + 3
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Section 7.9  Impulses and the Dirac Delta Function     405

30. R = 80 Ω, L = 10 H, C = 1>410 F, a = 2 A,  
b = -8 A/sec.

31. Use the convolution theorem and Laplace transforms to 
compute 1 * 1 * 1.

32. Use the convolution theorem and Laplace transforms to 
compute 1 * t * t2.

33. Prove property (5) in Theorem 10.

34. Prove property (6) in Theorem 10.

35. Use the convolution theorem to show that

ℒ-1e F1s2
s
f 1t2 = L

t

0
 f1y2  dy ,

where F1s2 = ℒ5f61s2.

36. Using Theorem 5 in Section 7.3 and the convolution  
theorem, show that

 L
t

0
 L
y

0
 f1z2dz dy = ℒ-1e F1s2

s2 f 1t2

 = t L
t

0
 f1y2dy - L

t

0
y f1y2dy ,

where F1s2 = ℒ5f61s2.
37. Prove directly that if h1t2 is the impulse response func-

tion characterized by equation (16), then for any con-
tinuous g1t2, we have 1h * g2102 = 1h * g2′102 = 0. 
[Hint: Use Leibniz’s rule, described in Project E of 
Chapter 4.]

In mechanical systems, electrical circuits, bending of beams, and other applications, one 
encounters functions that have a very large value over a very short interval. For example, the 
strike of a hammer exerts a relatively large force over a relatively short time, and a heavy 
weight concentrated at a spot on a suspended beam exerts a large force over a very small sec-
tion of the beam. To deal with violent forces of short duration, physicists and engineers use the 
delta function introduced by Paul A. M. Dirac. Relaxing our standards of rigor for the moment, 
we present the following somewhat informal definition.

7.9 Impulses and the Dirac Delta Function

Dirac Delta Function

Definition 10. The Dirac delta function d1t2 is characterized by the following two 
properties:

(1) D1t2 = e0 , t 3 0 ,
“infinite,” t = 0 ,

and

(2) L
H

−H
 f1t2D1t2dt = f102

for any function f1t2 that is continuous on an open interval containing t = 0.

By shifting the argument of d1t2, we have d1t - a2 = 0, t ≠ a, and

(3) L
∞

-∞
 f1t2d1t - a2dt = f1a2

for any function f1t2 that is continuous on an interval containing t = a.
It is obvious that d1t - a2 is not a function in the usual sense; instead it is an example of 

what is called a generalized function or a distribution. Despite this shortcoming, the Dirac 
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A TABLE OF LAPLACE TRANSFORMS

f 1 t 2  F 1s 2 = ℒ5  f  6  1s 2  f 1 t 2  F 1s 2 = ℒ5  f  6  1s 2

 1. f1at2 1
a

 F a s
a
b

 2. eat f1t2 F1s - a2

 3. f ′1t2 sF1s2 - f102

 4. f 1n21t2 snF1s2 - sn - 1f102 - sn - 2f ′102

  -  g-  sf 1n - 22102 - f 1n - 12102

 5. tn f1t2 1-12nF1n21s2

 6. 
1
t
 f1t2 1 ∞

s F1u2du

 7. 1 t
0   f1y2dy 

F1s2
s

 8. 1  f  * g21t2 F1s2  G1s2

 9. f1t + T2 = f1t2 1T
0 e-stf1t2dt

1 - e-sT

10. f1t - a2  u1t - a2,  a Ú 0 e-asF1s2

11. g1t2  u1t - a2, a Ú 0 e-as ℒ5g1t + a261s2

12. u1t - a2, a Ú 0 
e-as

s

13. q a,b1t2,     0 6 a 6 b 
e-sa - e-sb

s

14. d1t - a2,     a Ú 0 e-as

15. eat 
1

s - a

16. tn, n = 1, 2,c 
n!

s  

n + 1

17. eattn, n = 1, 2,c 
n!

1s - a2n + 1

18. eat - ebt 
1a - b2

1s - a21s - b2

19. aeat - bebt 
1a - b2s

1s - a21s - b2

20. 
12t

 
2p2s

21. 2t 
2p
2s3/2

22. tn - 11>22,     n = 1, 2,c 
1 # 3 # 5g12n - 122p

2ns  

n + 11/22

23. tr,     r 7 - 1 
Γ1r + 12

s  

r + 1

24.  sin bt 
b

s2 + b2

25.  cos bt 
s

s2 + b2

26. eat sin bt 
b

1s - a22 + b2

27. eat cos bt 
s - a

1s - a22 + b2

28. sinh bt 
b

s2 - b2

29. cosh bt 
s

s2 - b2

30.  sin bt - bt cos bt 
2b3

1s2 + b222

31. t sin bt 
2bs

1s2 + b222

32. sin bt + bt cos bt 
2bs2

1s2 + b222

33. t cos bt 
s2 - b2

1s2 + b222

34. sin bt cosh bt -  cos bt sinh bt 
4b3

s4 + 4b4

35. sin bt sinh bt 
2b2s

s4 + 4b4

36. sinh bt -  sin bt 
2b3

s4 - b4

37. cosh bt -  cos bt 
2b2s

s4 - b4

38. Jv1bt2, v 7 - 1 
12s2 + b2 - s2 v

bv2s2 + b2
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CHAPTER 7: Laplace Transforms

EXERCISES 7.2: Definition of the Laplace Transform, page 359

1. For s > 0, using Definition 1 on page 351 and integration by parts, we compute

L{t} (s) =

∞∫
0

e−stt dt = lim
N→∞

N∫
0

e−stt dt = lim
N→∞

N∫
0

t d

(
−e

−st

s

)

= lim
N→∞

−te−st

s

∣∣∣N
0

+
1

s

N∫
0

e−st dt

 = lim
N→∞

[
−te

−st

s

∣∣∣N
0
−e

−st

s2

∣∣∣N
0

]

= lim
N→∞

[
−Ne

−sN

s
+ 0 − e−sN

s2
+

1

s2

]
=

1

s2

because, for s > 0, e−sN → 0 and Ne−sN = N/esN → 0 as N → ∞.

3. For s > 6, we have

L{t} (s) =

∞∫
0

e−ste6t dt =

∞∫
0

e(6−s)t dt = lim
N→∞

N∫
0

e(6−s)t dt

= lim
N→∞

[
e(6−s)t

6 − s

∣∣∣N
0

]
= lim

N→∞

[
e(6−s)N

6 − s
− 1

6 − s

]
= 0 − 1

6 − s
=

1

s− 6
.

5. For s > 0,

L{cos 2t} (s) =

∞∫
0

e−st cos 2t dt = lim
N→∞

N∫
0

e−st cos 2t dt

= lim
N→∞

[
e−st (−s cos 2t+ 2 sin 2t)

s2 + 4

∣∣∣N
0

]
= lim

N→∞

[
e−sN (−s cos 2N + 2 sin 2N)

s2 + 4
− −s
s2 + 4

]
=

s

s2 + 4
,

where we have used integration by parts to find an antiderivative of e−st cos 2t.
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Chapter 7

7. For s > 2,

L{e2t cos 3t
}

(s) =

∞∫
0

e−ste2t cos 3t dt =

∞∫
0

e(2−s)t cos 3t dt

= lim
N→∞

[
e(2−s)t ((2 − s) cos 3t+ 3 sin 3t)

(2 − s)2 + 9

∣∣∣N
0

]
= lim

N→∞
e(2−s)N [(2 − s) cos 3N + 3 sin 3N ] − (2 − s)

(2 − s)2 + 9
=

s− 2

(s− 2)2 + 9
.

9. As in Example 4 on page 353 in the text, we first break the integral into separate parts. Thus,

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

2∫
0

e−st · 0 dt+
∞∫

2

te−st dt =

∞∫
2

te−st dt .

An antiderivative of te−st was, in fact, obtained in Problem 1 using integration by parts. Thus,

we have
∞∫

2

te−st dt = lim
N→∞

[(
−te

−st

s
− e−st

s2

) ∣∣∣N
2

]
= lim

N→∞

[
−Ne

−sN

s
− e−sN

s2
+

2e−2s

s
+
e−2s

s2

]

=
2e−2s

s
+
e−2s

s2
= e−2s

(
2

s
+

1

s2

)
= e−2s

(
2s+ 1

s2

)
.

11. In this problem, f(t) is also a piecewise defined function. So, we split the integral and obtain

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

π∫
0

e−st sin t dt+

∞∫
π

e−st · 0 dt =

π∫
0

e−st sin t dt

=
e−st (−s sin t− cos t)

s2 + 1

∣∣∣π
0
=
e−πs − (−1)

s2 + 1
=
e−πs + 1

s2 + 1
,

which is valid for all s.

13. By the linearity of the Laplace transform,

L{6e−3t − t2 + 2t− 8
}

(s) = 6L{e−3t
}

(s) − L{t2} (s) + 2L{t} (s) − 8L{1} (s).

From Table 7.1 on page 358 in the text, we see that

L{e−3t
}

(s) =
1

s− (−3)
=

1

s+ 3
, s > −3;
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Exercises 7.2

L{t2} (s) =
2!

s2+1
=

2

s3
, L{t} (s) =

1!

s1+1
=

1

s2
, L{1} (s) =

1

s
, s > 0.

Thus the formula

L{6e−3t − t2 + 2t− 8
}

(s) = 6
1

s+ 3
− 2

s3
+ 2

1

s2
− 8

1

s
=

6

s+ 3
− 2

s3
+

2

s2
− 8

s
,

is valid for s in the intersection of the sets s > −3 and s > 0, which is s > 0.

15. Using the linearity of Laplace transform and Table 7.1 on page 358 in the text, we get

L{t3 − tet + e4t cos t
}

(s) = L{t3} (s) −L{tet
}

(s) + L{e4t cos t
}

(s)

=
3!

s3+1
− 1!

(s− 1)1+1
+

s− 4

(s− 4)2 + 12

=
6

s4
− 1

(s− 1)2
+

s− 4

(s− 4)2 + 1
,

which is valid for s > 4.

17. Using the linearity of Laplace transform and Table 7.1 on page 358 in the text, we get

L{e3t sin 6t− t3 + et
}

(s) = L{e3t sin 6t
}

(s) − L{t3} (s) + L{et
}

(s)

=
6

(s− 3)2 + 62
− 3!

s3+1
+

1

s− 1
=

6

(s− 3)2 + 36
− 6

s4
+

1

s− 1
,

valid for s > 3.

19. For s > 5, we have

L
{
t4e5t − et cos

√
7t
}

(s) = L{t4e5t
}

(s) − L
{
et cos

√
7t
}

(s)

=
4!

(s− 5)4+1
− s− 1

(s− 1)2 + (
√

7)2
=

24

(s− 5)5
− s− 1

(s− 1)2 + 7
.

21. Since the function g1(t) ≡ 1 is continuous on (−∞,∞) and f(t) = g1(t) for t in [0, 1], we

conclude that f(t) is continuous on [0, 1) and continuous from the left at t = 1. The function

g2(t) ≡ (t − 2)2 is also continuous on (−∞,∞), and so f(t) (which is the same as g2(t) on

(1, 10]) is continuous on (1, 10]. Moreover,

lim
t→1+

f(t) = lim
t→1+

g2(t) = g2(1) = (1 − 2)2 = 1 = f(1),

391

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Chapter 7

which implies that f(t) is continuous from the right at t = 1. Thus f(t) is continuous at t = 1

and, therefore, is continuous at any t in [0, 10].

23. All the functions involved in the definition of f(t), that is, g1(t) ≡ 1, g2(t) = t − 1, and

g3(t) = t2 − 4, are continuous on (−∞,∞). So, f(t), being a restriction of these functions, on

[0, 1), (1, 3), and (3, 10], respectively, is continuous on these three intervals. At points t = 1

and 3, f(t) is not defined and so is not continuous. But one-sided limits

lim
t→1−

f(t) = lim
t→1−

g1(t) = g1(1) = 1,

lim
t→1+

f(t) = lim
t→1+

g2(t) = g2(1) = 0,

lim
t→3−

f(t) = lim
t→3−

g2(t) = g2(3) = 2,

lim
t→3+

f(t) = lim
t→3+

g3(t) = g3(3) = 5,

exist and pairwise different. Therefore, f(t) has jump discontinuities at t = 1 and t = 3, and

hence piecewise continuous on [0, 10].

25. Given function is a rational function and, therefore, continuous on its domain, which is all

reals except zeros of the denominator. Solving t2 + 7t+ 10 = 0, we conclude that the points

of discontinuity of f(t) are t = −2 and t = −5. These points are not in [0, 10]. So, f(t) is

continuous on [0, 10].

27. Since

lim
t→0+

f(t) = lim
t→0+

1

t
= ∞,

f(t) has infinite discontinuity at t = 0, and so neither continuous nor piecewise continuous

[0, 10].

29. (a) First observe that |t3 sin t| ≤ |t3| for all t. Next, three applications of L’Hospital’s rule

show that

lim
t→∞

t3

eαt
= lim

t→∞
3t2

αeαt
= lim

t→∞
6t

α2eαt
= lim

t→∞
6

α3eαt
= 0
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Exercises 7.2

for all α > 0. Thus, fixed α > 0, for some T = T (α) > 0, we have |t3| < eαt for all t > T ,

and so ∣∣t3 sin t
∣∣ ≤ ∣∣t3∣∣ < eαt, t > T.

Therefore, t3 sin t is of exponential order α, for any α > 0.

(b) Clearly, for any t, |f(t)| = 100e49t, and so Definition 3 is satisfied with M = 100, α = 49,

and any T . Hence, f(t) is of exponential order 49.

(c) Since

lim
t→∞

f(t)

eαt
= lim

t→∞
et3−αt = lim

t→∞
e(t

2−α)t = ∞,

we see that f(t) grows faster than eαt for any α. Thus f(t) is not of exponential order.

(d) Similarly to (a), for any α > 0, we get

lim
t→∞

|t ln t|
eαt

= lim
t→∞

t ln t

eαt
= lim

t→∞
ln t+ 1

αeαt
= lim

t→∞
1/t

α2eαt
= 0 ,

and so f(t) is of exponential order α for any positive α.

(e) Since,

f(t) = cosh
(
t2
)

=
et2 + e−t2

2
>

1

2
et2

and et2 grows faster than eαt for any fixed α (see page 357 in the text), we conclude that

cosh (t2) is not of exponential order.

(f) This function is bounded:

|f(t)| =

∣∣∣∣ 1

t2 + 1

∣∣∣∣ = fr1t2 + 1 ≤ 1

0 + 1
= 1,

and so Definition 3 is satisfied with M = 1 and α = 0. Hence, f(t) is of exponential

order 0.

(g) The function sin (t2) is bounded, namely, |sin (t2)| ≤ 1. For any fixed β > 0, the limit of

t4/eβt, as t→ ∞, is 0, which implies that t4 ≤ eβt for all t > T = T (β). Thus,∣∣sin (t2)+ t4e6t
∣∣ ≤ 1 + eβte6t = 2eβ+6t .

This means that f(t) is of exponential order α for any α > 6.
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Chapter 7

(h) The function 3 + cos 4t is bounded because

|3 + cos 4t| ≤ 3 + | cos 4t| ≤ 4.

Therefore, by the triangle inequality,

|f(t)| ≥
∣∣∣et2
∣∣∣− |3 + cos 4t| ≥ et2 − 4,

and, therefore, for any fixed α, f(t) grows faster than eαt (because et2 does, and the other

term is bounded). So, f(t) is not of exponential order.

(i) Clearly, for any t > 0,
t2

t+ 1
=

t

t+ 1
t < (1)t = t.

Therefore,

et2/(t+1) < et,

and Definition 3 holds with M = 1, α = 1, and T = 0.

(j) Since, for any x, −1 ≤ sin x ≤ 1, the given function is bounded. Indeed,∣∣∣sin(et2
)

+ esin t
∣∣∣ ≤ ∣∣∣sin(et2

)∣∣∣ + esin t ≤ 1 + e

Thus it is of exponential order 0.

31. (a)

L{e(a+ib)t
}

(s) :=

∞∫
0

e−ste(a+ib)t dt =

∞∫
0

e(a+ib−s)t dt = lim
N→∞

N∫
0

e(a+ib−s)t dt

= lim
N→∞

(
e(a+ib−s)t

a + ib− s

∣∣∣N
0

)
=

1

a+ ib− s
lim

N→∞
(
e(a−s+ib)N − 1

)
. (7.1)

Since

e(a−s+ib)x = e(a−s)xeibx,

where the first factor vanishes at ∞ if a − s < 0 while the second factor is a bounded

(
∣∣eibx

∣∣ ≡ 1) and periodic function, the limit in (7.1) exists if and only if a − s < 0.

Assuming that s > a, we get

1

a + ib− s
lim

N→∞
(
e(a−s+ib)N − 1

)
=

1

a+ ib− s
(0 − 1) =

1

s− (a + ib)
.
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Exercises 7.2

(b) Note that s − (a + ib) = (s − a) − ib. Multiplying the result in (a) by the complex

conjugate of the denominator, that is, (s− a) + bi, we get

1

s− (a+ ib)
=

(s− a) + ib

[(s− a) − ib] · [(s− a) + ib]
=

(s− a) + ib

(s− a)2 + b2
,

where we used the fact that, for any complex number z, zz = |z|2.
(c) From (a) and (b) we klnow that

L{e(a+ib)t
}

(s) =
(s− a) + ib

(s− a)2 + b2
.

Writing
(s− a) + ib

(s− a)2 + b2
=

s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i,

we see that

Re
[L{e(a+ib)t

}
(s)
]

= Re

[
s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i

]
=

s− a

(s− a)2 + b2
, (7.2)

Im
[L{e(a+ib)t

}
(s)
]

= Im

[
s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i

]
=

b

(s− a)2 + b2
. (7.3)

On the other hand, by Euler’s formulas,

Re
[
e−ste(a+ib)t

]
= e−stRe

[
eat(cos bt+ i sin bt)

]
= e−steat cos bt

and so

Re
[L{e(a+ib)t

}
(s)
]

= Re

 ∞∫
0

e−ste(a+ib)t dt

 = Re

 ∞∫
0

e−se(a+ib)t dt


=

∞∫
0

Re
[
e−se(a+ib)t

]
dt =

∞∫
0

e−steat cos bt dt = L{eat cos bt
}

(s),

which together with (7.2) gives the last entry in Table 7.1. Similarly,

Im
[L{e(a+ib)t

}
(s)
]

= L{eat sin bt
}

(s),

and so (7.3) gives the Laplace transform of eat sin bt.
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Chapter 7

33. Let f(t) be a piecewise continuous function on [a, b], and let a function g(t) be continuous on

[a, b]. At any point of continuity of f(t), the function (fg)(t) is continuous as the product of

two continuous functions at this point. Suppose now that c is a point of discontinuity of f(t).

Then one-sided limits

lim
t→c−

f(t) = L− and lim
t→c+

f(t) = L+

exist. At the same time, continuity of g(t) yields

lim
t→c−

g(t) = lim
t→c+

g(t) = lim
t→c

g(t) = g(c).

Thus, the product rule implies that one-sided limits

lim
t→c−

(fg)(t) = lim
t→c−

f(t) · lim
t→c−

g(t) = L−g(c)

lim
t→c+

(fg)(t) = lim
t→c+

f(t) lim
t→c+

g(t) = L+g(c)

exist. So, fg has a jump (even removable if g(c) = 0) discontinuity at t = c.

Therefore, the product (fg)(t) is continuous at any point on [a, b] except possibly a finite

number of points (namely, points of discontinuity of f(t)).

EXERCISES 7.3: Properties of the Laplace Transform, page 365

1. Using the linearity of the Laplace transform we get

L{t2 + et sin 2t
}

(s) = L{t2} (s) + L{et sin 2t
}

(s).

From Table 7.1 in Section 7.2 we know that

L{t2} (s) =
2!

s3
=

2

s3
, L{et sin 2t

}
(s) =

2

(s− 1)2 + 22
=

2

(s− 1)2 + 4
.

Thus

L{t2 + et sin 2t
}

(s) =
2

s3
+

2

(s− 1)2 + 4
.

396

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Exercises 7.3

3. By the linearity of the Laplace transform,

L{e−t cos 3t+ e6t − 1
}

(s) = L{e−t cos 3t
}

(s) + L{e6t
}

(s) − L{1} (s).

From Table 7.1 of the text we see that

L{e−t cos 3t
}

(s) =
s− (−1)

[s− (−1)]2 + 32
=

s+ 1

(s+ 1)2 + 9
, s > −1; (7.4)

L{e6t
}

(s) =
1

s− 6
, s > 6; (7.5)

L{1} (s) =
1

s
, s > 0. (7.6)

Since (7.4), (7.5), and (7.6) all hold for s > 6, we see that our answer,

L{e−t cos 3t+ e6t − 1
}

(s) =
s+ 1

(s+ 1)2 + 9
+

1

s− 6
− 1

s
,

is valid for s > 6. Note that (7.4) and (7.5) could also be obtained from the Laplace transforms

for cos 3t and 1, respectively, by applying the translation Theorem 3.

5. We use the linearity of the Laplace transform and Table 7.1 to get

L{2t2e−t − t+ cos 4t
}

(s) = 2L{t2e−t
}

(s) −L{t} (s) + L{cos 4t} (s)

= 2 · 2

(s+ 1)3
− 1

s2
+

s

s2 + 42
= · 4

(s+ 1)3
− 1

s2
+

s

s2 + 16
,

which is valid for s > 0.

7. Since (t − 1)4 = t4 − 4t3 + 6t2 − 4t + 1, we have from the linearity of the Laplace transform

that

L{(t− 1)4
}

(s) = L{t4} (s) − 4L{t3} (s) + 6L{t2} (s) − 4L{t} (s) + L{1} (s).

From Table 7.1 of the text, we get that, for s > 0,

L{t4} (s) =
4!

s5
=

24

s5
,

L{t3} (s) =
3!

s4
=

6

s4
,
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Chapter 7

L{t2} (s) =
2!

s3
=

2

s3
,

L{t} (s) =
1!

s2
=

1

s2
,

L{1} (s) =
1

s
.

Thus

L{(t− 1)4
}

(s) =
24

s5
− 24

s4
+

12

s3
− 4

s2
+

1

s
, s > 0.

9. Since

L{e−t sin 2t
}

(s) =
2

(s + 1)2 + 4
,

we use Theorem 6 to get

L{e−tt sin 2t
}

(s) = L{t (e−t sin 2t
)}

(s) = − [L{e−t sin 2t
}

(s)
]′

= −
[

2

(s+ 1)2 + 4

]′
= −2(−1)

[
(s+ 1)2 + 4

]−2 [
(s+ 1)2 + 4

]′
=

4(s+ 1)

[(s+ 1)2 + 4]2
.

11. We use the definition of coshx and the linear property of the Laplace transform.

L{cosh bt} (s) = L
{
ebt + e−bt

2

}
(s)

=
1

2

[L{ebt
}

(s) + L{e−bt
}

(s)
]

=
1

2

[
1

s− b
+

1

s+ b

]
=

s

s2 − b2
.

13. In this problem, we need the trigonometric identity sin2 t = (1− cos 2t)/2 and the linearity of

the Laplace transform.

L{sin2 t
}

(s) = L
{

1 − cos 2t

2

}
(s)

=
1

2
[L{1} (s) − L{cos 2t} (s)] =

1

2

[
1

s
− s

s2 + 4

]
=

2

s(s2 + 4)
.

15. From the trigonometric identity cos2 t = (1 + cos 2t)/2, we find that

cos3 t = cos t cos2 t =
1

2
cos t+

1

2
cos t cos 2t .
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Exercises 7.3

Next we write

cos t cos 2t =
1

2
[cos(2t+ t) + cos(2t− t)] =

1

2
cos 3t+

1

2
cos t.

Thus,

cos3 t =
1

2
cos t+

1

4
cos 3t+

1

4
cos t =

3

4
cos t+

1

4
cos 3t.

We now use the linearity of the Laplace transform and Table 7.1 to find that

L{cos3 t
}

(s) =
3

4
L{cos t} (s) +

1

4
L{cos 3t} (s) =

3

4

s

s2 + 1
+

1

4

s

s2 + 9
,

which holds for s > 0.

17. Since sinA sinB = [cos(A− B) − cos(A +B)]/2, we get

L{sin 2t sin 5t} (s) = L
{

cos 3t− cos 7t

2

}
(s) =

1

2
[L{cos 3t} (s) − L{cos 7t} (s)]

=
1

2

[
s

s2 + 9
− s

s2 + 49

]
=

20s

(s2 + 9)(s2 + 49)
.

19. Since sinA cosB = [sin(A+B) + sin(A−B)]/2, we get

L{cosnt sinmt} (s) = L
{

sin[(m+ n)t] + sin[(m− n)t]

2

}
(s)

=
1

2

m+ n

s2 + (m+ n)2
+

1

2

m− n

s2 + (m− n)2
.

21. By the translation property of the Laplace transform (Theorem 3),

L{eat cos bt
}

(s) = L{cos bt} (s− a) =
u

u2 + b2

∣∣∣
u=s−a

=
s− a

(s− a)2 + b2
.

23. Clearly,

(t sin bt)′ = (t)′ sin bt+ t(sin bt)′ = sin bt+ bt cos bt.

Therefore, using Theorem 4 and the entry 30, that is, L{t sin bt} (s) = (2bs)/[(s2 + b2)2], we

obtain

L{sin bt+ bt cos bt} (s) = L{(t sin bt)′} (s) = sL{t sin bt} (s) − (t sin bt)
∣∣
t=0

=
s(2bs)

(s2 + b2)2
− 0 =

2bs2

(s2 + b2)2
.
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Chapter 7

25. (a) By property (6) on page 363 of the text,

L{t cos bt} (s) = − [L{cos bt} (s)]′ = −
[

s

s2 + b2

]′
=

s2 − b2

(s2 + b2)2
, s > 0.

(b) Again using the same property, we get

L{t2 cos bt
}

(s) = L{t(t cos bt)} (s) = − [L{t cos bt} (s)]′

= −
[
s2 − b2

(s2 + b2)2

]′
=

2s3 − 6sb2

(s2 + b2)3
, s > 0.

27. First observe that since f(t) is piecewise continuous on [0,∞) and f(t)/t approaches a finite

limit as t → 0+, we conclude that f(t)/t is also piecewise continuous on [0,∞). Next, since

for t ≥ 1 we have |f(t)/t| ≤ |f(t)|, we see that f(t)/t is of exponential order α since f(t) is.

These observations and Theorem 2 on page 357 of the text show that L{f(t)/t} exists. When

the results of Problem 26 are applied to f(t)/t, we see that

lim
N→∞

L
{
f(t)

t

}
(N) = 0.

By Theorem 6, we have that

F (s) =

∞∫
0

e−stf(t) dt =

∞∫
0

te−stf(t)

t
dt = − d

ds
L
{
f(t)

t

}
(s) .

Thus,

∞∫
s

F (u) du =

∞∫
s

[
− d

du
L
{
f(t)

t

}
(u)

]
du =

s∫
∞

d

du
L
{
f(t)

t

}
(u) du

= L
{
f(t)

t

}
(s) − lim

N→∞
L
{
f(t)

t

}
(N) = L

{
f(t)

t

}
(s) .

29. From the linearity properties (2) and (3) on page 354 of the text we have

L{g(t)} (s) = L{y′′(t) + 6y′(t) + 10y(t)} (s) = L{y′′(t)} (s) + 6L{y′(t)} (s) + 10L{y(t)} (s).

Next, applying properties (2) and (4) on pages 361 and 362 yields

L{g} (s) =
[
s2L{y} (s) − sy(0) − y′(0)

]
+ 6 [sL{y} (s) − y(0)] + 10L{y} (s).
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Exercises 7.3

Keeping in mind the fact that all initial conditions are zero the above becomes

G(s) =
(
s2 + 6s+ 10

)
Y (s), where Y (s) = L{y} (s).

Therefore, the transfer function H(s) is given by

H(s) =
Y (s)

G(s)
=

1

s2 + 6s+ 10
.

31. Using Definition 1 of the Laplace transform in Section 7.2, we obtain

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

c∫
0

(0) dt+

∞∫
c

e−stf(t− c) dt =
(
t− c→ u, dt→ du

)

=

∞∫
0

e−s(u+c)f(u) du = e−cs

∞∫
0

e−suf(u) du = e−csL{f(t)} (s).

33. The graphs of the function f(t) = t and its translation g(t) to the right by c = 1 are shown

in Figure 7-A(a).

We use the result of Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−(1)sL{t} (s) =
e−s

s2
.

35. The graphs of the function f(t) = sin t and its translation g(t) to the right by c = π/2 units

are shown in Figure 7-A(b).

We use the formula in Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−(π/2)sL{sin t} (s) =
e−(π/2)s

s2 + 1
.

37. Since f ′(t) is of exponential order on [0,∞), for some α, M > 0, and T > 0,

|f ′(t)| ≤Meαt, for all t ≥ T. (7.7)

On the other hand, piecewise continuity of f ′(t) on [0,∞) implies that f ′(t) is bounded on

any finite interval, in particular, on [0, T ]. That is,

|f ′(t)| ≤ C, for all t in [0, T ]. (7.8)
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0

2

 

1 2 3
 

f(t)=t

g(t)

(a)

0

 

g(t)

π/2 π

f(t)=sin t

(b)

Figure 7–A: Graphs of functions in Problems 33 and 35.

From (7.7) and (7.8) it follows that, for s > α,

∞∫
0

e−st|f ′(t)| dt =

T∫
0

e−st|f ′(t)| dt+
∞∫

T

e−st|f ′(t)| dt ≤ C

T∫
0

e−st dt+M

∞∫
T

e−steαt dt

=
Ce−st

−s
∣∣∣∣T
0

+ lim
N→∞

[
Me(α−s)t

α− s

∣∣∣∣N
T

]
=
C
[
1 − e−sT

]
s

+
Me(α−s)T

s− α
−→ 0

as s→ ∞. Therefore, (7) yields

0 ≤ |sL{f} (s) − f(0)| =

∣∣∣∣∣∣
∞∫

0

e−stf ′(t) dt

∣∣∣∣∣∣ ≤
∞∫

0

e−st|f ′(t)| dt −→ 0 as s→ ∞.

Hence, by the squeeze theorem,

lim
s→∞

|sL{f} (s) − f(0)| = 0 ⇔ lim
s→∞

[sL{f} (s) − f(0)] = 0 ⇔ lim
s→∞

sL{f} (s) = f(0).

EXERCISES 7.4: Inverse Laplace Transform, page 374

1. From Table 7.1, the function 6/(s− 1)4 = (3!)/(s− 1)4 is the Laplace transform of eαttn with

α = 1 and n = 3. Therefore,

L−1

{
6

(s− 1)4

}
(t) = ett3 .
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3. Writing
s+ 1

s2 + 2s+ 10
=

s+ 1

(s2 + 2s+ 1) + 9
=

s+ 1

(s+ 1)2 + 32
,

we see that this function is the Laplace transform of e−t cos 3t (the last entry in Table 7.1

with α = −1 and b = 3). Hence

L−1

{
s+ 1

s2 + 2s+ 10

}
(t) = e−t cos 3t .

5. We complete the square in the denominator and use the linearity of the inverse Laplace

transform to get

L−1

{
1

s2 + 4s+ 8

}
(t) = L−1

{
1

(s+ 2)2 + 22

}
(t) =

1

2
L−1

{
2

(s+ 2)2 + 22

}
(t) =

1

2
e−2t sin 2t.

(See the Laplace transform formula for eαt sin bt in Table 7.1).

7. By completing the square in the denominator, we can rewrite (2s+ 16)/(s2 + 4s+ 13) as

2s+ 16

s2 + 4s+ 4 + 9
=

2s+ 16

(s+ 2)2 + 32
=

2(s+ 2)

(s+ 2)2 + 32
+

4(3)

(s+ 2)2 + 32
.

Thus, by the linearity of the inverse Laplace transform,

L−1

{
2s+ 16

s2 + 4s+ 13

}
(t) = 2L−1

{
s+ 2

(s+ 2)2 + 32

}
(t) + 4L−1

{
3

(s+ 2)2 + 32

}
(t)

= 2e−2t cos 3t+ 4e−2t sin 3t .

9. We complete the square in the denominator, rewrite the given function as a sum of two entries

in Table 7.1, and use the linearity of the inverse Laplace transform. This yields

3s− 15

2s2 − 4s+ 10
=

3

2
· s− 5

s2 − 2s+ 5
=

3

2
· (s− 1) − 4

(s− 1)2 + 22
=

(3/2)(s− 1)

(s− 1)2 + 22
− 3(2)

(s− 1)2 + 22

⇒ L−1

{
3s− 15

2s2 − 4s+ 10

}
=

3

2
L−1

{
s− 1

(s− 1)2 + 22

}
− 3L−1

{
2

(s− 1)2 + 22

}
=

3

2
et cos 2t− 3et sin 2t.
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Chapter 7

11. In this problem, we use the partial fractions decomposition method. Since the denominator,

(s− 1)(s+ 2)(s+ 5), is a product of three nonrepeated linear factors, the expansion has the

form

s2 − 26s− 47

(s− 1)(s+ 2)(s+ 5)
=

A

s− 1
+

B

s+ 2
+

C

s+ 5

=
A(s+ 2)(s+ 5) +B(s− 1)(s+ 5) + C(s− 1)(s+ 2)

(s− 1)(s+ 2)(s+ 5)
.

Therefore,

s2 − 26s− 47 = A(s + 2)(s+ 5) +B(s− 1)(s+ 5) + C(s− 1)(s+ 2). (7.9)

Evaluating both sides of (7.9) for s = 1, s = −2, and s = −5, we find constants A, B, and C.

s = 1 : (1)2 − 26(1) − 47 = A(1 + 2)(1 + 5) ⇒ A = −4,

s = −2 : (−2)2 − 26(−2) − 47 = B(−2 − 1)(−2 + 5) ⇒ B = −1,

s = −5 : (−5)2 − 26(−5) − 47 = C(−5 − 1)(−5 + 2) ⇒ C = 6.

Hence,
s2 − 26s− 47

(s− 1)(s+ 2)(s+ 5)
=

6

s+ 5
− 1

s+ 2
− 4

s− 1
.

13. The denominator has a simple linear factor, s, and a double linear factor, s + 1. Thus, we

look for the decomposition of the form

−2s2 − 3s− 2

s(s+ 1)2
=
A

s
+

B

s+ 1
+

C

(s+ 1)2
=
A(s+ 1)2 +Bs(s+ 1) + Cs

s(s+ 1)2
,

which yields

−2s2 − 3s− 2 = A(s+ 1)2 +Bs(s+ 1) + Cs. (7.10)

Evaluating this equality for s = 0 and s = −1, we find A and C, respectively.

s = 0 : −2 = A(0 + 1)2 ⇒ A = −2,

s = −1 : −2(−1)2 − 3(−1) − 2 = C(−1) ⇒ C = 1.

To find B, we compare the coefficients at s2 in both sides of (7.10).

−2 = A+B ⇒ B = −2 − A = 0.
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Hence,
−2s2 − 3s− 2

s(s+ 1)2
=

1

(s+ 1)2
− 2

s
.

15. First, we complete the square in the quadratic s2 − 2s+ 5 to make sure that this polynomial

is irreducible and to find the form of the decomposition. Since

s2 − 2s+ 5 = (s2 − 2s+ 1) + 4 = (s− 1)2 + 22 ,

we have

−8s− 2s2 − 14

(s+ 1)(s2 − 2s+ 5)
=

A

s+ 1
+
B(s− 1) + C(2)

(s− 1)2 + 22
=
A [(s− 1)2 + 4] + [B(s− 1) + 2C] (s+ 1)

(s+ 1) [(s− 1)2 + 4]

which implies that

−8s− 2s2 − 14 = A
[
(s− 1)2 + 4

]
+ [B(s− 1) + 2C] (s+ 1).

Taking s = −1, s = 1, and s = 0, we find A, B, and C, respectively.

s = −1 : 8(−1) − 2(−1)2 − 14 = A [(−1 − 1)2 + 4] ⇒ A = −3,

s = 1 : 8(1) − 2(1)2 − 14 = A [(1 − 1)2 + 4] + 2C(1 + 1) ⇒ C = 1,

s = 0 : 8(0) − 2(0)2 − 14 = A [(0 − 1)2 + 4] + [B(0 − 1) + 2C] (0 + 1) ⇒ B = 1,

and so
−8s− 2s2 − 14

(s+ 1)(s2 − 2s+ 5)
= − 3

s+ 1
+

(s− 1) + 2

(s− 1)2 + 4

17. First we need to completely factor the denominator. Since s2 + s−6 = (s−2)(s+3), we have

3s+ 5

s(s2 + s− 6)
=

3s+ 5

s(s− 2)(s+ 3)
.

Since the denominator has only nonrepeated linear factors, we can write

3s+ 5

s(s− 2)(s+ 3)
=
A

s
+

B

s− 2
+

C

s + 3

for some choice of A, B and C. Clearing fractions gives us

3s+ 5 = A(s− 2)(s+ 3) +Bs(s + 3) + Cs(s− 2).
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Chapter 7

With s = 0, this yields 5 = A(−2)(3) so that A = −5/6. With s = 2, we get 11 = B(2)(5) so

that B = 11/10. Finally, s = −3 yields −4 = C(−3)(−5) so that C = −4/15. Thus,

3s+ 5

s(s2 + s− 6)
= − 5

6s
+

11

10(s− 2)
− 4

15(s+ 3)
.

19. First observe that the quadratic polynomial s2 +2s+2 is irreducible because the discriminant

22 − 4(1)(2) = −4 is negative. Since the denominator has one nonrepeated linear factor and

one nonrepeated quadratic factor, we can write

1

(s− 3)(s2 + 2s+ 2)
=

1

(s− 3)[(s+ 1)2 + 1]
=

A

s− 3
+
B(s+ 1) + C

(s+ 1)2 + 1
,

where we have chosen a form which is more convenient for taking the inverse Laplace trans-

form. Clearing fractions gives us

1 = A
[
(s+ 1)2 + 1

]
+ [B(s + 1) + C] (s− 3). (7.11)

With s = 3, this yields 1 = 17A so that A = 1/17. Substituting s = −1, we see that

1 = A(1)+C(−4), or C = (A−1)/4 = −4/17. Finally, the coefficient A+B at s2 in the right-

hand side of (7.11) must be the same as in the left-hand side, that is, 0. So B = −A = −1/17

and
1

(s− 3)(s2 + 2s+ 2)
=

1

17

[
1

s− 3
− s+ 1

(s+ 1)2 + 1
− 4

(s+ 1)2 + 1

]
.

21. Since the denominator contains only nonrepeated linear factors, the partial fractions decom-

position has the form

6s2 − 13s+ 2

s(s− 1)(s− 6)
=
A

s
+

B

s− 1
+

C

s− 6
=
A(s− 1)(s− 6) +Bs(s− 6) + Cs(s− 1)

s(s− 1)(s− 6)
.

Therefore,

6s2 − 13s+ 2 = A(s− 1)(s− 6) +Bs(s− 6) + Cs(s− 1).

Evaluating both sides of this equation for s = 0, s = 1, and s = 6, we find constants A, B,

and C.
s = 0 : 2 = 6A ⇒ A = 1/3,

s = 1 : −5 = −5B ⇒ B = 1,

s = 6 : 140 = 30C ⇒ C = 14/3.
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Hence,
6s2 − 13s+ 2

s(s− 1)(s− 6)
=

1/3

s
+

1

s− 1
+

14/3

s− 6

and the linear property of the inverse Laplace transform yields

L−1

{
6s2 − 13s+ 2

s(s− 1)(s− 6)

}
=

1

3
L−1

{
1

s

}
+ L−1

{
1

s− 1

}
+

14

3
L−1

{
1

s− 6

}
=

1

3
+ et +

14

3
e6t .

23. In this problem, the denominator of F (s) has a simple linear factor, s+1, and a double linear

factor, s+ 3. Thus, the decomposition is the form

5s2 + 34s+ 53

(s+ 3)2(s+ 1)
=

A

(s+ 3)2
+

B

s+ 3
+

C

s+ 1
=
A(s+ 1) +B(s+ 1)(s+ 3) + C(s+ 3)2

(s+ 3)2(s+ 1)
.

Therefore, we must have

5s2 + 34s+ 53 = A(s+ 1) +B(s+ 1)(s+ 3) + C(s+ 3)2.

Substitutions s = −3 and s = −1 yield values of A and C, respectively.

s = −3 : −4 = −2A ⇒ A = 2,

s = −1 : 24 = 4C ⇒ C = 6.

To find B, we take, say, s = 0 and get

53 = A+ 3B + 9C ⇒ B =
53 − A− 9C

3
= −1.

Hence,

L−1

{
5s2 + 34s+ 53

(s+ 3)2(s+ 1)

}
(t) = 2L−1

{
1

(s+ 3)2

}
(t) −L−1

{
1

s+ 3

}
(t) + 6L−1

{
1

s+ 1

}
(t)

= 2te−3t − e−3t + 6e−t .

25. Observing that the quadratic s2 + 2s + 5 = (s + 1)2 + 22 is irreducible, the partial fractions

decomposition for F (s) has the form

7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)
=

A

s− 2
+
B(s+ 1) + C(2)

(s+ 1)2 + 22
.
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Chapter 7

Clearing fractions gives us

7s2 + 23s+ 30 = A
[
(s+ 1)2 + 4

]
+ [B(s + 1) + C(2)] (s− 2).

With s = 2, this yields 104 = 13A so that A = 8; s = −1 gives 14 = A(4) +C(−6), or C = 3.

Finally, the coefficient A+B at s2 in the right-hand side must match the one in the left-hand

side, which is 7. So B = 7 −A = −1. Therefore,

7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)
=

8

s− 2
+

−(s+ 1) + 3(2)

(s+ 1)2 + 22
,

which yields

L−1

{
7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)

}
= 8L−1

{
1

s− 2

}
− L−1

{
s+ 1

(s+ 1)2 + 22

}
+ 3L−1

{
2

(s+ 1)2 + 22

}
= 8e2t − e−t cos 2t+ 3e−t sin 2t .

27. First, we find F (s).

F (s)
(
s2 − 4

)
=

5

s+ 1
⇒ F (s) =

5

(s+ 1)(s2 − 4)
=

5

(s+ 1)(s− 2)(s+ 2)
.

The partial fractions expansion yields

5

(s+ 1)(s− 2)(s+ 2)
=

A

s+ 1
+

B

s− 2
+

C

s+ 2
.

Clearing fractions gives us

5 = A(s− 2)(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)(s− 2).

With s = −1, s = 2, and s = −2 this yields A = −5/3, B = 5/12, and C = 5/4. So,

L−1 {F (s)} (t) = −5

3
L−1

{
1

s+ 1

}
(t) +

5

12
L−1

{
1

s− 2

}
(t) +

5

4
L−1

{
1

s+ 2

}
(t)

= −5

3
e−t +

5

12
e2t +

5

4
e−2t .

29. Solving for F (s) yields

F (s) =
10s2 + 12s+ 14

(s+ 2)(s2 − 2s+ 2)
=

10s2 + 12s+ 14

(s+ 2)[(s− 1)2 + 1]
.
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Since, in the denominator, we have nonrepeated linear and quadratic factors, we seek for the

decomposition
10s2 + 12s+ 14

(s+ 2)[(s− 1)2 + 1]
=

A

s+ 2
+
B(s− 1) + C(1)

(s− 1)2 + 1
.

Clearing fractions, we conclude that

10s2 + 12s+ 14 = A[(s− 1)2 + 1] + [B(s− 1) + C] (s+ 2).

Substitution s = −2 into this equation yields 30 = 10A or A = 3. With s = 1, we get

36 = A+3C and so C = (36−A)/3 = 11. Finally, substitution s = 0 results 14 = 2A+2(C−B)

or B = A + C − 7 = 7. Now we apply the linearity of the inverse Laplace transform and

obtain

L−1 {F (s)} (t) = 3L−1

{
1

s+ 2

}
(t) + 7L−1

{
s− 1

(s− 1)2 + 1

}
(t) + 11L−1

{
1

(s− 1)2 + 1

}
(t)

= 3e−2t + 7et cos t+ 11et sin t .

31. Functions f1(t), f2(t), and f3(t) coincide for all t in [0,∞) except a finite number of points.

Since the Laplace transform a function is a definite integral, it does not depend on values of

the function at finite number of points. Therefore, in (a), (b), and (c) we have one and the

same answer, that is

L{f1(t)} (s) = L{f2(t)} (s) = L{f3(t)} (s) = L{t} (s) =
1

s2
.

By Definition 4, the inverse Laplace transform is a continuous function on [0,∞). f3(t) = t

clearly satisfies this condition while f1(t) and f2(t) have removable discontinuities at t = 2

and t = 1, 6, respectively. Therefore,

L−1

{
1

s2

}
(t) = f3(t) = t.

33. We are looking for L−1 {F (s)} (t) = f(t). According to the formula given just before this

problem,

f(t) =
−1

t
L−1

{
dF

ds

}
(t)
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Chapter 7

(take n = 1 in the formula). Since

F (s) = ln

(
s + 2

s− 5

)
= ln(s+ 2) − ln(s− 5),

we have

dF (s)

ds
=

d

ds
(ln(s+ 2) − ln(s− 5)) =

1

s+ 2
− 1

s− 5

⇒ L−1

{
dF

ds

}
(t) = L−1

{
1

s+ 2
− 1

s− 5

}
(t) = e−2t − e5t

⇒ L−1 {F (s)} (t) =
−1

t

(
e−2t − e5t

)
=
e5t − e−2t

t
.

35. Taking the derivative of F (s), we get

dF (s)

ds
=

d

ds
ln
s2 + 9

s2 + 1
=

d

ds

[
ln(s2 + 9) − ln(s2 + 1)

]
=

2s

s2 + 9
− 2s

s2 + 1
.

So, using the linear property of the inverse Laplace transform, we obtain

L−1

{
dF (s)

ds

}
(t) = 2L−1

{
s

s2 + 9

}
(t) − 2L−1

{
s

s2 + 1

}
(t) = 2(cos 3t− cos t).

Thus

L−1 {F (s)} (t) =
−1

t
L−1

{
dF (s)

ds

}
(t) =

2(cos t− cos 3t)

t
.

37. By the definition, both, L−1 {F1} (t) and L−1 {F2} (t), are continuous functions on [0,∞).

Therefore, their sum, (L−1 {F1} + L−1 {F2}) (t), is also continuous on [0,∞). Furthermore,

the linearity of the Laplace transform yields

L{(L−1 {F1} + L−1 {F2}
)}

(s) = L{L−1 {F1}
}

(s) + L{L−1 {F2}
}

(s) = F1(s) + F2(s).

Therefore, L−1 {F1} + L−1 {F2} is a continuous function on [0,∞) whose Laplace transform

is F1 + F2. By the definition of the inverse Laplace transform, this function is the inverse

Laplace transform of F1 + F2, that is,

L−1 {F1} (t) + L−1 {F2} (t) = L−1 {F1 + F2} (t),
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and (3) in Theorem 7 is proved.

To show (4), we use the continuity of L−1 {F} to conclude that cL−1 {F} is a continuous

function. Since the linearity of the Laplace transform yields

L{cL−1 {F}} (s) = cL{L−1 {F}} (s) = cF (s),

we have cL−1 {F} (t) = L−1 {cF} (t).

39. In this problem, the denominator Q(s) := s(s− 1)(s+ 2) has only nonrepeated linear factors,

and so the partial fractions decomposition has the form

F (s) :=
2s+ 1

s(s− 1)(s+ 2)
=
A

s
+

B

s− 1
+

C

s+ 2
.

To find A, B, and C, we use the residue formula in Problem 38. This yields

A = lim
s→0

sF (s) = lim
s→0

2s+ 1

(s− 1)(s+ 2)
=

2(0) + 1

(0 − 1)(0 + 2)
= −1

2
,

B = lim
s→1

(s− 1)F (s) = lim
s→1

2s+ 1

s(s+ 2)
=

2(1) + 1

(1)(1 + 2)
= 1 ,

C = lim
s→−2

(s+ 2)F (s) = lim
s→2

2s+ 1

s(s− 1)
=

2(−2) + 1

(−2)(−2 − 1)
= −1

2
.

Therefore,
2s+ 1

s(s− 1)(s+ 2)
= −1/2

s
+

1

s− 1
− 1/2

s+ 2
.

41. In notation of Problem 40,

P (s) = 3s2 − 16s+ 5, Q(s) = (s+ 1)(s− 3)(s− 2).

We can apply the Heaviside’s expansion formula because Q(s) has only nonrepeated linear

factors. We need the values of P (s) and Q′(s) at the points r1 = −1, r2 = 3, and r3 = 2.

Using the product rule, we find that

Q′(s) = (s− 3)(s− 2) + (s+ 1)(s− 2) + (s+ 1)(s− 3),

and so

Q′(−1) = (−1− 3)(−1 − 2) = 12, Q′(3) = (3 + 1)(3− 2) = 4, Q′(2) = (2 + 1)(2− 3) = −3.
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Chapter 7

Also, we compute

P (−1) = 24, P (3) = −16, P (2) = −15.

Therefore,

L−1

{
3s2 − 16s+ 5

(s+ 1)(s− 3)(s− 2)

}
(t) =

P (−1)

Q′(−1)
e(−1)t +

P (3)

Q′(3)
e(3)t +

P (2)

Q′(2)
e(2)t = 2e−t−4e3t +5e2t .

43. Since s2 − 2s+ 5 = (s− 1)2 + 22, we see that the denominator of F (s) has nonrepeated linear

factor s + 2 and nonrepeated irreducible quadratic factor s2 − 2s + 5 with α = 1 and β = 2

(in notation of Problem 40). Thus the partial fractions decomposition has the form

F (s) =
6s2 + 28

(s2 − 2s+ 5)(s+ 2)
=
A(s− 1) + 2B

(s− 1)2 + 22
+

C

s+ 2
.

We find C by applying the real residue formula derived in Problem 38.

C = lim
s→−2

(s+ 2)(6s2 + 28)

(s2 − 2s+ 5)(s+ 2)
= lim

s→−2

6s2 + 28

s2 − 2s+ 5
=

52

13
= 4.

Next, we use the complex residue formula given in Problem 42, to find A and B. Since α = 1

and β = 2, the formula becomes

2B + i2A = lim
s→1+2i

(s2 − 2s+ 5)(6s2 + 28)

(s2 − 2s+ 5)(s+ 2)
= lim

s→1+2i

6s2 + 28

s+ 2
=

6(1 + 2i)2 + 28

(1 + 2i) + 2
=

10 + 24i

3 + 2i
.

Dividing we get

2B + i2A =
(10 + 24i)(3 − 2i)

(3 + 2i)(3 − 2i)
=

78 + 52i

13
= 6 + 4i.

Taking the real and imaginary parts yields

2B = 6,

2A = 4
⇒ B = 3,

A = 2.

Therefore,
6s2 + 28

(s2 − 2s+ 5)(s+ 2)
=

2(s− 1) + 2(3)

(s− 1)2 + 22
+

4

s+ 2
.
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Exercises 7.5

EXERCISES 7.5: Solving Initial Value Problems, page 383

1. Let Y (s) := L{y} (s). Taking the Laplace transform of both sides of the given differential

equation and using its linearity, we obtain

L{y′′} (s) − 2L{y′} (s) + 5Y (s) = L{0} (s) = 0. (7.12)

We can express L{y′′} (s) and L{y′} (s) in terms of Y (s) using the initial conditions and

Theorem 5 in Section 7.3.

L{y′} (s) = sY (s) − y(0) = sY (s) − 2,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 2s− 4.

Substituting back into (7.12) and solving for Y (s) yield[
s2Y (s) − 2s− 4

]− 2 [sY (s) − 2] + 5Y (s) = 0

⇒ Y (s)
(
s2 − 2s+ 5

)
= 2s

⇒ Y (s) =
2s

s2 − 2s+ 5
=

2s

(s− 1)2 + 22
=

2(s− 1)

(s− 1)2 + 22
+

2

(s− 1)2 + 22
.

Applying now the inverse Laplace transform to both sides, we obtain

y(t) = 2L−1

{
s− 1

(s− 1)2 + 22

}
(t) + L−1

{
2

(s− 1)2 + 22

}
(t) = 2et cos 2t+ et sin 2t.

3. Let Y (s) := L{y} (s). Taking the Laplace transform of both sides of the given differential

equation, y′′ + 6y′ + 9y = 0, and using the linearity of the Laplace transform, we obtain

L{y′′} (s) + 6L{y′} (s) + 9Y (s) = 0.

We use formula (4), page 362, to express L{y′′} (s) and L{y′} (s) in terms of Y (s).

L{y′} (s) = sY (s) − y(0) = sY (s) + 1,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + s− 6.

Therefore, [
s2Y (s) + s− 6

]
+ 6 [sY (s) + 1] + 9Y (s) = 0
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Chapter 7

⇒ Y (s)
(
s2 + 6s+ 9

)
= −s

⇒ Y (s) =
−s

s2 + 6s+ 9
=

−s
(s+ 3)2

=
3

(s+ 3)2
− 1

s+ 3
,

where the last equality comes from the partial fraction expansion of −s/(s + 32). We apply

the inverse Laplace transform to both sides and use Table 7.1 to obtain

y(t) = 3L−1

{
1

(s+ 3)2

}
(t) −L−1

{
1

s+ 3

}
(t) = 3te−3t − e−3t .

5. Let W (s) = L{w} (s). Then taking the Laplace transform of the equation and using linearity

yield

L{w′′} (s) +W (s) = L{t2 + 2
}

(s) = L{t2} (s) + 2L{1} (s) =
2

s3
+

2

s
.

Since L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s) − s+ 1, we have

[
s2W (s) − s+ 1

]
+W (s) =

2

s3
+

2

s

⇒ (
s2 + 1

)
W (s) = s− 1 +

2(s2 + 1)

s3
⇒ W (s) =

s

s2 + 1
− 1

s2 + 1
+

2

s3
.

Now, taking the inverse Laplace transform, we obtain

w = L−1

{
s

s2 + 1

}
− L−1

{
1

s2 + 1

}
+ L−1

{
2

s3

}
= cos t− sin t+ t2.

7. Let Y (s) := L{y} (s). Using the initial conditions and Theorem 5 in Section 7.3 we can

express L{y′′} (s) and L{y′} (s) in terms of Y (s), namely,

L{y′} (s) = sY (s) − y(0) = sY (s) − 5,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 5s+ 4.

Taking the Laplace transform of both sides of the given differential equation and using its

linearity, we obtain

L{y′′ − 7y′ + 10y} (s) = L{9 cos t+ 7 sin t} (s)

⇒ [
s2Y (s) − 5s+ 4

]− 7 [sY (s) − 5] + 10Y (s) =
9s

s2 + 1
+

7

s2 + 1
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⇒ (
s2 − 7s+ 10

)
Y (s) =

9s+ 7

s2 + 1
+ 5s− 39 =

5s3 − 39s2 + 14s− 32

s2 + 1

⇒ Y (s) =
9s+ 7

s2 + 1
+ 5s− 39 =

5s3 − 39s2 + 14s− 32

(s2 + 1)(s2 − 7s+ 10)
=

5s3 − 39s2 + 14s− 32

(s2 + 1)(s− 5)(s− 2)
.

The partial fractions decomposition of Y (s) has the form

5s3 − 39s2 + 14s− 32

(s2 + 1)(s− 5)(s− 2)
=
As+B

s2 + 1
+

C

s− 5
+

D

s− 2
.

Clearing fractions yields

5s3 − 39s2 + 14s− 32 = (As +B)(s− 5)(s− 2) + C(s2 + 1)(s− 2) +D(s2 + 1)(s− 5).

We substitute s = 5 and s = 2 to find C and D, resprectively, and then s = 0 to find B.

s = 5 : −312 = 78C ⇒ C = −4,

s = 2 : −120 = −15D ⇒ D = 8,

s = 0 : −32 = 10B − 2C − 5D ⇒ B = 0.

Equating the coefficients at s3, we also get A+ C +D = 5, which implies that A = 1. Thus

Y (s) =
s

s2 + 1
− 4

s− 5
+

8

s− 2
⇒ y(t) = L−1 {Y (s)} (t) = cos t− 4e5t + 8e2t .

9. First, note that the initial conditions are given at t = 1. Thus, to use the method of Laplace

transform, we make a shift in t and move the initial conditions to t = 0.

z′′(t) + 5z′(t) − 6z(t) = 21et−1

⇒ z′′(t+ 1) + 5z′(t+ 1) − 6z(t+ 1) = 21e(t+1)−1 = 21et. (7.13)

Now, let y(t) := z(t+ 1). Then the chain rule yields

y′(t) = z′(t+ 1)(t+ 1)′ = z′(t+ 1),

y′′(t) = [y′(t)]′ = z′′(t+ 1)(t+ 1)′ = z′′(t+ 1),

and (7.13) becomes

y′′(t) + 5y′(t) − 6y(t) = 21et (7.14)
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with initial conditions

y(0) = z(0 + 1) = z(1) = −1, y′(0) = z′(0 + 1) = z′(1) = 9.

With Y (s) := L{y(t)} (s), we apply the Laplace transform to both sides of (7.14) and obtain

L{y′′} (s) + 5L{y′} (s) − 6Y (s) = L{21et
}

(s) =
21

s− 1
. (7.15)

By Theorem 5, Section 7.3,

L{y′} (s) = sY (s) − y(0) = sY (s) + 1,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + s− 9.

Substituting these expressions back into (7.15) and solving for Y (s) yield[
s2Y (s) + s− 9

]
+ 5 [sY (s) + 1] − 6Y (s) =

21

s− 1

⇒ (
s2 + 5s− 6

)
Y (s) =

21

s− 1
− s+ 4 =

−s2 + 5s+ 17

s− 1

⇒ Y (s) =
−s2 + 5s+ 17

(s− 1)(s2 + 5s− 6)
=

−s2 + 5s+ 17

(s− 1)(s− 1)(s+ 6)
=

−s2 + 5s+ 17

(s− 1)2(s+ 6)
.

The partial fractions decomposition for Y (s) has the form

−s2 + 5s+ 17

(s− 1)2(s+ 6)
=

A

(s− 1)2
+

B

s− 1
+

C

s+ 6
.

Clearing fractions yields

−s2 + 5s+ 17 = A(s+ 6) +B(s− 1)(s+ 6) + C(s− 1)2 .

Substitutions s = 1 and s = −6 give A = 3 and C = −1. Also, with s = 0, we have

17 = 6A− 6B + C or B = 0. Therefore,

Y (s) =
3

(s− 1)2
− 1

s+ 6
⇒ y(t) = L−1

{
3

(s− 1)2
− 1

s+ 6

}
(t) = 3tet − e−6t .

Finally, shifting the argument back, we obtain

z(t) = y(t− 1) = 3(t− 1)et−1 − e−6(t−1) .
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Exercises 7.5

11. As in the previous problem (and in Example 3 in the text), we first need to shift the initial

conditions to 0. If we set v(t) = y(t+ 2), the initial value problem for v(t) becomes

v′′(t) − v(t) = (t+ 2) − 2 = t, v(0) = y(2) = 3, v′(0) = y′(2) = 0.

Taking the Laplace transform of both sides of this new differential equation gives us

L{v′′} (s) − L{v} (s) = L{t} (s) =
1

s2
.

If we denote V (s) := L{v} (s) and express L{v′′} (s) in terms of V (s) using (4) in Section 4.3

(with n = 2), that is, L{v′′} (s) = s2V (s) − 3s, we obtain

[
s2V (s) − 3s

]− V (s) =
1

s2

⇒ V (s) =
3s3 + 1

s2(s2 − 1)
=

3s3 + 1

s2(s+ 1)(s− 1)
= − 1

s2
+

1

s+ 1
+

2

s− 1
.

Hence,

v(t) = L−1 {V (s)} (t) = L−1

{
− 1

s2
+

1

s+ 1
+

2

s− 1

}
(t) = −t+ e−t + 2et .

Since v(t) = y(t+ 2), we have y(t) = v(t− 2) and so

y(t) = −(t− 2) + e−(t−2) + 2et−2 = 2 − t+ e2−t + 2et−2 .

13. To shift the initial conditions to t = 0, we make the substitution x(t) := y(t + π/2) in the

original equation and use the fact that

x′(t) := y′(t+ π/2), x′′(t) := y′′(t+ π/2).

This yields

y′′(t) − y′(t) − 2y(t) = −8 cos t− 2 sin t

⇒ −8 cos
(
t+

π

2

)
− 2 sin

(
t+

π

2

)
= −8 cos

(
t+

π

2

)
− 2 sin

(
t+

π

2

)
= 8 sin t− 2 cos t

⇒ x′′(t) − x′(t) − 2x(t) = 8 sin t− 2 cos t, x(0) = 1, x′(0) = 0.
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Chapter 7

Taking the Laplace transform of both sides in this last differential equation and using the fact

that, with X(s) := L{x} (s),

L{x′} (s) = sX(s) − 1 and L{x′′} (s) = s2X(s) − s

(which comes from the initial conditions and (4) in Section 7.3), we obtain[
s2X(s) − s

]− [sX(s) − 1] − 2X(s) = L{8 sin t− 2 cos t} (s) =
8

s2 + 1
− 2s

s2 + 1

⇒ (
s2 − s− 2

)
X(s) =

8 − 2s

s2 + 1
+ s− 1 =

s3 − s2 − s+ 7

s2 + 1

⇒ X(s) =
s3 − s2 − s+ 7

(s2 + 1)(s2 − s− 2)
=

s3 − s2 − s+ 7

(s2 + 1)(s− 2)(s+ 1)
.

We seek for the partial fractions decomposition of X(s) in the form

s3 − s2 − s+ 7

(s2 + 1)(s− 2)(s+ 1)
=
As +B

s2 + 1
+

C

(s− 2)
+

D

s+ 1
.

Solving yields

A =
7

5
, B = −11

5
, C =

3

5
, D = −1.

Therefore,

X(s) =
(7/5)s

s2 + 1
+

(−11/5)

s2 + 1
+

(3/5)

(s− 2)
− 1

s + 1

⇒ x(t) = L−1 {X(s)} (t) =
7

5
cos t− 11

5
sin t+

3

5
e2t − e−t .

Finally, since y(t) = x(t− π/2), we obtain the solution

y(t) =
7

5
cos
(
t− π

2

)
− 11

5
sin
(
t− π

2

)
+

3

5
e2(t−π/2) − e−(t−π/2)

=
7

5
sin t+

11

5
cos t+

3

5
e2t−π − e(π/2)−t)

15. Taking the Laplace transform of y′′−3y′+2y = cos t and applying the linearity of the Laplace

transform yields

L{y′′} (s) − 3L{y′} (s) + 2L{y} (s) = L{cos t} (s) =
s

s2 + 1
. (7.16)
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If we put Y (s) = L{y} (s) and apply the property (4), page 362 of the text, we get

L{y′} (s) = sY (s), L{y′′} (s) = s2Y (s) + 1.

Substitution back into (7.16) yields[
s2Y (s) + 1

]− 3 [sY (s)] + 2Y (s) =
s

s2 + 1

⇒ (
s2 − 3s+ 2

)
Y (s) =

s

s2 + 1
− 1 =

−s2 + s− 1

s2 + 1

⇒ Y (s) =
−s2 + s− 1

(s2 + 1)(s2 − 3s+ 2)
=

−s2 + s− 1

(s2 + 1)(s− 1)(s− 2)
.

17. With Y (s) := L{y} (s), we find that

L{y′} (s) = sY (s) − y(0) = sY (s) − 1, L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − s,

and so the Laplace transform of both sides of the original equation yields

L{y′′ + y′ − y} (s) = L{t3} (s)

⇒ [
s2Y (s) − s

]
+ [sY (s) − 1] − Y (s) =

6

s4

⇒ Y (s) =
1

s2 + s− 1

(
6

s4
+ s+ 1

)
=

s5 + s4 + 6

s4(s2 + s− 1)
.

19. Let us denote Y (s) := L{y} (s). From the initial conditions and formula (4) on page 362 of

the text we get

L{y′} (s) = sY (s)− y(0) = sY (s)−1, L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− s−1.

The Laplace transform, applied to both sides of the given equation, yields[
s2Y (s) − s− 1

]
+ 5 [sY (s) − 1] − Y (s) = L{et

}
(s) −L{1} (s) =

1

s− 1
− 1

s
=

1

s(s− 1)

⇒ (
s2 + 5s− 1

)
Y (s) =

1

s(s− 1)
+ s+ 6 =

s3 + 5s2 − 6s+ 1

s(s− 1)

⇒ Y (s) =
s3 + 5s2 − 6s+ 1

s(s− 1)(s2 + 5s− 1)
.
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Chapter 7

21. Applying the Laplace transform to both sides of the given equation yields

L{y′′} (s) − 2L{y′} (s) + L{t} (s) = L{cos t} (s) −L{sin t} (s) =
s− 1

s2 + 1
.

If L{y} (s) =: Y (s), then it follows from the initial conditions and (4) on page 362 of the text

that

L{y′} (s) = sY (s) − 1, L{y′′} (s) = s2Y (s) − s− 3.

Therefore, Y (s) satisfies[
s2Y (s) − s− 3

]− 2 [sY (s) − 1] + Y (s) =
s− 1

s2 + 1
.

Solving for Y (s) gives us

(
s2 − 2s+ 1

)
Y (s) =

s− 1

s2 + 1
+ s+ 1 =

s3 + s2 + 2s

s2 + 1

⇒ Y (s) =
s3 + s2 + 2s

(s2 + 1)(s2 − 2s+ 1)
=

s3 + s2 + 2s

(s2 + 1)(s− 1)2
.

23. In this equation, the right-hand side is a piecewise defined function. Let us find its Laplace

transform first.

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

2∫
0

e−stt dt+

∞∫
2

e−st5 dt

=
te−st

−s
∣∣∣∣2
0

−
2∫

0

e−st

−s dt+ lim
N→∞

5e−st

−s
∣∣∣∣N
2

= −
[
2e−2s

s

]
−
[
e−2s

s2
+

1

s2

]
+

5e−2s

s
=

1 + 3se−2s − e−2s

s2
,

where we used integration by parts integrating e−stt.

Using this formula and applying the Laplace transform to the given equation yields

L{y′′} (s) + 4L{y} (s) = L{g(t)} (s)

⇒ s2L{y} (s) + s+ 4L{y} (s) = L{g(t)} (s)

⇒ (
s2 + 4

)L{y} (s) = L{g(t)} (s) − s =
−s3 + 1 + 3se−2s − e−2s

s2
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Exercises 7.5

⇒ L{y} (s) =
−s3 + 1 + 3se−2s − e−2s

s2(s2 + 4)
.

25. Taking the Laplace transform of y′′′−y′′ +y′−y = 0 and applying the linearity of the Laplace

transform yields

L{y′′′} (s) − L{y′′} (s) + L{y′} (s) − L{y} (s) = L{0} (s) = 0. (7.17)

If we denote Y (s) := L{y} (s) and and apply property (4) on page 362 of the text, we get

L{y′} (s) = sY (s) − 1, L{y′′} (s) = s2Y (s) − s− 1, LTy′′′ = s3Y (s) − s2 − s− 3.

Combining these equations with (7.17) gives us[
s3Y (s) − s2 − s− 3

]− [s2Y (s) − s− 1
]
+ [sY (s) − 1] − Y (s) = 0

⇒ (
s3 − s2 + s− 1

)
Y (s) = s2 + 3

⇒ Y (s) =
s2 + 3

s3 − s2 + s− 1
=

s2 + 3

(s− 1)(s2 + 1)
.

Expanding Y (s) by partial fractions results

Y (s) =
2

s− 1
− s+ 1

s2 + 1
=

2

s− 1
− s

s2 + 1
− 1

s2 + 1
.

From Table 7.1 on page 358 of the text, we see that

y(t) = L−1 {Y (s)} (t) = 2et − cos t− sin t.

27. Let Y (s) := L{y} (s). Then, by Theorem 5 in Section 7.3,

L{y′} (s) = sY (s) − y(0) = sY (s) + 4,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + 4s− 4,

L{y′′′} (s) = s3Y (s) − s2y(0) − sy′(0) − y′′(0) = s3Y (s) + 4s2 − 4s+ 2.

Using these equations and applying the Laplace transform to both sides of the given differential

equation, we get[
s3Y (s) + 4s2 − 4s+ 2

]
+ 3
[
s2Y (s) + 4s− 4

]
+ 3 [sY (s) + 4] + Y (s) = 0
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Chapter 7

⇒ (
s3 + 3s2 + 3s+ 1

)
Y (s) +

(
4s2 + 8s+ 2

)
= 0

⇒ Y (s) = − 4s2 + 8s+ 2

s3 + 3s2 + 3s+ 1
= −4s2 + 8s+ 2

(s+ 1)3
.

Therefore, the partial fractions decomposition of Y (s) has the form

−4s2 + 8s+ 2

(s+ 1)3
=

A

(s+ 1)3
+

B

(s+ 1)2
+

C

s+ 1
=
A +B(s+ 1) + C(s+ 1)2

(s+ 1)3

⇒ −(4s2 + 8s+ 2) = A+B(s + 1) + C(s+ 1)2 .

Substitution s = −1 yields A = 2. Equating coefficients at s2, we get C = −4. At last,

substituting s = 0 we obtain

−2 = A+B + C ⇒ B = −2 − A− C = 0.

Therefore,

Y (s) =
2

(s+ 1)3
+

−4

s+ 1
⇒ y(t) = L−1 {Y } (t) = t2e−t − 4e−t =

(
t2 − 4

)
e−t .

29. Using the initial conditions, y(0) = a and y′(0) = b, and formula (4) on page 362 of the text,

we conclude that

L{y′} (s) = sY (s) − y(0) = sY (s) − a,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − as− b,

where Y (s) = L{y} (s). Applying the Laplace transform to the original equation yields[
s2Y (s) − as− b

]− 4 [sY (s) − a] + 3Y (s) = L{0} (s) = 0

⇒ (
s2 − 4s+ 3

)
Y (s) = as + b− 4a

⇒ Y (s) =
as+ b− 4a

s2 − 4s+ 3
=

as + b− 4a

(s− 1)(s− 3)
=

A

s− 1
+

B

s− 3
.

Solving for A and B, we find that A = (3a− b)/2, B = (b− a)/2. Hence

Y (s) =
(3a− b)/2

s− 1
+

(b− a)/2

s− 3

⇒ y(t) = L−1 {Y } (t) =
3a− b

2
L−1

{
1

s− 1

}
(t) +

b− a

2
L−1

{
1

s− 3

}
(t)

=
3a− b

2
et +

b− a

2
e3t .
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31. Similarly to Problem 29, we have

L{y′} (s) = sY (s)−y(0) = sY (s)−a, L{y′′} (s) = s2Y (s)−sy(0)−y′(0) = s2Y (s)−as−b,

with Y (s) := L{y} (s). Thus the Laplace transform of both sides of the the given equation

yields

L{y′′ + 2y′ + 2y} (s) = L{5} (s)

⇒ [
s2Y (s) − as− b

]
+ 2 [sY (s) − a] + 2Y (s) =

5

s

⇒ (
s2 + 2s+ 2

)
Y (s) =

5

s
+ as + 2a+ b =

as2 + (2a+ b)s + 5

s

⇒ Y (s) =
as2 + (2a+ b)s + 5

s(s2 + 2s+ 2)
=
as2 + (2a+ b)s + 5

s[(s+ 1)2 + 1]
.

We seek for an expansion of Y (s) of the form

as2 + (2a+ b)s+ 5

s[(s+ 1)2 + 1]
=
A

s
+
B(s+ 1) + C

(s+ 1)2 + 1
.

Clearing fractions, we obtain

as2 + (2a+ b)s+ 5 = A
[
(s+ 1)2 + 1

]
+ [B(s + 1) + C] s .

Substitutions s = 0 and s = −1 give us

s = 0 : 5 = 2A ⇒ A = 5/2,

s = −1 : 5 − a− b = A− C ⇒ C = A + a+ b− 5 = a + b− 5/2.

To find B, we can compare coefficients at s2:

a = A +B ⇒ B = a−A = a− 5/2.

So,

Y (s) =
5/2

s
+

(a− 5/2)(s+ 1)

(s+ 1)2 + 1
+
a+ b− 5/2

(s+ 1)2 + 1

⇒ y(t) = L−1 {Y } (t) =
5

2
+

(
a− 5

2

)
e−t cos t+

(
a+ b− 5

2

)
e−t sin t .
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Chapter 7

33. By Theorem 6 in Section 7.3,

L{t2y′(t)} (s) = (−1)2 d
2

ds2
[L{y′(t)} (s)] =

d2

ds2
[L{y′(t)} (s)] . (7.18)

On the other hand, equation (4) on page 362 says that

L{y′(t)} (s) = sY (s) − y(0), Y (s) := L{y} (s).

Substitution back into (7.18) yields

L{t2y′(t)} (s) =
d2

ds2
[sY (s) − y(0)] =

d

ds

{
d

ds
[sY (s) − y(0)]

}
=

d

ds
[sY ′(s) + Y (s)] = (sY ′′(s) + Y ′(s)) + Y ′(s) = sY ′′(s) + 2Y ′(s).

35. Taking the Laplace transform of y′′ + 3ty′ − 6y = 1 and applying the linearity of the Laplace

transform yields

L{y′′} (s) + 3L{ty′} (s) − 6L{y} (s) = L{1} (s) =
1

s
. (7.19)

If we put Y (s) = L{y} (s) and apply property (4) on page 362 of the text with n = 2, we get

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s). (7.20)

Furthermore, as it was shown in Example 4, Section 4.5,

L{ty′} (s) = −sY ′(s) − Y (s). (7.21)

Substitution (7.20) and (7.21) back into (7.19) yields

s2Y (s) + 3 [−sY ′(s) − Y (s)] − 6Y (s) =
1

s

⇒ −3sY ′(s) +
(
s2 − 9

)
Y (s) =

1

s

⇒ Y ′(s) +

(
3

s
− s

3

)
Y (s) = − 1

3s2
.

This is a first order linear differential equation in Y (s), which can be solved by the techniques

of Section 2.3. Namely, it has the integrating factor

µ(s) = exp

[ ∫ (
3

s
− s

3

)
ds

]
= exp

[
3 ln s− s2

6

]
= s3e−s2/6 .
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Thus

Y (s) =
1

µ(s)

∫
µ(s)

(
− 1

3s2

)
ds =

1

s3e−s2/6

∫ −s
3
e−s2/6 ds

=
1

s3e−s2/6

(
e−s2/6 + C

)
=

1

s3

(
1 + Ces2/6

)
.

Just as in Example 4 on page 380 of the text, C must be zero in order to ensure that Y (s) → 0

as s→ ∞. Thus Y (s) = 1/s3, and from Table 7.1 on page 358 of the text we get

y(t) = L−1

{
1

s3

}
(t) =

1

2
L−1

{
2

s3

}
(t) =

t2

2
.

37. We apply the Laplace transform to the given equation and obtain

L{ty′′} (s) − 2L{y′} (s) + L{ty} (s) = 0. (7.22)

Using Theorem 5 (Section 7.3) and the initial conditions, we express L{y′′} (s) and L{y′} (s)

in terms of Y (s) := L{y} (s).

L{y′} (s) = sY (s) − y(0) = sY (s) − 1, (7.23)

L{y′′} (s) = s2Y (s) − sy(0)− y′(0) = s2Y (s) − s. (7.24)

We now involve Theorem 6 in Section 7.3 to get

L{ty} (s) = − d

ds
[L{y} (s)] = −Y ′(s). (7.25)

Also, Theorem 6 and equation (7.24) yield

L{ty′′} (s) = − d

ds
[L{y′′} (s)] = − d

ds

[
s2Y (s) − s

]
= 1 − 2sY (s) − s2Y ′(s). (7.26)

Substituting (7.23), (7.25), and (7.26) into (7.22), we obtain

[
1 − 2sY (s) − s2Y ′(s)

]− 2 [sY (s) − 1] + [−Y ′(s)] = 0

⇒ − (s2 + 1
)
Y ′(s) − 4sY (s) + 3 = 0

⇒ Y ′(s) +
4s

s2 + 1
Y (s) =

3

s2 + 1
.
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Chapter 7

The integrating factor of this first order linear differential equation is

µ(s) = exp

[∫
4s

s2 + 1
ds

]
= exp

[
2 ln
(
s2 + 1

)]
=
(
s2 + 1

)2
.

Hence

Y (s) =
1

µ(s)

∫
µ(s)

(
3

s2 + 1

)
ds =

1

(s2 + 1)2

∫
3
(
s2 + 1

)
ds

=
1

(s2 + 1)2

(
s3 + 3s+ C

)
=

(s3 + s) + (2s+ C)

(s2 + 1)2
=

s

s2 + 1
+

2s

(s2 + 1)2
+

C

(s2 + 1)2
,

where C is an arbitrary constant. Therefore,

y(t) = L−1 {Y } (t) = L−1

{
s

s2 + 1

}
(t) + L−1

{
2s

(s2 + 1)2

}
(t) +

C

2
L−1

{
2

(s2 + 1)2

}
(t) .

Using formulas (24), (29) and (30) on the inside back cover of the text, we finally get

y(t) = cos t+ t sin t+ c(sin t− t cos t),

where c := C/2 is an arbitrary constant.

39. Similarly to Example 5, we have the initial value problem (18), namely,

Iy′′(t) = −ke(t), y(0) = 0, y′(0) = 0,

for the model of the mechanism. This equation leads to equation (19) for the Laplace trans-

forms Y (s) := L{y(t)} (s) and E(s) := L{e(t)} (s):

s2IY (s) = −kE(s). (7.27)

But, this time, e(t) = y(t) − a and so

E(s) = L{y(t) − a} (s) = Y (s) − a

s
⇒ Y (s) = E(s) +

a

s
.

Substituting this relation into (7.27) yields

s2IE(s) + aIs = −kE(s) ⇒ E(s) = − −aIs
s2I + k

= − as

s2 + (k/I)
.

Taking the inverse Laplace transform, we obtain

e(t) = L−1 {E(s)} (t) = −aL−1

{
s

s2 + (
√
k/I)2

}
(t) = −a cos

(√
k/It

)
.
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Exercises 7.5

41. As in Problem 40, the differential equation modeling the automatic pilot is

Iy′′(t) = −ke(t) − µe′(t) , (7.28)

but now the error e(t) is given by e(t) = y(t) − at.

Let Y (s) := L{y(t)} (s), E(s) := L{e(t)} (s). Notice that, as in Example 5 on page 382,

we have y(0) = y′(0) = 0, and so e(0) = 0. Using these initial conditions and Theorem 5 in

Section 7.3, we obtain

L{y′′(t)} (s) = s2Y (s) and L{e′(t)} (s) = sE(s).

Applying the Laplace transform to both sides of (7.28) we then conclude that

IL{y′′(t)} (s) = −kL{e(t)} (s) − µL{e′(t)} (s)

⇒ Is2Y (s) = −kE(s) − µsE(s) = −(k + µs)E(s). (7.29)

Since e(t) = y(t) − at,

E(s) = L{e(t)} (s) = L{y(t) − at} (s) = Y (s) − aL{t} (s) = Y (s) − a

s2

or Y (s) = E(s) + a/s2. Substitution back into (7.29) yields

Is2
(
E(s) +

a

s2

)
= −(k + µs)E(s)

⇒ (
Is2 + µs+ k

)
E(s) = −aI

⇒ E(s) =
−aI

Is2 + µs+ k
=

−a
s2 + (µ/I)s+ (k/I)

.

Completing the square in the denominator, we write E(s) in the form suitable for inverse

Laplace transform.

E(s) =
−a

[s+ µ/(2I)]2 + (k/I) − µ2/(4I2)

=
−a

[s+ µ/(2I)]2 + (4kI − µ2)/(4I2)
=

−2Ia√
4kI − µ2

√
4kI − µ2/(2I)

[s+ µ/(2I)]2 + (4kI − µ2)/(4I2)
.
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Chapter 7

Thus, using Table 7.1 on page 358 of the text, we find that

e(t) = L−1 {E(s)} (t) =
−2Ia√
4kI − µ2

e−µt/(2I) sin

[√
4kI − µ2t

2I

]
.

Compare this with Example 5 of the text and observe, how for moderate damping with

µ < 2
√
kI, the oscillations of Example 5 die out exponentially.

EXERCISES 7.6: Transforms of Discontinuous and Periodic Functions, page 395

1. To find the Laplace transform of g(t) = (t− 1)2u(t− 1) we apply formula (5) on page 387 of

the text with a = 1 and f(t) = t2. This yields

L{(t− 1)2u(t− 1)
}

(s) = e−sL{t2} (s) =
2e−s

s3
.

The graph of g(t) = (t− 1)2u(t− 1) is shown in Figure 7-B(a).

3. The graph of the function y = t2u(t−2) is shown in Figure 7-B(b). For this function, formula

(8) on page 387 is more convenient. To apply the shifting property, we observe that g(t) = t2

and a = 2. Hence

g(t+ a) = g(t+ 2) = (t+ 2)2 = t2 + 4t+ 4.

Now the Laplace transform of g(t+ 2) is

L{t2 + 4t+ 4
}

(s) = L{t2} (s) + 4L{t} (s) + 4L{1} (s) =
2

s3
+

4

s2
+

4

s
.

Hence, by formula (8), we have

L{t2u(t− 2)
}

(s) = e−2sL{g(t+ 2)} (s) = e−2s

(
2

s3
+

4

s2
+

4

s

)
=
e−2s(4s2 + 4s+ 2)

s3
.

5. The function g(t) equals zero until t reaches 1, at which point g(t) jumps to 2. We can express

this jump by (2 − 0)u(t− 1). At t = 2 the function g(t) jumps from the value 2 to the value

1. This can be expressed by adding the term (1− 2)u(t− 2). Finally, the jump at t = 3 from

1 to 3 can be accomplished by the function (3 − 1)u(t− 3). Hence

g(t) = 0 + (2− 0)u(t− 1) + (1− 2)u(t− 2) + (3− 1)u(t− 3) = 2u(t− 1)− u(t− 2) + 2u(t− 3)
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0

2

4

 

1 2 3
 

y=(t−1)2u(t−1)

(a)

0

5

 

2
 

y=t2u(t−2)

(b)

Figure 7–B: Graphs of functions in Problems 1 and 3.

and, by the linearity of the Laplace transform,

L{g(t)} (s) = 2L{u(t− 1)} (s) − L{u(t− 2)} (s) + 2L{u(t− 3)} (s)

= 2
e−s

s
− e−2s

s
+ 2

e−3s

s

=
e−s − e−2s + 2e−3s

s
.

7. Observe from the graph that g(t) is given by
0, t < 1,

t, 1 < t < 2,

1, 2 < t.

The function g(t) equals zero until t reaches 1, at which point g(t) jumps to the function t.

We can express this jump by tu(t− 1). At t = 2 the function g(t) jumps from the function t

to the value 1. This can be expressed by adding the term (1 − t)u(t− 2). Hence

g(t) = 0 + tu(t− 1) + (1 − t)u(t− 2) = tu(t− 1) − (t− 1)u(t− 2).
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Chapter 7

Taking the Laplace transform of both sides and using formula (8) on page 387, we find that

the Laplace transform of the function g(t) is given by

L{g(t)} (s) = L{tu(t− 1)} (s) − L{(t− 1)u(t− 2)} (s)

= e−sL{(t+ 1)} (s) − e−2sL{(t− 1) + 2} (s)

=
(
e−s − e−2s

)L{t+ 1} (s) =
(
e−s − e−2s

)( 1

s2
+

1

s

)
=

(e−s − e−2s)(s+ 1)

s2
.

9. First, we find the formula for g(t) from the picture given.
0, t < 1,

t− 1, 1 < t < 2,

3 − t, 2 < t < 3,

0, 3 < t.

Thus, this function jumps from 0 to t − 1 at t = 1, from t − 1 to 3 − t at t = 2, and from

3− t to 0 at t = 3. Since the function u(t− a) has the unit jump from 0 to 1 at t = a, we can

express g(t) as

g(t) = [(t− 1) − 0]u(t− 1) + [(3 − t) − (t− 1)]u(t− 2) + [0 − (3 − t)]u(t− 3)

= (t− 1)u(t− 1) + (4 − 2t)u(t− 2) + (t− 3)u(t− 3).

Therefore,

L{g(t)} (s) = L{(t− 1)u(t− 1)} (s) + L{(4 − 2t)u(t− 2)} (s) + L{(t− 3)u(t− 3)} (s)

= e−sL{(t+ 1) − 1} (s) + e−2sL{4 − 2(t+ 2)} (s) + e−3sL{(t+ 3) − 3} (s)

= e−sL{t} (s) − 2e−2sL{t} (s) + e−3sL{t} (s) =
e−s − 2e−2s + e−3s

s2
.

11. We use formula (6) on page 387 of the text with a = 2 and F (s) = 1/(s− 1). Since

f(t) = L−1 {F (s)} (t) = L−1

{
1

s− 1

}
(t) = et ⇒ f(t− 2) = et−2 ,

we get

L−1

{
e−2s

s− 1

}
(t) = f(t− 2)u(t− 2) = et−2u(t− 2).
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Exercises 7.6

13. Using the linear property of the inverse Laplace transform, we obtain

L−1

{
e−2s − 3e−4s

s+ 2

}
(t) = L−1

{
e−2s

s+ 2

}
(t) − 3L−1

{
e−4s

s+ 2

}
(t) .

To each term in the above equation, we can apply now formula (6), page 387 of the text with

F (s) = 1/(s+ 2) and a = 2 and a = 4, respectively. Since

f(t) := L−1 {F (s)} (t) = L−1 {1/(s+ 2)} (t) = e−2t,

we get

L−1

{
e−2s

s+ 2

}
(t) − 3L−1

{
e−4s

s+ 2

}
(t) = f(t− 2)u(t− 2) − 3f(t− 4)u(t− 4)

= e−2(t−2)u(t− 2) − 3e−2(t−4)u(t− 4) .

15. Since

F (s) :=
s

s2 + 4s+ 5
=

s

(s+ 2)2 + 12
=

s + 2

(s+ 2)2 + 12
− 2

1

(s+ 2)2 + 12

⇒ f(t) := L−1 {F (s)} (t) = e−2t (cos t− 2 sin t) ,

applying Theorem 8 we get

L−1

{
se−3s

s2 + 4s+ 5

}
(t) = f(t− 3)u(t− 3) = e−2(t−3) [cos(t− 3) − 2 sin(t− 3)] u(t− 3).

17. By partial fractions,
s− 5

(s+ 1)(s+ 2)
= − 6

s+ 1
+

7

s+ 2

so that

L−1

{
e−3s(s− 5)

(s+ 1)(s+ 2)

}
(t) = −6L−1

{
e−3s

s+ 1

}
(t) + 7L−1

{
e−3s

s+ 2

}
(t)

= −6L−1

{
1

s+ 1

}
(t− 3)u(t− 3) + 7L−1

{
1

s+ 2

}
(t− 3)u(t− 3)

=
[−6e−(t−3) + 7e−2(t−3)

]
u(t− 3) =

[
7e6−2t − 6e3−t

]
u(t− 3).
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Chapter 7

19. In this problem, we apply methods of Section 7.5 of solving initial value problems using the

Laplace transform. Taking the Laplace transform of both sides of the given equation and

using the linear property of the Laplace transform, we get

L{I ′′} (s) + 2L{I ′} (s) + 2L{I} (s) = L{g(t)} (s). (7.30)

Let us denote I(s) := L{I} (s). By Theorem 5, Section 7.3,

L{I ′} (s) = sI(s) − I(0) = sI(s) − 10,

L{I ′′} (s) = s2I(s) − sI(0) − I ′(0) = s2I(s) − 10s.
(7.31)

To find the Laplace transform of g(t), we express this function using the unit step function

u(t). Since g(t) identically equals to 20 for 0 < t < 3π, jumps from 20 to 0 at t = 3π and

then jumps from 0 to 20 at t = 4π, we can write

g(t) = 20 + (0 − 20)u(t− 3π) + (20 − 0)u(t− 4π) = 20 − 20u(t− 3π) + 20u(t− 4π).

Therefore,

L{g(t)} (s) = L{20 − 20u(t− 3π) + 20u(t− 4π)} (s)

= 20L{1 − u(t− 3π) + u(t− 4π)} (s) = 20

(
1

s
− e−3πs + e−4πs

)
.

Substituting this equation and (7.31) into (7.30) yields[
s2I(s) − 10s

]
+ 2 [sI(s) − 10] + 2I(s) = 20

(
1

s
− e−3πs

s
+
e−4πs

s

)
⇒ I(s) = 10

1

s
+ 20

−e−3πs + e−4πs

s[(s+ 1)2 + 1]
. (7.32)

Since L−1 {1/s} (t) = 1 and

L−1

{
1

s[(s+ 1)2 + 1]

}
(t) = L−1

{
1

2

[
1s− s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1

]}
(t)

=
1

2

[
1 − e−t(cos t+ sin t)

]
,

applying the inverse Laplace transform to both sides of (7.32) yields

I(t) = L−1

{
10

1

s
+ 20

−e−3πs

s[(s+ 1)2 + 1]
+ 20

e−4πs

s[(s+ 1)2 + 1]

}
(t)
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0

10

 

y=I(t)

3π 4π 8π

Figure 7–C: The graph of the function y = I(t) in Problem 19.

= 10 − 10u(t− 3π)
[
1 − e−(t−3π) (cos(t− 3π) + sin(t− 3π))

]
+10u(t− 4π)

[
1 − e−(t−4π) (cos(t− 4π) + sin(t− 4π))

]
= 10 − 10u(t− 3π)

[
1 + e−(t−3π) (cos t+ sin t)

]
+10u(t− 4π)

[
1 − e−(t−4π) (cos t+ sin t)

]
.

The graph of the solution, y = I(t), 0 < t < 8π, is depicted in Figure 7-C.

21. In the windowed version (11) of f(t), fT (t) = t and T = 2. Thus

FT (s) :=

∞∫
0

e−stfT (t) dt =

2∫
0

e−stt dt = −te
−st

s
− e−st

s2

∣∣∣∣2
0

= −2e−2s

s
− e−2s

s2
+

1

s2
=

1 − 2se−2s − e−2s

s2
.

From Theorem 9 on page 391 of the text, we obtain

L{f(t)} (s) =
FT (s)

1 − e−2s
=

1 − 2se−2s − e−2s

s2(1 − e−2s)
.

The graph of the function y = f(t) is given in Figure B.45 in the answers of the text.

23. We use formula (12) on page 391 of the text. With the period T = 2, the windowed version
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Chapter 7

fT (t) of f(t) is

fT (t) =

{
f(t), 0 < t < 2,

0, otherwise
=


e−t, 0 < t < 1,

1, 1 < t < 2,

0, otherwise.

Therefore,

FT (s) =

∞∫
0

e−stfT (t) dt =

1∫
0

e−ste−t dt+

2∫
1

e−st dt

=
e−(s+1)t

−(s+ 1)

∣∣∣∣1
0

+
e−st

−s
∣∣∣∣2
1

=
1 − e−(s+1)

s+ 1
+
e−s − e−2s

s

and, by (12),

L{f(t)} (s) =
1

1 − e−2s

[
1 − e−(s+1)

s+ 1
+
e−s − e−2s

s

]
.

The graph of f(t) is shown in Figure B.46 in the answers of the text.

25. Similarly to Example 6 on page 392 of the text, f(t) is a periodic function with period T = 2a,

whose windowed version has the form

f2a(t) = 1 − u(t− a), 0 < t < 2a.

Thus, using the linearity of the Laplace transform and formula (4) on page 386 for the Laplace

transform of the unit step function, we have

F2a(s) = L{f2a(t)} (s) = L{1} (s) −L{u(t− a)} (s) =
1

s
− e−as

s
=

1 − e−as

s
.

Applying now Theorem 9 yields

L{f(t)} (s) =
1

1 − e−2as

1 − e−as

s
=

1

(1 − e−as)(1 + e−as)

1 − e−as

s
=

1

s(1 + e−as)
.

27. Observe that if we let

f2a(t) =

{
f(t), 0 < t < 2a,

0, otherwise,
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Exercises 7.6

denote the windowed version of f(t), then from formula (12) on page 391 of the text we have

L{f(t)} (s) =
L{f2a(t)} (s)

1 − e−2as
=

L{f2a(t)} (s)

(1 − e−as)(1 + e−as)
.

Now

f2a(t) =
t

a
+

[(
2 − t

a

)
− t

a

]
u(t− a) +

[
0 −
(

2 − t

a

)]
u(t− 2a)

=
t

a
− 2(t− a)u(t− a)

a
+

(t− 2a)u(t− 2a)

a
.

Hence,

L{f2a(t)} (s) =
1

a
L{t} (s) − 2

a
L{(t− a)u(t− a)} (s) +

1

a
L{(t− 2a)u(t− 2a)} (s)

=
1

a

1

s2
− 2

a

e−as

s2
+

1

a

e−as

s2
=

1

as2

(
1 − 2e−as + e−2as

)
=

(1 − e−as)
2

as2

and

L{f(t)} (s) =
(1 − e−as)

2
/(as2)

(1 − e−as)(1 + e−as)
=

1 − e−as

as2(1 + e−as)
.

29. Applying the Laplace transform to both sides of the given differential equation, we obtain

L{y′′} (s) + L{y} (s) = L{u(t− 3)} (s) =
e−3s

s
.

Since

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 1,

substitution yields[
s2L{y} (s) − 1

]
+ L{y} (s) =

e−3s

s

⇒ L{y} (s) =
1

s2 + 1
+

e−3s

s(s2 + 1)
=

1

s2 + 1
+ e−3s

[
1

s
− s

s2 + 1

]
.

By formula (6) on page 387 of the text,

L−1

{
e−3s

[
1

s
− s

s2 + 1

]}
(t) = L−1

{
1

s
− s

s2 + 1

}
(t− 3)u(t− 3) = [1 − cos(t− 3)]u(t− 3).

Hence

y(t) = L−1

{
1

s2 + 1
+ e−3s

[
1

s
− s

s2 + 1

]}
(t) = sin t+ [1 − cos(t− 3)]u(t− 3)

The graph of the solution is shown in Figure B.47 in the answers of the text.
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Chapter 7

31. We apply the Laplace transform to both sides of the differential equation and get

L{y′′} (s) + L{y} (s) = L{t− (t− 4)u(t− 2)} (s) =
1

s2
−L{(t− 4)u(t− 2)} (s) . (7.33)

Since (t − 4)u(t− 2) = [(t − 2) − 2]u(t− 2), we can use formula (5) from Theorem 8 to find

its Laplace transform. With f(t) = t− 2 and a = 2, this formula yields

L{(t− 4)u(t− 2)} (s) = e−2sL{t− 2} (s) = e−2s

[
1

s2
− 2

s

]
.

Also,

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 1.

Substitution back into (7.33) yields[
s2L{y} (s) − 1

]
+ L{y} (s) =

1

s2
− e−2s

[
1

s2
− 2

s

]
⇒ L{y} (s) =

1

s2
− e−2s 1 − 2s

s2(s2 + 1)
=

1

s2
− e−2s

[
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

]
.

Applying now the inverse Laplace transform and using formula (6) on page 387 of the text,

we obtain

y(t) = L−1

{
1

s2
− e−2s

[
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

]}
(t)

= t−L−1

{
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

}
(t− 2)u(t− 2)

= t− [(t− 2) − 2 + 2 cos(t− 2) − sin(t− 2)]u(t− 2)

= t+ [4 − t+ sin(t− 2) − 2 cos(t− 2)]u(t− 2).

See Figure B.48 in the answers of the text.

33. By formula (4) on page 386 of the text,

L{u(t− 2π) − u(t− 4π)} (s) =
e−2πs

s
− e−4πs

s
.

Thus, taking the Laplace transform of y′′ + 2y′ + 2y = u(t− 2π)− u(t− 4π) and applying the

initial conditions y(0) = y′(0) gives us[
s2Y (s) − s− 1

]
+ 2 [sY (s) − 1] + 2Y (s) =

e−2πs − e−4πs

s
,
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Exercises 7.6

where Y (s) is the Laplace transform of y(t). Solving for Y (s) yields

Y (s) =
s+ 3

s2 + 2s+ 2
+

e−2πs − e−4πs

s(s2 + 2s+ 2)

=
s+ 1

(s+ 1)2 + 12
+

2(1)

(s+ 1)2 + 12
+

e−2πs

s[(s+ 1)2 + 12]
− e−4πs

s[(s+ 1)2 + 12]
. (7.34)

Since

1

s[(s+ 1)2 + 12]
=

1

2

(s2 + 2s+ 2) − (s2 + 2s)

s[(s+ 1)2 + 12]
=

1

2

[
1

s
− s+ 1

(s+ 1)2 + 12
− 1

(s+ 1)2 + 12

]
,

we have

L−1

{
1

s[(s+ 1)2 + 12]

}
(t) = L−1

{
1

2

[
1

s
− s+ 1

(s+ 1)2 + 12
− 1

(s+ 1)2 + 12

]}
(t)

=
1

2

[
1 − e−t cos t− e−t sin t

]
and, by formula (6) on page 387 of the text,

L−1

{
e−2πs

s[(s+ 1)2 + 12]

}
(t) =

1

2

[
1 − e−(t−2π) cos(t− 2π) − e−(t−2π) sin(t− 2π)

]
u(t− 2π)

=
1

2

[
1 − e2π−t(cos t+ sin t)

]
u(t− 2π)

L−1

{
e−4πs

s[(s+ 1)2 + 12]

}
(t) =

1

2

[
1 − e−(t−4π) cos(t− 4π) − e−(t−4π) sin(t− 4π)

]
u(t− 4π)

=
1

2

[
1 − e4π−t(cos t+ sin t)

]
u(t− 4π).

Finally, taking the inverse Laplace transform in (7.34) yields

y(t) = e−t cos t+ 2e−t sin t+
1

2

[
1 − e2π−t(cos t+ sin t)

]
u(t− 2π)

−1

2

[
1 − e4π−t(cos t+ sin t)

]
u(t− 4π) .

35. We take the Laplace transform of the both sides of the given equation and obtain

L{z′′} (s) + 3L{z′} (s) + 2L{z} (s) = L{e−3tu(t− 2)
}

(s). (7.35)
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Chapter 7

We use the initial conditions, z(0) = 2 and z′(0) = −3, and formula (4) from Section 7.3 to

express L{z′} (s) and L{z′′} (s) in terms of Z(s) := L{z} (s). That is,

L{z′} (s) = sZ(s)−z(0) = sZ(s)−2, L{z′′} (s) = s2Z(s)−sz(0)−z′(0) = s2Z(s)−2s+3.

In the right-hand side of (7.35), we can use, say, the translation property of the Laplace

transform (Theorem 3, Section 7.3) and the Laplace transform of the unit step function

(formula (4), Section 7.6).

L{e−3tu(t− 2)
}

(s) = L{u(t− 2)} (s+ 3) =
e−2(s+3)

s+ 3
.

Therefore, (7.35) becomes[
s2Z(s) − 2s+ 3

]
+ 3 [sZ(s) − 2] + 2Z(s) =

e−2(s+3)

s+ 3

⇒ (
s2 + 3s+ 2

)
Z(s) = 2s+ 3 +

e−2(s+3)

s+ 3

⇒ Z(s) =
2s+ 3

s2 + 3s+ 2
+ e−2s−6 1

(s+ 3)(s2 + 3s+ 2)

=
1

s+ 1
+

1

s+ 2
+ e−2s−6

[
1/2

s+ 3
− 1

s+ 2
+

1/2

s+ 1

]
.

Hence,

z(t) = L−1

{
1

s+ 1
+

1

s+ 2
+ e−6e−2s

[
1/2

s+ 3
− 1

s+ 2
+

1/2

s + 1

]}
(t)

= L−1

{
1

s+ 1

}
(t) + L−1

{
1

s+ 2

}
(t)

+
e−6

2

[
L−1

{
1

s+ 3

}
− 2L−1

{
1

s+ 2

}
+ L−1

{
1

s+ 1

}]
(t− 2)u(t− 2)

= e−t + e−2t +
e−6

2

[
e−3(t−2) − 2e−2(t−2) + e−(t−2)

]
u(t− 2)

= e−t + e−2t +
1

2

[
e−3t − 2e−2(t+1) + e−(t+4)

]
u(t− 2)

37. Since

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

2π∫
0

e−st sin t dt =
e−st

s2 + 1
(−s sin t− cos t)

∣∣∣∣2π

0

=
1 − e−2πs

s2 + 1
,
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Exercises 7.6

applying the Laplace transform to the original equation yields

L{y′′} (s) + 4L{y} (s) = L{g(t)} (s)

⇒ [
s2L{y} (s) − s− 3

]
+ 4L{y} (s) =

1 − e−2πs

s2 + 1

⇒ L{y} (s) =
s + 3

s2 + 4
+

1

(s2 + 1)(s2 + 4)
− e−2πs

(s2 + 1)(s2 + 4)
.

Using the partial fractions decomposition

1

(s2 + 1)(s2 + 4)
=

1

3

(s2 + 4) − (s2 + 1)

(s2 + 1)(s2 + 4)
=

1

3

[
1

s2 + 1
− 1

6

2

s2 + 4

]
,

we conclude that

L{y} (s) =
s

s2 + 4
+

4

3

2

s2 + 4
+

1

3

1

s2 + 1
− e−2πs

[
1

3

1

s2 + 1
− 1

6

2

s2 + 4

]
and so

y(t) = L−1

{
s

s2 + 4

}
(t) +

4

3
L−1

{
2

s2 + 4

}
(t) + L−1

{
1

3

1

s2 + 1

}
(t)

−L−1

{
1

3

1

s2 + 1
− 1

6

2

s2 + 4

}
(t− 2π)u(t− 2π)

= cos 2t+
4

3
sin 2t+

1

3
sin t−

[
1

3
sin(t− 2π) − 1

6
sin 2(t− 2π)

]
u(t− 2π)

= cos 2t+
4

3
sin 2t+

1

3
sin t−

[
1

3
sin t− 1

6
sin 2t

]
u(t− 2π)

= cos 2t+
1

3
[1 − u(t− 2π)] sin t+

1

6
[8 + u(t− 2π)] sin 2t .

39. We can express g(t) using the unit step function as

g(t) = tu(t− 1) + (1 − t)u(t− 5) = [(t− 1) + 1]u(t− 1) − [(t− 5) + 4]u(t− 5).

Thus, formula (5) on page 387 of the text yields

L{g(t)} (s) = e−sL{t+ 1} (s) − e−5sL{t+ 4} (s) = e−s

(
1

s2
+

1

s

)
− e−5s

(
1

s2
+

4

s

)
.
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Chapter 7

Let Y (s) = L{y} (s). Applying the Laplace transform to the given equation and using the

initial conditions, we obtain

L{y′′} (s) + 5L{y′} (s) + 6Y (s) = L{g(t)} (s)

⇒ [
s2Y (s) − 2

]
+ 5 [sY (s)] + 6Y (s) = L{g(t)} (s)

⇒ (
s2 + 5s+ 6

)
Y (s) = 2 + e−s

(
1

s2
+

1

s

)
− e−5s

(
1

s2
+

4

s

)
⇒ Y (s) =

2

s2 + 5s+ 6
+ e−s s + 1

s2(s2 + 5s+ 6)
− e−5s 4s+ 1

s2(s2 + 5s+ 6)
. (7.36)

Using partial fractions decomposition, we can write

2

s2 + 5s+ 6
=

2

s+ 2
− 2

s+ 3
,

s+ 1

s2(s2 + 5s+ 6)
=

1/36

s
+

1/6

s2
− 1/4

s+ 2
+

2/9

s+ 3
,

4s+ 1

s2(s2 + 5s+ 6)
=

1/6

s2
+

19/36

s
− 7/4

s+ 2
+

11/9

s+ 3
.

Therefore,

L−1

{
2

s2 + 5s+ 6

}
(t) = 2e−2t − 2e−3t ,

L−1

{
s+ 1

s2(s2 + 5s+ 6)

}
(t) =

1

36
+
t

6
− e−2t

4
+

2e−3t

9
,

L−1

{
4s+ 1

s2(s2 + 5s+ 6)

}
(t) =

19

36
+
t

6
− 7e−2t

4
+

11e−3t

9
.

Using these equations and taking the inverse Laplace transform in (7.36), we finally obtain

y(t) = 2e−2t − 2e−3t +

[
1

36
+
t− 1

6
− e−2(t−1)

4
+

2e−3(t−1)

9

]
u(t− 1)

+

[
19

36
+
t− 5

6
− 7e−2(t−5)

4
+

11e−3(t−5)

9

]
u(t− 5).

41. First observe that for s > 0, T > 0, we have 0 < e−Ts < 1 so that

1

1 − e−Ts
= 1 + e−Ts + e−2Ts + e−3Ts + · · · (7.37)
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Exercises 7.6

and the series converges for all s > 0. Thus,

1

(s+ α)(1 − e−Ts)
=

1

s+ α

1

1 − e−Ts
=

1

s+ α

(
1 + e−Ts + e−2Ts + e−3Ts + · · ·)

=
1

s+ α
+

e−Ts

s+ α
+
e−2Ts

s+ α
+ · · · ,

and so

L−1

{
1

(s+ α)(1 − e−Ts)

}
(t) = L−1

{
1

s+ α
+

e−Ts

s+ α
+
e−2Ts

s+ α
+ · · ·

}
(t). (7.38)

Taking for granted that the linearity of the inverse Laplace transform extends to the infinite

sum in (7.38) and ignoring convergence questions yields

L−1

{
1

(s+ α)(1 − e−Ts)

}
= L−1

{
1

s+ α

}
+ L−1

{
e−Ts

s+ α

}
+ L−1

{
e−2Ts

s+ α

}
+ · · ·

= e−αt + e−α(t−T )u(t− T ) + e−α(t−2T )u(t− 2T ) + · · ·

as claimed.

43. Using the expansion (7.37) obtained in Problem 41, we can represent L{g} (s) as

L{g} (s) =
β

s2 + β2

1

1 − e−Ts
=

β

s2 + β2

(
1 + e−Ts + e−2Ts + e−3Ts + · · ·)

=
β

s2 + β2
+ e−Ts β

s2 + β2
+ e−2Ts β

s2 + β2
+ · · · .

Since L−1 {β/(s2 + β2)} (t) = sin βt, using the linearity of the inverse Laplace transform

(extended to infinite series) and formula (6) in Theorem 8, we obtain

g(t) = L−1

{
β

s2 + β2

}
(t) + L−1

{
β

s2 + β2

}
(t− T )u(t− T )

+L−1

{
β

s2 + β2

}
(t− 2T )u(t− 2T ) + · · ·

= sin βt+ [sin β(t− T )]u(t− T ) + [sin β(t− 2T )]u(t− 2T ) + · · ·

as stated.
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Chapter 7

45. In order to apply the method of Laplace transform to given initial value problem, let us find

L{f} (s) first. Since the period of f(t) is T = 1 and f(t) = et on (0, 1), the windowed version

of f(t) is

f1(t) =

{
et, 0 < t < 1,

0, otherwise,

and so

F1(s) =

∞∫
0

e−stf1(t) dt =

1∫
0

e−stet dt =
e(1−s)t

1 − s

∣∣∣∣1
0

=
1 − e1−s

s− 1
.

Hence, Theorem 9 yields the following formula for L{f} (s):

L{f} (s) =
1 − e1−s

(s− 1)(1 − e−s)
.

We can now apply the Laplace transform to the given differential equation and obtain

L{y′′} (s) + 3L{y′} (s) + 2L{y} (s) =
1 − e1−s

(s− 1)(1 − e−s)

⇒ [
s2L{y} (s)

]
+ 3 [sL{y} (s)] + 2L{y} (s) =

1 − e1−s

(s− 1)(1 − e−s)

⇒ L{y} (s) =
1 − e1−s

(s− 1)(s2 + 3s+ 2)(1 − e−s)
=

1 − e1−s

(s− 1)(s+ 1)(s+ 2)(1 − e−s)

⇒ L{y} (s) =
e

(s− 1)(s+ 1)(s+ 2)
+

1 − e

1 − e−s

1

(s− 1)(s+ 1)(s+ 2)
.

Using the partial fractions decomposition

1

(s− 1)(s+ 1)(s+ 2)
=

1/6

s− 1
− 1/2

s+ 1
+

1/3

s+ 2

we find that

L{y} (s) =
e/6

s− 1
− e/2

s+ 1
+

e/3

s+ 2
+

1 − e

6

1

(s− 1)(1 − e−s)

−1 − e

2

1

(s+ 1)(1 − e−s)
+

1 − e

3

1

(s+ 2)(1 − e−s)

⇒ y(t) =
e

6
et − e

2
e−t +

e

3
e−2t +

1 − e

6
L−1

{
1

(s− 1)(1 − e−s)

}
(t)

−1 − e

2
L−1

{
1

(s+ 1)(1 − e−s)

}
(t) +

1 − e

3
L−1

{
1

(s+ 2)(1 − e−s)

}
(t). (7.39)
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Exercises 7.6

To each of the three inverse Laplace transforms in the above formula we can apply results of

Problem 42(a) with T = 1 and α = −1, 1, and 2, respectively. Thus, for n < t < n + 1, we

have

L−1

{
1

(s− 1)(1 − e−s)

}
(t) = et

[
e−(n+1) − 1

e−1 − 1

]
,

L−1

{
1

(s+ 1)(1 − e−s)

}
(t) = e−t

[
en+1 − 1

e− 1

]
,

L−1

{
1

(s+ 2)(1 − e−s)

}
(t) = e−2t

[
e2(n+1) − 1

e2 − 1

]
.

Finally, substitution back into (7.39) yields

y(t) =
e

6
et − e

2
e−t +

e

3
e−2t +

1 − e

6
et

[
e−(n+1) − 1

e−1 − 1

]
−1 − e

2
e−t

[
en+1 − 1

e− 1

]
+

1 − e

3
e−2t

[
e2(n+1) − 1

e2 − 1

]
=

et−n

6
− e−t (1 + e− en+1)

2
+
e−2t (1 + e+ e2 − e2n+2)

3(e+ 1)
.

47. Since

et =
∞∑

k=0

tk

k!

and

L{tk} (s) =
k!

sk+1
,

using the linearity of the Laplace transform we have

L{et
}

(s) = L
{ ∞∑

k=0

tk

k!

}
(s) =

∞∑
k=0

L{tk} (s)

k!
=

∞∑
k=0

k!/sk+1

k!
=

1

s

∞∑
k=0

(
1

s

)k

. (7.40)

We can apply now the summation formula for geometric series, that is,

1 + x+ x2 + · · · =
1

1 − x
,

which is valid for |x| < 1. With x = 1/s, s > 1, (7.40) yields

L{et
}

(s) =
1

s

1

1 − (1/s)
=

1

s− 1
.
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Chapter 7

49. Recall that the Taylor’s series for cos t about t = 0 is

cos t = 1 − t2

2!
+
t4

4!
− t6

6!
+ · · ·+ (−1)n t2n

(2n)!
+ · · ·

so that
1 − cos t

t
=

t

2!
− t3

4!
+
t5

6!
+ · · ·+ (−1)n+1 t

2n−1

(2n)!
+ · · · .

Thus

L
{

1 − cos t

t

}
(s) =

1

2!
L{t} (s) − 1

4!
L{t3} (s) + · · · + (−1)n+1

(2n)!
L{t2n−1

}
(s) + · · ·

=
1

2

1

s2
− 1

4

1

s4
+ · · · + (−1)n+1

2n

1

s2n
+ · · ·

=
∞∑

n=1

(−1)n+1

2n

1

s2n
=

∞∑
n=1

(−1)n+1

2ns2n
.

To sum this series, recall that

ln(1 − x) = −
∞∑

n=1

xn

n
.

Hence,

ln

(
1 +

1

s2

)
= −

∞∑
n=1

(−1)n

ns2n
=

∞∑
n=1

(−1)n+1

ns2n
.

Thus, we have
1

2
ln

(
1 +

1

s2

)
=

∞∑
n=1

(−1)n+1

2ns2n
= L

{
1 − cos t

t

}
(s) .

This formula can also be obtained by using the result of Problem 27 in Section 7.3 of the text.

51. We use formula (17) on page 394 of the text.

(a) With r = −1/2, (17) yields

L{t−1/2
}

(s) =
Γ[(−1/2) + 1]

s(−1/2)+1
=

Γ(1/2)

s1/2
=

√
π√
s

=

√
π

s
.

(b) This time, r = 7/2, and (17) becomes

L{t7/2
}

(s) =
Γ[(7/2) + 1]

s(7/2)+1
=

Γ(9/2)

s9/2
.
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Exercises 7.6

From the recursive formula (16) we find that

Γ

(
9

2

)
= Γ

(
7

2
+ 1

)
=

7

2
Γ

(
7

2

)
=

7

2

5

2
Γ

(
5

2

)
=

7

2

5

2

3

2
Γ

(
3

2

)
=

7

2

5

2

3

2

1

2
Γ

(
1

2

)
=

105
√
π

16
.

Therefore,

L{t7/2
}

(s) =
105

√
π

16s9/2
.

53. According to the definition (11) of the function fT (t), fT (t− kT ) = 0 if the point t− kT does

not belong to (0, T ). Therefore, fixed t, in the series (13) all the terms containing fT (t− kT )

with k’s such that t− kT ≤ 0 or t− kT ≥ T vanish. In the remaining terms, k satisfies

0 < t− kT < T ⇔ t

T
− 1 < k <

t

T
.

But, for any fixed t, there is at most one k satisfying this condition.

55. Recall that

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · .

Substituting −1/s for x above yields

e−1/s = 1 − 1

s
+

1

2!s2
− 1

3!s3
+ · · ·+ (−1)n

n!sn
+ · · · .

Thus, we have

s−1/2e−1/s =
1

s1/2
− 1

s3/2
+

1

2!s5/2
+ · · · + (−1)n

n!sn+1/2
+ · · · =

∞∑
n=0

(−1)n

n!sn+1/2
.

By Problem 52 of this section,

L−1

{
1

sn+(1/2)

}
(t) =

2ntn−(1/2)

1 · 3 · 5 · · · (2n− 1)
√
π
,

so that

L−1
{
s−1/2e−1/s

}
(t) = L−1

{ ∞∑
n=0

(−1)n

n!sn+1/2

}
(t)

=

∞∑
n=0

(−1)n

n!
L−1

{
1

sn+(1/2)

}
(t) =

∞∑
n=0

(−1)n

n!

2ntn−(1/2)

1 · 3 · 5 · · · (2n− 1)
√
π
.
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Chapter 7

Multiplying the nth term by [2 · 4 · · · (2n)]/[2 · 4 · · · (2n)], we obtain

L−1
{
s−1/2e−1/s

}
(t) =

∞∑
n=0

(−1)n(2n)2tn−(1/2)

(2n)!
√
π

=
∞∑

n=0

(−1)n(2n)2tn

(2n)!
√
πt

=

(
1√
πt

) ∞∑
n=0

(−1)n(2
√
t)2n

(2n)!
=

(
1√
πt

)
cos
(
2
√
t
)
.

57. Recall that the Maclaurin expansion of ln(1 − x) is

ln(1 − x) = −
∞∑

n=1

xn

n
,

which converges for |x| < 1. Hence, substitution −1/s2 for x yields

ln

(
1 +

1

s2

)
= −

∞∑
n=1

(−1)n

ns2n
=

∞∑
n=1

(−1)n+1

ns2n
.

Assuming that the inverse Laplace transform can be computed termwise, we obtain

L−1

{
ln

(
1 +

1

s2

)}
= L−1

{ ∞∑
n=1

(−1)n+1

ns2n

}
=

∞∑
n=1

(−1)n+1

n
L−1

{
1

s2n

}
.

From Table 7.1 in Section 7.2, L{tk} = k!/sk+1, k = 1, 2, . . . . Thus L−1
{
1/sk+1

}
= tk/k!.

With k = 2n− 1, this yields

L−1

{
1

s2n

}
(t) =

t2n−1

(2n− 1)!
, n = 1, 2, . . .

and, therefore,

L−1

{
ln

(
1 +

1

s2

)}
(t) =

∞∑
n=1

(−1)n+1

n

t2n−1

(2n− 1)!
= −2

t

∞∑
n=1

(−1)n

(2n)!
t2n . (7.41)

Since

cos t =

∞∑
n=0

(−1)n

(2n)!
t2n = 1 +

∞∑
n=1

(−1)n

(2n)!
t2n ,

(7.41) implies that

L−1

{
ln

(
1 +

1

s2

)}
(t) = −2

t
(cos t− 1) =

2(1 − cos t)

t
.
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Exercises 7.6

59. Applying the Laplace transform to both sides of the original equation and using its linearity,

we obtain

L{y′′} (s) −L{y} (s) = L{G3(t− 1)} (s). (7.42)

Initial conditions, y(0) = 0 and y′(0)=2, and Theorem 5 in Section 7.3 imply that

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 2.

In the right-hand side of (7.42), we can apply the result of Problem 58(c) with a = 3 and

b = 1 to get

L{G3(t− 1)} (s) =
e−s − e−4s

s
.

Thus (7.42) becomes

[
s2L{y} (s) − 2

]−L{y} (s) =
e−s − e−4s

s

⇒ L{y} (s) =
2

s2 − 1
+
e−s − e−4s

s(s2 − 1)
.

Substituting partial fraction decompositions

2

s2 − 1
=

1

s− 1
− 1

s+ 1
,

1

s(s2 − 1)
=

1/2

s− 1
+

1/2

s+ 1
− 1

s

yields

L{y} (s) =
1

s− 1
− 1

s+ 1
+
(
e−s − e−4s

) [ 1/2

s− 1
+

1/2

s+ 1
− 1

s

]
=

1

s− 1
− 1

s+ 1
+ e−s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]
− e−4s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]
. (7.43)

Since

L−1

{
1/2

s− 1
+

1/2

s + 1
− 1

s

}
(t) =

et + e−t − 2

2
,

formula (6) on page 387 of the text gives us

L−1

{
e−s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]}
(t) = L−1

{
1/2

s− 1
+

1/2

s+ 1
− 1

s

}
(t− 1)u(t− 1)

=
et−1 + e1−t − 2

2
u(t− 1),
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Chapter 7

L−1

{
e−4s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]}
(t) = L−1

{
1/2

s− 1
+

1/2

s+ 1
− 1

s

}
(t− 4)u(t− 4)

=
et−4 + e4−t − 2

2
u(t− 4).

Taking the inverse Laplace transform in (7.43) yields

y(t) = et − e−t +
et−1 + e1−t − 2

2
u(t− 1) − et−4 + e4−t − 2

2
u(t− 4).

61. In this problem, we use the method of solving “mixing problems” discussed in Section 3.2.

So, let x(t) denote the mass of salt in the tank at time t with t = 0 denoting the moment

when the process started. Thus, using the formula

mass = volume × concentration ,

we have the initial condition

x(0) = 500 (L) × 0.2 (kg/L) = 100 (kg).

For the rate of change of x(t), that is, x′(t), we use then relation

x′(t) = input rate − output rate . (7.44)

While the output rate (through the exit valve C) can be computed as

output rate =
x(t)

500
(kg/L) × 12 (L/min) =

3x(t)

125
(kg/min)

for all t, the input rate has different formulas for the first 10 minute and after that. Namely,

0 < t < 10 (valve A) : input rate = 12 (L/min) × 0.4 (kg/L) = 4.8 (kg/min);

10 < t (valve B) : input rate = 12 (L/min) × 0.6 (kg/L) = 7.2 (kg/min).

In other words, the input rate is a function of t, which can be written as

input rate = g(t) =

{
4.8, 0 < t < 10,

7.2, 10 < t.
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Exercises 7.6

Using the unit step function, we can express g(t) = 4.8 + 2.4u(t − 10) (kg/min). Therefore

(7.44) becomes

x′(t) = g(t) − 3x(t)

125
⇒ x′(t) +

3

125
x(t) = 4.8 + 2.4u(t− 10) (7.45)

with the initial condition x(0) = 100. Taking the Laplace transform of both sides yields

L{x′} (s) +
3

125
L{x} (s) = L{4.8 + 2.4u(t− 10)} (s) =

4.8

s
+

2.4e−10s

s

⇒ [sL{x} (s) − 100] +
3

125
L{x} (s) =

4.8

s
+

2.4e−10s

s

⇒ L{x} (s) =
100s+ 4.8

s[s + (3/125)]
+

2.4

s[s + (3/125)]
e−10s . (7.46)

Since

2.4

s[s+ (3/125)]
= 100

(
1

s
− 1

s+ (3/125)

)
,

100s+ 4.8

s[s+ (3/125)]
= 100

(
2

s
− 1

s+ (3/125)

)
,

applying the inverse Laplace transform in (7.46), we get

x(t) = 100
(
2 − e−3t/125

)
+ 100

(
1 − e−3(t−10)/125

)
u(t− 10).

Finally, dividing by the volume of the solution in the tank, which constantly equals to 500 L,

we conclude that

concentration = 0.4 − 0.2e−3t/125 + 0.2
(
1 − e−3(t−10)/125

)
u(t− 10).

63. In this problem, the solution still enters the tank at the rate 12 L/min, but leaves the tank at

the rate only 6 L/min. Thus, every minute, the volume of the solution in the tank increases

by 12 − 6 = 6 L. Therefore, the volume, as a function of t, is given by 500 + 6t and so

output rate =
x(t)

500 + 6t
(kg/L) × 6 (L/min) =

3x(t)

250 + 3t
(kg/min).

Instead of equation (7.45) in Problem 61, we now have

x′(t) = g(t) − 3x(t)

250 + 3t
⇒ (250 + 3t)x′(t) + 3x(t) = (250 + 3t)[48 + 24u(t− 10)].
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Chapter 7

This equation has polynomial coefficients and can also be solved using the Laplace transform

method. (See the discussion in Section 7.5, page 380, and Example 4.) But, as an intermediate

step, one will obtain a first order linear differential equation for L{x} (s).

EXERCISES 7.7: Convolution, page 405

1. Let Y (s) := L{y} (s), G(s) := L{g} (s). Taking the Laplace transform of both sides of the

given differential equation and using the linear property of the Laplace transform, we obtain

L{y′′} (s) − 2L{y′} (s) + Y (s) = G(s).

The initial conditions and Theorem 5, Section 7.3, imply that

L{y′} (s) = sY (s) + 1,

L{y′′} (s) = s2Y (s) + s− 1.

Thus, substitution yields[
s2Y (s) + s− 1

]− 2 [sY (s) + 1] + Y (s) = G(s)

⇒ (
s2 − 2s+ 1

)
Y (s) = 3 − s+G(s)

⇒ Y (s) =
3 − s

s2 − 2s+ 1
+

G(s)

s2 − 2s+ 1
=

2

(s− 1)2
− 1

s− 1
+

G(s)

(s− 1)2
.

Taking now the inverse Laplace transform, we obtain

y(t) = 2L−1

{
1

(s− 1)2

}
(t) −L−1

{
1

s− 1

}
(t) + L−1

{
G(s)

(s− 1)2

}
(t) .

Using Table 7.1, we find that

L−1

{
1

s− 1

}
(t) = et , L−1

{
1

(s− 1)2

}
(t) = tet ,

and, by the convolution theorem,

L−1

{
G(s)

(s− 1)2

}
(t) = L−1

{
1

(s− 1)2
G(s)

}
(t) =

(
tet
) ∗ g(t) =

t∫
0

(t− v)et−vg(v) dv.

450

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Exercises 7.7

Thus

y(t) = 2tet − et +

t∫
0

(t− v)et−vg(v) dv.

3. Taking the Laplace transform of y′′ + 4y′ + 5y = g(t) and applying the initial conditions

y(0) = y′(0) = 1 gives us[
s2Y (s) − s− 1

]
+ 4 [sY (s) − 1] + 5Y (s) = G(s),

where Y (s) := L{y} (s), G(s) := L{g} (s). Thus

Y (s) =
s+ 5

s2 + 4s+ 5
+

G(s)

s2 + 4s+ 5
=

s+ 2

(s+ 2)2 + 1
+

3

(s+ 2)2 + 1
+

G(s)

(s+ 2)2 + 1
.

Taking the inverse Laplace transform of Y (s) with the help of the convolution theorem yields

y(t) = e−2t cos t+ 3e−2t sin t+

t∫
0

e−2(t−v) sin(t− v)g(v) dv..

5. Since L−1 {1/s} (t) = 1 and L−1 {1/(s2 + 1)} (t) = sin t, writing

1

s(s2 + 1)
=

1

s
· 1

s2 + 1

and using the convolution theorem, we obtain

L−1

{
1

s(s2 + 1)

}
(t) = 1 ∗ sin t =

t∫
0

sin v dv = − cos v
∣∣t
0
= 1 − cos t.

7. From Table 7.1, L−1 {1/(s− a)} (t) = eat. Therefore, using the linearity of the inverse Laplace

transform and the convolution theorem, we have

L−1

{
14

(s+ 2)(s− 5)

}
(t) = 14L−1

{
1

s+ 2
· 1

s− 5

}
(t) = 14e−2t ∗ e5t = 14

t∫
0

e−2(t−v)e5v dv

= 14e−2t

t∫
0

e7v dv = 2e−2t
(
e7t − 1

)
= 2
(
e5t − e−2t

)
.
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Chapter 7

9. Since s/(s2 + 1)2 = [s/(s2 + 1)] · [1/(s2 + 1)] the convolution theorem tells us that

L−1

{
s

(s2 + 1)2

}
(t) = L−1

{
s

s2 + 1
· s

s2 + 1

}
(t) = cos t ∗ sin t =

t∫
0

cos(t− v) sin v dv.

Using the identity sinα cosβ = [sin(α + β) + sin(α− β)]/2, we get

L−1

{
s

(s2 + 1)2

}
(t) =

1

2

t∫
0

[sin t+ sin(t− 2v)] dv

=
1

2

(
v sin t+

cos(t− 2v)

2

)∣∣∣∣t
0

=
t sin t

2
.

11. Using the hint, we can write

s

(s− 1)(s+ 2)
=

1

s+ 2
+

1

(s− 1)(s+ 2)
,

so that by the convolution theorem, Theorem 11 on page 400 of the text,

L−1

{
s

(s− 1)(s+ 2)

}
(t) = L−1

{
1

s+ 2

}
(t) + L−1

{
1

(s− 1)(s+ 2)

}
(t)

= e−2t + et ∗ e−2t = e−2t +

t∫
0

et−ve−2v dv

= e−2t + et

t∫
0

e−3v dv = e−2t − et

3

(
e−3t − 1

)
=

2e−2t

3
+
et

3
.

13. Note that f(t) = t ∗ e3t. Hence, by (8) on page 400 of the text,

L{f(t)} (s) = L{t} (s)L{e3t
}

(s) =
1

s2
· 1

s− 3
=

1

s2(s− 3)
.

15. Note that
t∫

0

y(v) sin(t− v) dv = sin t ∗ y(t).

Let Y (s) := L{y} (s). Taking the Laplace transform of the original equation, we obtain

Y (s) + 3L{sin t ∗ y(t)} (s) = L{t} (s)
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Exercises 7.7

� Y(s) + 3 L { sint} (s)Y(s) =
1
s2

� Y(s) +
3

s2 + 1
Y(s) =

1
s2

� Y (s) =
s2 + 1

s2(s2 + 4)
=

(1/ 4)
s2

+
(3/ 8)2
s2 + 22

� y(t) = L Š 1

�
(1/ 4)

s2
+

(3/ 8)2
s2 + 22

�
(t) =

t
4

+
3 sin 2t

8
.

17. We use the convolution Theorem 11 to “nd the Laplace transform of the integral term.

L

$
&

'

t�

0

(t Š v)y(v) dv

4
5

6
(s) = L { t � y(t)} (s) = L { t} (s)L { y(t)} (s) =

Y(s)
s2

,

whereY(s) denotes the Laplace transform ofy(t). Thus taking the Laplace transform of both

sides of the given equation yields

Y(s) +
Y(s)

s2
=

1
s

� Y(s) =
s

s2 + 1
� y(t) = L Š 1

�
s

s2 + 1

�
(t) = cos t .

19. By the convolution theorem,

L

$
&

'

t�

0

(t Š v)2y(v) dv

4
5

6
(s) = L

�
t2 � y(t)

�
(s) = L

�
t2

�
(s)L { y(t)} (s) =

2Y(s)
s3

.

Hence, applying the Laplace transform to the original equation yields

Y(s) +
2Y(s)

s3
= L

�
t3 + 3

�
(s) =

6
s4

+
3
s

� Y(s) =
s3

s3 + 2
·

6 + 3s3

s4
=

3
s

� y(t) = L Š 1

�
3
s

�
(t) = 3 .

21. As in Example 3 on page 402 of the text, we “rst rewrite the integro-di�erential equation as

y�(t) + y(t) Š y(t) � sint = Š sint , y(0) = 1 . (7.47)

We now take the Laplace transform of (7.47) to obtain

[sY(s) Š 1] + Y(s) Š
1

s2 + 1
Y(s) = Š

1
s2 + 1

,
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Chapter 7

whereY(s) = L { y} (s). Thus,

Y(s) =
s2

s3 + s2 + s
=

s
s2 + s + 1

=
s

(s + 1/ 2)2 + 3/ 4

=
s + 1/ 2

(s + 1/ 2)2 + 3/ 4
Š

(1/
�

3)(
�

3/ 2)
(s + 1/ 2)2 + 3/ 4

.

Taking the inverse Laplace transform yields

y(t) = eŠ t/ 2 cos

* �
3t
2

+

Š
1

�
3

eŠ t/ 2 sin

* �
3t
2

+

.

23. Taking the Laplace transform of the di�erential equation, and assuming zero initial conditions,

we obtain

s2Y(s) + 9 Y(s) = G(s),

whereY = L { y} , G = L { g} . Thus,

H (s) =
Y(s)
G(s)

=
1

s2 + 9
.

The impulse response function is then

h(t) = L Š 1 { H (s)} (t) = L Š 1

�
1

s2 + 9

�
(t) =

1
3

L Š 1

�
3

s2 + 32

�
(t) =

sin 3t
3

.

To solve the initial value problem, we need the solution to the corresponding homogeneous

problem. The auxiliary equation,r 2 + 9 = 0, has roots, r = ± 3i . Thus, a general solution to

the homogeneous equation is

yh(t) = C1 cos 3t + C2 sin 3t.

Applying the initial conditions y(0) = 2 and y�(0) = Š3, we obtain

2 = y(0) = ( C1 cos 3t + C2 sin 3t)
�
�
t=0

= C1 ,

Š3 = y�(0) = ( Š3C1 sin 3t + 3C2 cos 3t
�
�
t=0

= 3C2

�
C1 = 2 ,

C2 = Š1.

So

yk(t) = 2 cos 3t Š sin 3t,
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Exercises 7.7

and the formula for the solution to the original initial value problem is

y = (h ∗ g)(t) + yk(t) =
1

3

t∫
0

g(v) sin 3(t− v) dv + 2 cos 3t− sin 3t.

25. Taking the Laplace transform of both sides of the given equation and assuming zero initial

conditions, we get

L{y′′ − y′ − 6y} (s) = L{g(t)} (s) ⇒ s2Y (s) − sY (s) − 6Y (s) = G(s).

Thus,

H(s) =
Y (s)

G(s)
=

1

s2 − s− 6
=

1

(s− 3)(s+ 2)

is the transfer function. The impulse response function h(t) is then given by

h(t) = L−1

{
1

(s− 3)(s+ 2)

}
(t) = e3t ∗ e−2t =

t∫
0

e3(t−v)e−2v dv = e3t e
−5v

−5

∣∣∣∣t
0

=
e3t − e−2t

5
.

To solve the given initial value problem, we use Theorem 12. To this end, we need the solution

yk(t) to the corresponding initial value problem for the homogeneous equation. That is,

y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = 8

(see (19) in the text). Applying the Laplace transform yields

[
s2Yk(s) − s− 8

]− [sYk(s) − 1] − 6Yk(s) = 0

⇒ Yk(s) =
s+ 7

s2 − s− 6
=

s+ 7

(s− 3)(s+ 2)
=

2

s− 3
− 1

s+ 2

⇒ yk(t) = L−1 {Yk(s)} (t) = L−1

{
2

s− 3
− 1

s+ 2

}
(t) = 2e3t − e−2t .

So,

y(t) = (h ∗ g)(t) + yk(t) =
1

5

t∫
0

[
e3(t−v) − e−2(t−v)

]
g(v) dv + 2e3t − e−2t .
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Chapter 7

27. Taking the Laplace transform and assuming zero initial conditions, we find the transfer func-

tion H(s).

s2Y (s) − 2sY (s) + 5Y (s) = G(s) ⇒ H(s) =
Y (s)

G(s)
=

1

s2 − 2s+ 5
.

Therefore, the impulse response function is

h(t) = L−1 {H(s)} (t) = L−1

{
1

(s− 1)2 + 22

}
(t) =

1

2
L−1

{
2

(s− 1)2 + 22

}
(t) =

1

2
et sin 2t .

Next, we find the solution yk(t) to the corresponding initial value problem for the homogeneous

equation,

y′′ − 2y′ + 5y = 0, y(0) = 0, y′(0) = 2.

Since the associated equation, r2 − 2r + 5 = 0, has roots r = 1 ± 2i, a general solution to the

homogeneous equations is

yh(t) = et (C1 cos 2t+ C2 sin 2t) .

We satisfy the initial conditions by solving

0 = y(0) = C1

2 = y′(0) = C1 + 2C2

⇒ C1 = 0,

C2 = 1.

Hence, yk(t) = et sin 2t and

y(t) = (h ∗ g)(t) + yk(t) =
1

2

t∫
0

et−v sin 2(t− v)g(v) dv + et sin 2t

is the desired solution.

29. With given data, the initial value problem becomes

5I ′′(t) + 20I ′(t) +
1

0.005
I(t) = e(t), I(0) = −1, I ′(0) = 8.

Using formula (15) on page 403 of the text, we find the transfer function

H(s) =
1

5s2 + 20s+ 200
=

1

5

1

(s+ 2)2 + 62
.
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Exercises 7.7

Therefore,

h(t) = L−1

{
1

5

1

(s+ 2)2 + 62

}
(t) =

1

30
L−1

{
6

(s+ 2)2 + 62

}
(t) =

1

30
e−2t sin 6t.

Next, we consider the initial value problem

5I ′′(t) + 20I ′(t) + 200I(t) = 0, I(0) = −1, I ′(0) = 8

for the corresponding homogeneous equation. Its characteristic equation, 5r2 +20r+200 = 0,

has roots r = −2 ± 6i, which yield a general solution

Ih(t) = e−2t (C1 cos 6t+ C2 sin 6t) .

We find constants C1 and C2 so that the solution satisfies the initial conditions. Thus we have

−1 = I(0) = C1 ,

8 = I ′(0) = −2C1 + 6C2

⇒ C1 = −1 ,

C2 = 1 ,

and so Ik(t) = e−2t (sin 6t− cos 6t). Finally,

I(t) = h(t) ∗ e(t) + Ik(t) =
1

30

t∫
0

e(v)e−2(t−v) sin 6(t− v) dv + e−2t (sin 6t− cos 6t) .

31. By the convolution theorem, we get

L{1 ∗ 1 ∗ 1} (s) = L{1} (s)L{1 ∗ 1} (s) = L{1} (s)L{1} (s)L{1} (s) =

(
1

s

)3

=
1

s3
.

Therefore, the definition of the inverse Laplace transform yields

1 ∗ 1 ∗ 1 = L−1

{
1

s3

}
(t) =

1

2
L−1

{
2

s3

}
(t) =

1

2
t2 .

33. Using the linear property of integrals, we have

f ∗ (g + h) =

t∫
0

f(t− v)[g + h](v) dv =

t∫
0

f(t− v)[g(v) + h(v)] dv

=

t∫
0

f(t− v)g(v) dv +

t∫
0

f(t− v)h(v) dv = f ∗ g + f ∗ h.
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Chapter 7

35. Since
t∫

0

f(v) dv =

t∫
0

1 · f(v) dv = 1 ∗ f(t),

we conclude that

L


t∫
0

f(v) dv

 (s) = L{1 ∗ f(t)} (s) = L{1} (s)L{f(t)} (s) =
1

s
F (s).

Hence, by the definition of the inverse Laplace transform,

t∫
0

f(v) dv = L−1

{
1

s
F (s)

}
(t).

(Note that the integral in the left-hand side is a continuous function.)

37. Actually, this statement holds for any continuously differentiable function h(t) on [0,∞)

satisfying h(0) = 0. Indeed, first of all,

(h ∗ g)(0) =

t∫
0

h(t− v)g(v) dv

∣∣∣∣∣∣
t=0

=

0∫
0

h(−v)g(v) dv = 0

since the interval of integration has zero length. Next, we apply the Leibniz’s rule to find the

derivative of (h ∗ g)(t).

(h ∗ g)′(t) =

 t∫
0

h(t− v)g(v) dv

′

=

t∫
0

∂h(t − v)g(v)

∂t
dv + h(t− v)g(v)

∣∣∣
v=t

=

t∫
0

h′(t− v)g(v) dv + h(0)g(t) =

t∫
0

h′(t− v)g(v) dv

since h(0) = 0. Therefore,

(h ∗ g)′(0) =

0∫
0

h′(−v)g(v) dv = 0,

again as a definite integral with equal limits of integration.
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Exercises 7.8

EXERCISES 7.8: Impulses and the Dirac Delta Function, page 412

1. By equation (3) on page 407 of the text,

∞∫
−∞

(t2 − 1)δ(t) dt =
(
t2 − 1

)∣∣
t=0

= −1.

3. By equation (3) on page 407 of the text,

∞∫
−∞

(sin 3t)δ
(
t− π

2

)
dt = sin

(
3 · π

2

)
= −1.

5. Formula (6) of the Laplace transform of the Dirac delta function yields

∞∫
0

e−2tδ(t− 1) dt = L{δ(t− 1)} (2) = e−s
∣∣
s=2

= e−2 .

7. Using the linearity of the Laplace transform and (6) on page 409 of the text, we get

L{δ(t− 1) − δ(t− 3)} (s) = L{δ(t− 1)} (s) − L{δ(t− 3)} (s) = e−s − e−3s .

9. Since δ(t− 1) = 0 for t < 1,

L{tδ(t− 1)} (s) :=

∞∫
0

e−sttδ(t− 1) dt =

∞∫
−∞

e−sttδ(t− 1) dt = e−stt
∣∣
t=1

= e−s

by equation (3) on page 407 of the text.

Another way to solve this problem is to use Theorem 6 inj Section 7.3. This yields

L{tδ(t− 1)} (s) = − d

ds
L{δ(t− 1)} (s) = −d (e−s)

ds
= e−s .

11. Since δ(t− π) = 0 for t < π, we use the definition of the Laplace transform and formula (3),

page 407 of the text, to conclude that

L{(sin t)δ(t− π)} (s) :=

∞∫
0

e−st(sin t)δ(t− π) dt =

∞∫
−∞

e−st(sin t)δ(t− π) dt = e−πt sin π = 0.
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Chapter 7

13. Let W (s) := L{w} (s). Using the initial conditions and Theorem 5 in Section 7.3, we find

that

L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s).

Thus, applying the Laplace transform to both sides of the given equation yields

s2W (s) +W (s) = L{δ(t− π)} (s) = e−πs ⇒ W (s) =
e−πs

s2 + 1
.

Taking the inverse Laplace transform of both sides of the last equation and using Theorem 8

in Section 7.6, we get

w(t) = L−1

{
e−πs

s2 + 1

}
(t) = L−1

{
1

s2 + 1

}
(t−π)u(t−π) = sin(t−π)u(t−π) = −(sin t)u(t−π).

15. Let Y := L{y}. Taking the Laplace transform of y′′ + 2y′ − 3y = δ(t − 1) − δ(t − 2) and

applying the initial conditions y(0) = 2, y′(0) = −2, we obtain[
s2Y (s) − 2s+ 2

]
+ 2 [sY (s) − 2] − 3Y (s) = L{δ(t− 1) − δ(t− 2)} (s) = e−s − e−2s

⇒ Y (s) =
2s+ 2 + e−s − e−2s

s2 + 2s− 3
=

2s+ 2

(s+ 3)(s− 1)
+

e−s

(s+ 3)(s− 1)
− e−2s

(s+ 3)(s− 1)

=
1

s− 1
+

1

s+ 3
+
e−s

4

(
1

s− 1
− 1

s+ 3

)
− e−2s

4

(
1

s− 1
− 1

s+ 3

)
,

so that by Theorem 8 on page 387 of the text we get

y(t) = et + e−3t +
1

4

(
et−1 − e−3(t−1)

)
u(t− 1) − 1

4

(
et−2 − e−3(t−2)

)
u(t− 2).

17. Let Y := L{y}. We use the initial conditions to find that

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 2.

Thus taking the Laplace transform of both sides of the given equation and using formula (6)

on page 409, we get[
s2Y (s) − 2

]− Y (s) = 4L{δ(t− 2)} (s) + L{t2} (s) = 4e−2s +
2

s3

⇒ Y (s) =
4e−2s

s2 − 1
+

2(s3 + 1)

s3(s2 − 1)
= 2e−2s

(
1

s− 1
− 1

s+ 1

)
+

2

s− 1
− 2

s3
− 2

s
.
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Now we can apply the inverse Laplace transform.

y(t) = L−1

{
2e−2s

(
1

s− 1
− 1

s+ 1

)
+

2

s− 1
− 2

s3
− 2

s

}
(t)

= 2

(
L−1

{
1

s− 1

}
−L−1

{
1

s+ 1

})
(t− 2)u(t− 2)

+2L−1

{
1

s− 1

}
(t) − L−1

{
2

s3

}
(t) − 2L−1

{
1

s

}
(t)

= 2
(
et−2 − e2−t

)
u(t− 2) + 2et − t2 − 2.

19. Let W (s) := L{w} (s). We apply the Laplace transform to the given equation and obtain

L{w′′} (s) + 6L{w′} (s) + 5W (s) = L{etδ(t− 1)
}

(s). (7.48)

From formula (4) on page 362 of the text we see that

L{w′} (s) = sW (s) − w(0) = sW (s),

L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s) − 4.
(7.49)

Also, the translation property (1), Section 7.3, of the Laplace transform yields

L{etδ(t− 1)
}

(s) = L{δ(t− 1)} (s− 1) = e−(s−1) = e1−s . (7.50)

Substituting (7.49) and (7.50) back into (7.48), we obtain[
s2W (s) − 4

]
+ 6 [sW (s)] + 5W (s) = e1−s

⇒ W (s) =
4 + e1−s

s2 + 6s+ 5
=

4 + e1−s

(s+ 1)(s+ 5)
=

1

s+ 1
− 1

s + 5
+
e

4
e−s

(
1

s+ 1
− 1

s+ 5

)
.

Finally, the inverse Laplace transform of both sides of this equation yields

w(t) = e−t − e−5t +
e

4

[
e−(t−1) − e−5(t−1)

]
u(t− 1) .

21. We apply the Laplace transform to the given equation, solve the resulting equation for

L{y} (s), and then use the inverse Laplace transforms. This yields

L{y′′} (s) + L{y} (s) = L{δ(t− 2π)} (s)

461

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Chapter 7

⇒ [
s2L{y} (s) − 1

]
+ L{y} (s) = e−2πs ⇒ L{y} (s) =

1 + e−2πs

s2 + 1

⇒ y(t) = L−1

{
1

s2 + 1

}
(t) + L−1

{
1

s2 + 1

}
(t− 2π)u(t− 2π)

= sin t+ [sin(t− 2π)]u(t− 2π) = [1 + u(t− 2π)] sin t.

The graph of the solution is shown in Figure B.49 in the answers of the text.

23. The solution to the initial value problem

y′′ + y = δ(t− 2π), y(0) = 0, y′(0) = 1

is given in Problem 21, that is

y1(t) = [1 + u(t− 2π)] sin t.

Thus, if y2(t) is the solution to the initial value problem

y′′ + y = −δ(t− π), y(0) = 0, y′(0) = 0, (7.51)

then, by the superposition principle (see Section 4.5), y(t) = y1(t) + y2(t) is the desired

solution. The Laplace transform of both sides in (7.51) yields

s2L{y} (s) + L{y} (s) = −e−πs ⇒ L{y} (s) = − e−πs

s2 + 1

⇒ y2(t) = −L−1

{
1

s2 + 1

}
(t− π)u(t− π) = −[sin(t− π)]u(t− π) = u(t− π) sin t.

(We have used zero initial conditions to express L{y′′} in terms of L{y}.) Therefore, the

answer is

y(t) = y1(t) + y2(t) = [1 + u(t− 2π)] sin t+ u(t− π) sin t = [1 + u(t− π) + u(t− 2π)] sin t.

The sketch of this curve is given in Figure B.50 .

25. Taking the Laplace transform of y′′ + 4y′ + 8y = δ(t) with zero initial conditions yields

s2Y (s) + 4sY (s) + 8Y (s) = L{δ(t)} (s) = 1.
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Solving for Y (s), we obtain

Y (s) =
1

s2 + 4s+ 8
=

1

(s+ 2)2 + 4
=

1

2

2

(s+ 2)2 + 22

so that

h(t) = L−1

{
1

2

2

(s+ 2)2 + 22

}
(t) =

1

2
e−2t sin 2t .

Notice thatH(s) for y′′+4y′+8y = g(t) with y(0) = y′(0) = 0 is given byH(s) = 1/(s2+4s+8),

so that again

h(t) = L−1 {H(s)} (t) =
1

2
e−2t sin 2t .

27. The Laplace transform of both sides of the given equation, with zero initial conditions and

g(t) = δ(t), gives us

s2L{y} (s) − 2sL{y} (s) + 5L{y} (s) = L{δ(t)} (s)

⇒ L{y} (s) =
1

s2 − 2s+ 5
=

1

(s− 1)2 + 22
.

The inverse Laplace transform now yields

h(t) = L−1

{
1

(s− 1)2 + 22

}
(t) =

1

2
L−1

{
2

(s− 1)2 + 22

}
(t) =

1

2
et sin 2t .

29. We solve the given initial value problem to find the displacement x(t). Let X(s) := L{x} (s).

Applying the Laplace transform to the differential equation yields

L{x′′} (s) + 9X(s) = L
{
−3δ

(
t− π

2

)}
(s) = −3e−πs/2 .

Since

L{x′′} (s) = s2X(s) − sx(0) − x′(0) = s2X(s) − s,

the above equation becomes[
s2X(s) − s

]
+ 9X(s) = −3e−πs/2 ⇒ X(s) =

s− 3e−πs/2

s2 + 9
=

s

s2 + 32
− e−πs/2 3

s2 + 32
.

Therefore,

x(t) = L−1

{
s

s2 + 32
− e−πs/2 3

s2 + 32

}
(t)
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= cos 3t−
[
sin 3

(
t− π

2

)]
u
(
t− π

2

)
=
[
1 − u

(
t− π

2

)]
cos 3t .

Since, for t > π/2, u(t− π/2) ≡ 1, we conclude that

x(t) ≡ 0 for t >
π

2
.

This means that the mass stops after the hit and remains in the equilibrium position thereafter.

31. By taking the Laplace transform of

ay′′ + by′ = cy = δ(t), y(0) = y′(0) = 0,

and solving for Y := L{y}, we find that the transfer function is given by

H(s) =
1

as2 + bs + c
.

If the roots of the polynomial as2 + bs + c are real and distinct, say r1, r2, then

H(s) =
1

(s− r1)(s− r2)
=

1/(r1 − r2)

s− r1
− 1/(r1 − r2)

s− r2
.

Thus

h(t) =
1

r1 − r2

(
er1t − er2t

)
and clearly h(t) is bounded as t→ ∞ if and only if r1 and r2 are less than or equal to zero.

If the roots of as2 + bs + c are complex, then, by the quadratic formula, they are given by

− b

2a
±

√
4ac− b2

2a
i

so that the real part of the roots is −b/(2a). Now

H(s) =
1

as2 + bs+ c
=

1

a
· 1

s2 + (b/a)s+ (c/a)
=

1

a
· 1

[s+ b/(2a)]2 + (4ac− b2)/(4a2)

=
2√

4ac− b2
·

√
4ac− b2/(2a)

[s+ b/(2a)]2 + [
√

4ac− b2/(2a)]2

so that

h(t) =
2√

4ac− b2
e−(b/2a)t sin

(√
4ac− b2

2a
t

)
,

and again it is clear that h(t) is bounded if and only if −b/(2a), the real part of the roots of

as2 + bs+ c, is less than or equal to zero.
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Exercises 7.8

33. Let a function f(t) be defined on (−∞,∞) and continuous in a neighborhood of the origin,

t = 0. Since δ(t) = 0 for any t �= 0, so does the product f(t)δ(t). Therefore,

∞∫
−∞

f(t)δ(t) dt =

ε∫
−ε

f(t)δ(t) dt for any ε > 0. (7.52)

By the mean value theorem, for any ε small enough (so that f(t) is continuous on (−ε, ε))
there exists a point ζε in (−ε, ε) such that

ε∫
−ε

f(t)δ(t) dt = f (ζε)

ε∫
−ε

δ(t) dt = f (ζε)

∞∫
−∞

δ(t) dt = f (ζε) .

Together with (7.52) this yields

∞∫
−∞

f(t)δ(t) dt = f (ζε) , for any ε > 0.

Now we take limit, as ε→ 0, in both sides.

lim
ε→0

 ∞∫
−∞

f(t)δ(t) dt

 = lim
ε→0

[f (ζε)] .

Note that the integral in the left-hand side does not depend on ε, and so the limit equals

to the integral itself. In the right-hand side, since ζε belongs to (−ε, ε), ζε → 0 as ε → 0,

and the continuity of f(t) implies that f (ζε) converges to f(0), as ε → 0. Combining these

observations, we get the required.

35. Following the hint, we solve the initial value problem

EIy(4)(x) = Lδ(x− λ), y(0) = y′(0) = 0, y′′(0) = A, y′′′(0) = B.

Using these initial conditions and Theorem 5 in Section 7.3 with n = 4, we obtain

L{y(4)(x)
}

(s) = s4L{y(x)} (s) − sA− B,
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Chapter 7

and so the Laplace transform of the given equation yields

EI
[
s4L{y(x)} (s) − sA− B

]
= LL{δ(x− λ)} (s) = Le−λs .

Therefore,

L{y(x)} (s) =
L

EI

e−λs

s4
+
A

s3
+
B

s4

⇒ y(x) = L−1

{
L

EI

e−λs

s4
+
A

s3
+
B

s4

}
(x)

=
L

EI3!
L−1

{
3!

s4

}
(x− λ)u(x− λ) +

A

2!
L−1

{
2!

s3

}
(x) +

B

3!
L−1

{
3!

s4

}
(x)

=
L

6EI
(x− λ)3u(x− λ) +

A

2
x2 +

B

6
x3. (7.53)

Next, we are looking for A and B such that y′′(2λ) = y′′′(2λ) = 0. Note that, for x > λ,

u(x− λ) ≡ 1 and so (7.53) becomes

y(x) =
L

6EI
(x− λ)3 +

A

2
x2 +

B

6
x3 .

Differentiating we get

y′′(x) =
L

EI
(x− λ) + A+Bx and y′′′(x) =

L

EI
+B.

Hence, A and B must satisfy

0 = y′′(2λ) = [L/(EI)](2λ− λ) + A+ 2Bλ,

0 = y′′′(2λ) = L/(EI) +B
⇒ A = λL/(EI),

B = −L/(EI).
Substitution back into (7.53) yields the solution

y(x) =
L

6EI

[
(x− λ)3u(x− λ) + 3λx2 − x3

]
.

EXERCISES 7.9: Solving Linear Systems with Laplace Transforms, page 416

1. Let X(s) = L{x} (s), Y (s) = L{y} (s). Applying the Laplace transform to both sides of the

given equations yields

L{x′} (s) = 3X(s) − 2Y (s),

L{y′} (s) = 3Y (s) − 2X(s).
(7.54)
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Exercises 7.9

Since
L{x′} (s) = sX(s) − x(0) = sX(s) − 1,

L{y′} (s) = sY (s) − y(0) = sY (s) − 1,

the system (7.54) becomes

sX(s) − 1 = 3X(s) − 2Y (s),

sY (s) − 1 = 3Y (s) − 2X(s)
⇒ (s− 3)X(s) + 2Y (s) = 1,

2X(s) + (s− 3)Y (s) = 1.
(7.55)

Subtracting the second equation from the first equation yields

(s− 5)X(s) + (5 − s)Y (s) = 0 ⇒ X(s) = Y (s).

So, from the first equation in (7.55) we get

(s− 3)X(s) + 2X(s) = 1 ⇒ X(s) =
1

s− 1
⇒ x(t) = L−1

{
1

s− 1

}
(t) = et .

Since Y (s) = X(s), y(t) = x(t) = et.

3. Let Z(s) = L{z} (s), W (s) = L{w} (s). Using the initial conditions we conclude that

L{z′} (s) = sZ(s) − z(0) = sZ(s) − 1, L{w′} (s) = sW (s) − w(0) = sW (s).

Using these equations and taking the Laplace transform of the equations in the given system,

we obtain

[sZ(s) − 1] + [sW (s)] = Z(s) −W (s),

sZ(s) − 1] − [sW (s)] = Z(s) −W (s)
⇒ (s− 1)W (s) + (s+ 1)W (s) = 1,

(s− 1)W (s) − (s− 1)W (s) = 1.
(7.56)

Subtracting equations yields

2sW (s) = 0 ⇒ W (s) = 0 ⇒ w(t) = L−1 {0} (t) ≡ 0.

Substituting W (s) into either equation in (7.56), we obtain

(s− 1)Z(s) = 1 ⇒ Z(s) =
1

s− 1
⇒ z(t) = L−1

{
1

s− 1

}
(t) = et .
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Chapter 7

5. Denote X(s) = L{x} (s), Y (s) = L{y} (s). The Laplace transform of the given equations

yields

L{x′} (s) = Y (s) + L{sin t} (s),

L{y′} (s) = X(s) + 2L{cos t} (s),

which becomes

sX(s) − 2 = Y (s) + 1/(s2 + 1),

sY (s) = X(s) + 2s/(s2 + 1)
⇒ sX(s) − Y (s) = (2s2 + 3)/(s2 + 1),

−X(s) + sY (s) = 2s/(s2 + 1)

after expressing L{x′} and L{y′} in terms of X(s) and Y (s). Multiplying the second equation

by s and adding the result to the first equation, we get(
s2 − 1

)
Y (s) =

4s2 + 3

s2 + 1
⇒ Y (s) =

4s2 + 3

(s− 1)(s+ 1)(s2 + 1)
.

Since the partial fractions decomposition for Y (s) is

4s2 + 3

(s− 1)(s+ 1)(s2 + 1)
=

7/4

s− 1
− 7/4

s+ 1
+

1/2

s2 + 1
,

taking the inverse Laplace transform yields

y(t) = L−1

{
7/4

s− 1
− 7/4

s+ 1
+

1/2

s2 + 1

}
(t) =

7

4
et − 7

4
e−t +

1

2
sin t .

From the second equation in the original system,

x(t) = y′ − 2 cos t =
7

4
et +

7

4
e−t − 3

2
cos t .

7. We will first write this system without using operator notation. Thus, we have

x′ − 4x+ 6y = 9e−3t ,

x− y′ + y = 5e−3t .
(7.57)

By taking the Laplace transform of both sides of both of these differential equations and using

the linearity of the Laplace transform, we obtain

L{x′} (s) − 4X(s) + 6Y (s) = 9/(s+ 3) ,

X(s) − L{y′} (s) + Y (s) = 5/(s+ 3) ,
(7.58)
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Exercises 7.9

where X(s) and Y (s) are the Laplace transforms of x(t) and y(t), respectively. Using the

initial conditions x(0) = −9 and y(0) = 4, we can express

L{x′} (s) = sX(s) − x(0) = sX(s) + 9,

L{y′} (s) = sY (s) − y(0) = sY (s) − 4.

Substituting these expressions into the system given in (7.58) and simplifying yields

(s− 4)X(s) + 6Y (s) = −9 +
9

s+ 3
=

−9s− 18

s+ 3
,

X(s) + (−s + 1)Y (s) = −4 +
5

s+ 3
=

−4s− 7

s+ 3
.

By multiplying the second equation above by −(s − 4), adding the resulting equations, and

simplifying, we obtain(
s2 − 5s+ 10

)
Y (s) =

(4s+ 7)(s− 4)

s+ 3
+

−9s− 18

s+ 3
=

4s2 − 18s− 46

s+ 3

⇒ Y (s) =
4s2 − 18s− 46

(s+ 3)(s2 − 5s+ 10)
.

Note that the quadratic s2 − 5s+ 10 = (s− 5/2)2 + 15/4 is irreducible. The partial fractions

decomposition yields

Y (s) =
1

17

[
46s− 334

(s− 5/2)2 + 15/4
+

22

s+ 3

]
=

1

17

[
46

(
s− 5/2

(s− 5/2)2 + 15/4

)
− 146

√
15

5

( √
15/2

(s− 5/2)2 + 15/4

)
+ 22

1

s+ 3

]
,

and so

y(t) = L−1 {Y (s)} (t) =
46

17
e5t/2 cos

(√
15t

2

)
− 146

√
15

85
e5t/2 sin

(√
15t

2

)
+

22

17
e−3t .

From the second equation in the system (7.57) above, we find that

x(t) = 5e−3t + y′(t) − y(t) = 5e−3t +
115

17
e5t/2 cos

(√
15t

2

)

−
(

23
√

15

17
+

73
√

15

17

)
e5t/2 sin

(√
15t

2

)
− 219

17
e5t/2 cos

(√
15t

2

)
− 66

17
e−3t
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Chapter 7

= −150

17
e5t/2 cos

(√
15t

2

)
− 334

√
15

85
e5t/2 sin

(√
15t

2

)
− 3

17
e−3t .

9. Taking the Laplace transform of both sides of both of these differential equations yields the

system

L{x′′} (s) +X(s) + 2L{y′} (s) = 0,

−3L{x′′} (s) − 3X(s) + 2L{y′′} (s) + 4Y (s) = 0,

where X(s) = L{x} (s), Y (s) = L{y} (s). Using the initial conditions x(0) = 2, x′(0) = −7

and y(0) = 4, y′(0) = −9, we see that

L{x′′} (s) = s2X(s) − sx(0) − x′(0) = s2X(s) − 2s+ 7,

L{y′} (s) = sY (s) − y(0) = sY (s) − 4,

L{y′′} (s) = s2Y (s) − sy(0)− y′(0) = s2Y (s) − 4s+ 9.

Substituting these expressions into the system given above yields

[s2X(s) − 2s+ 7] +X(s) + 2 [sY (s) − 4] = 0,

−3 [s2X(s) − 2s+ 7] − 3X(s) + 2 [s2Y (s) − 4s+ 9] + 4Y (s) = 0,

which simplifies to

(s2 + 1)X(s) + 2sY (s) = 2s+ 1,

−3 (s2 + 1)X(s) + 2 (s2 + 2)Y (s) = 2s+ 3.
(7.59)

Multiplying the first equation by 3 and adding the two resulting equations eliminates the

function X(s). Thus, we obtain(
2s2 + 6s+ 4

)
Y (s) = 8s+ 6 ⇒ Y (s) =

4s+ 3

(s+ 2)(s+ 1)
=

5

s+ 2
− 1

s+ 1
,

where we have factored the expression 2s2 + 6s+ 4 and used the partial fractions expansion.

Taking the inverse Laplace transform, we obtain

y(t) = L−1 {Y (s)} (t) = 5L−1

{
1

s+ 2

}
(t) − L−1

{
1

s+ 1

}
(t) = 5e−2t − e−t .

To find the solution x(t), we again examine the system given in (7.59) above. This time we

will eliminate the function Y (s) by multiplying the first equation by s2 + 2 and the second

470

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Exercises 7.9

equation by −s and adding the resulting equations. Thus, we have(
s2 + 3s+ 2

) (
s2 + 1

)
X(s) = 2s3 − s2 + s+ 2

⇒ X(s) =
2s3 − s2 + s+ 2

(s+ 2)(s+ 1)(s2 + 1)
.

Expressing X(s) in a partial fractions expansion, we find that

X(s) =
4

s+ 2
− 1

s+ 1
− s

s2 + 1

and so

x(t) = L−1

{
4

s+ 2
− 1

s+ 1
− s

s2 + 1

}
(t) = 4e−2t − e−t − cos t.

Hence, the solution to this initial value problem is

x(t) = 4e−2t − e−t − cos t and y(t) = 5e−2t − e−t .

11. Since

L{x′} (s) = sX(s) − x(0) = sX(s) and

L{y′} (s) = sY (s) − y(0) = sY (s) ,

applying the Laplace transform to the given equations yields

sX(s) + Y (s) = L{1 − u(t− 2)} (s) =
1

s
− e−2s

s
=

1 − e−2s

s
,

X(s) + sY (s) = L{0} (s) = 0 .

From the second equation, X(s) = −sY (s). Substituting this into the first equation, we

eliminate X(s) and obtain

−s2Y (s) + Y (s) =
1 − e−2s

s

⇒ Y (s) =
1 − e−2s

s(1 − s2)
=
(
1 − e−2s

)(1

s
− 1/2

s− 1
− 1/2

s+ 1

)
.

Using now the linear property of the inverse Laplace transform and formula (6) on page 387,

we get

y(t) = L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t) − L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t− 2)u(t− 2)
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Chapter 7

= 1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2).

Since, from the second equation in the original system, x = −y′, we have

x(t) = −
{

1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2)

}
=

et − e−t

2
−
[
et−2 − e−(t−2)

2

]
u(t− 2).

13. Since, by formula (8) on page 387 of the text,

L{(sin t)u(t− π)} (s) = e−πsL{sin(t+ π)} (s) = e−πsL{− sin t} (s) = − e−πs

s2 + 1
,

applying the Laplace transform to the given system yields

L{x′} (s) − L{y′} (s) = L{(sin t)u(t− π)} (s),

L{x} (s) + L{y′} (s) = L{0} (s)

⇒ [sX(s) − 1] − [sY (s) − 1] = − e−πs

s2 + 1
,

X(s) + [sY (s) − 1] = 0,

where we have used the initial conditions, x(0) = 1 and y(0) = 1, and Theorem 4, Section 7.3,

to express L{x′} (s) and L{y′} (s) in terms of X(s) = L{x} (s) and Y (s) = L{y} (s). The

above system simplifies to

X(s) − Y (s) = − e−πs

s(s2 + 1)
,

X(s) + sY (s) = 1.

From the second equation, X(s) = 1 − sY (s), and with this substitution the first equation

becomes

1− sY (s)− Y (s) = − e−πs

s(s2 + 1)
⇒ Y (s) =

[
1 +

e−πs

s(s2 + 1)

]
1

s+ 1
=

1

s+ 1
+

e−πs

s(s+ 1)(s2 + 1)
.

Using partial fractions we express

Y (s) =
1

s+ 1
+ e−πs

[
1

s
− 1/2

s+ 1
− (1/2)s

s2 + 1
− 1/2

s2 + 1

]
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Exercises 7.9

and so

y(t) = e−t +

[
1 − 1

2
e−(t−π) − 1

2
cos(t− π) − 1

2
sin(t− π)

]
u(t− π)

= e−t +

[
1 − 1

2
e−(t−π) +

1

2
cos t+

1

2
sin t

]
u(t− π).

Finally,

x(t) = −y′(t) = e−t −
[
1

2
e−(t−π) − 1

2
sin t+

1

2
cos t

]
u(t− π).

15. First, note that the initial conditions are given at the point t = 1. Thus, for the Laplace

transform method, we have to shift the argument to get zero initial point. Let us denote

u(t) := x(t+ 1) and v(t) := y(t+ 1).

The chain rule yields

u′(t) = x′(t+ 1)(t+ 1)′ = x′(t+ 1), v′(t) = y′(t+ 1)(t+ 1)′ = y′(t+ 1).

In the original system, we substitute t+ 1 for t to get

x′(t+ 1) − 2y(t+ 1) = 2,

x′(t+ 1) + x(t+ 1) − y′(t+ 1) = (t+ 1)2 + 2(t+ 1) − 1,

and make u and v substitution. This yields

u′(t) − 2v(t) = 2,

u′(t) + u(t) − v′(t) = (t+ 1)2 + 2(t+ 1) − 1 = t2 + 4t+ 2

with initial conditions u(0) = 1, v(0) = 0. Taking the Laplace transform and using formula

(2) on page 361 of the text, we obtain the system

[sU(s) − 1] − 2V (s) =
2

s
,

[sU(s) − 1] + U(s) − sV (s) =
2

s3
+

4

s2
+

2

s
,

where U(s) = L{u} (s), V (s) = L{v} (s). Expressing

U(s) =
2V (s)

s
+

2

s2
+

1

s
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Chapter 7

from the first equation and substituting this into the second equation, we obtain[
2

s
+ 2V (s)

]
+

[
2V (s)

s
+

2

s2
+

1

s

]
− sV (s) =

2

s3
+

4

s2
+

2

s
,

which yields

V (s) =
1

s2
⇒ U(s) =

2

s3
+

2

s2
+

1

s
.

Applying now inverse Laplace transforms yields

u(t) = t2 + 2t+ 1 = (t+ 1)2, v(t) = L−1

{
1

s2

}
(t) = t.

Finally,

x(t) = u(t− 1) = t2 and y(t) = v(t− 1) = t− 1.

17. As in Problem 15, first we make a shift in t to move the initial conditions to t = 0. Let

u(t) := x(t+ 2) and v(t) := y(t+ 2).

With t replaced by t+ 2, the original system becomes

x′(t+ 2) + x(t+ 2) − y′(t+ 2) = 2tet ,

x′′(t+ 2) − x′(t+ 2) − 2y(t+ 2) = −et

or

u′(t) + u(t) − v′(t) = 2tet ,

u′′(t) − u′(t) − 2v(t) = −et ,
with

u(0) = 0,

u′(0) = 1,

v(0) = 1.

Applying the Laplace transform to these equations and expressing L{u′′}, L{u′}, and L{v′}
in terms of U = L{u} and V = L{v} (see formula (4) on page 362 of the text, we obtain

[sU(s)] + U(s) − [sV (s) − 1] = 2L{tet
}

(s) =
2

(s− 1)2
,[

s2U(s) − 1
]− [sU(s)] − 2V (s) = − 1

s− 1
.

We multiply the first equation by 2, the second equation by s, and subtract the resulting

equations in order to eliminate V (s). Thus we get[
s(s2 − s) − 2(s+ 1)

]
U(s) = s− s

s− 1
− 4

(s− 1)2
+ 2
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Exercises 7.9

⇒ (
s3 − s2 − 2s− 2

)
U(s) =

s3 − s2 − 2s− 2

(s− 1)2
⇒ U(s) =

1

(s− 1)2
.

The inverse Laplace transform then yields

u(t) = L−1

{
1

(s− 1)2

}
(t) = tet ⇒ x(t) = u(t− 2) = (t− 2)et−2 .

We find y(t) from the second equation in the original system.

y(t) =
x′′(t) − x′(t) + et−2

2
=
tet−2 − (t− 1)et−2 + et−2

2
= et−2 .

19. We first take the Laplace transform of both sides of all three of these equations and use the

initial conditions to obtain a system of equations for the Laplace transforms of the solution

functions:
sX(s) + 6 = 3X(s) + Y (s) − 2Z(s),

sY (s) − 2 = −X(s) + 2Y (s) + Z(s),

sZ(s) + 12 = 4X(s) + Y (s) − 3Z(s).

Simplifying yields

(s− 3)X(s) − Y (s) + 2Z(s) = −6,

X(s) + (s− 2)Y (s) − Z(s) = 2,

−4X(s) − Y (s) + (s+ 3)Z(s) = −12.

(7.60)

To solve this system, we will use substitution to eliminate the function Y (s). Therefore, we

solve for Y (s) in the first equation in (7.60) to obtain

Y (s) = (s− 3)X(s) + 2Z(s) + 6.

Substituting this expression into the two remaining equations in (7.60) and simplifying yields

(s2 − 5s+ 7)X(s) + (2s− 5)Z(s) = −6s + 14,

−(s+ 1)X(s) + (s+ 1)Z(s) = −6.
(7.61)

Next we will eliminate the function X(s) from the system given in (7.61). To do this we can

either multiply the first equation by (s + 1) and the second by (s2 − 5s + 7) and add, or we

can solve the last equation given in (7.61) for X(s) to obtain

X(s) = Z(s) +
6

s+ 1
, (7.62)
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Chapter 7

and substitute this into the first equation in (7.61). By either method we see that

Z(s) =
−12s2 + 38s− 28

(s+ 1)(s2 − 3s+ 2)
=

−12s2 + 38s− 28

(s+ 1)(s− 2)(s− 1)
.

Now, Z(s) has the partial fraction expansion

Z(s) =
−13

s+ 1
+

1

s− 1
.

Therefore, by taking inverse Laplace transforms of both sides of this equation, we obtain

z(t) = L−1 {Z(s)} (t) = L−1

{ −13

s+ 1
+

1

s− 1

}
(t) = −13e−t + et .

To find X(s), we will use equation (7.62) and the expression found above for Z(s). Thus, we

have

X(s) = Z(s) +
6

s+ 1
=

−13

s+ 1
+

1

s− 1
+

6

s+ 1
=

−7

s+ 1
+

1

s− 1

⇒ x(t) = L−1 {X(s)} (t) = L−1

{ −7

s+ 1
+

1

s− 1

}
(t) = −7e−t + et .

To find y(t), we could substitute the expressions that we have already found for X(s) and

Z(s) into the Y (s) = (s− 3)X(s) + 2Z(s) + 6, which we found above, or we could return to

the original system of differential equations and use x(t) and z(t) to solve for y(t). For the

latter method, we solve the first equation in the original system for y(t) to obtain

y(t) = x′(t) − 3x(t) + 2z(t)

= 7e−t + et + 21e−t − 3et − 26e−t + 2et = 2e−t .

Therefore, the solution to the initial value problem is

x(t) = −7e−t + et , y(t) = 2e−t , z(t) = −13e−t + et .

21. We refer the reader to the discussion in Section 5.1 in obtaining the system (1) on page 242 of

the text governing interconnected tanks. All the arguments provided remain in force except

for the one affected by the new “valve condition”, which the formula for the input rate for
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Exercises 7.9

the tank A. In Section 5.1, just fresh water was pumped into the tank A and so there was no

salt coming from outside of the system into the tank A . Now we have more complicated rule:

the incoming liquid is fresh water for the first 5 min, but then it changes to a solution having

a concentration 2 kg/L. This solution contributes additional

2 (kg/L) × 6 (L/min) = 12 (kg/min)

to the input rate into the tank A. Thus, from the valve, we have{
0, t < 5,

12, t > 5
= 12u(t− 5) (kg/min)

of salt coming to the tank A. With this change, the system (1) in the text becomes

x′ = −x/3 + y/12 + 12u(t− 5),

y′ = x/3 − y/3.
(7.63)

Also, we have the initial conditions x(0) = x0 = 0, y(0) = y0 = 4. Let X := L{x} and

Y := L{y}. Taking the Laplace transform of both equations in the system above, we get

L{x′} (s) = −1

3
X(s) +

1

12
Y (s) + 12L{u(t− 5)} (s),

L{y′} (s) =
1

3
X(s) − 1

3
Y (s).

Since L{u(t− 5)} (s) = e−5s/s and

L{x′} (s) = sX(s) − x(0) = sX(s),

L{y′} (s) = sY (s) − y(0) = sY (s) − 4,

we obtain

sX(s) = −1

3
X(s) +

1

12
Y (s) +

12e−5s

s
,

sY (s) − 4 =
1

3
X(s) − 1

3
Y (s)

which simplifies to

4(3s+ 1)X(s) − Y (s) =
144e−5s

s
,

−X(s) + (3s+ 1)Y (s) = 12.

477

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Chapter 7

From the second equation in this system, we have X(s) = (3s + 1)Y (s) − 12. Substitution

into the first equation yields

4(3s+ 1) [(3s+ 1)Y (s) − 12] − Y (s) =
144e−5s

s

⇒ [
4(3s+ 1)2 − 1

]
Y (s) = 48(3s+ 1) +

144e−5s

s
.

Note that

4(3s+ 1)2 − 1 = [2(3s+ 1) + 1] · [2(3s+ 1) − 1] = (6s+ 3)(6s+ 1) = 36

(
s +

1

2

)(
s +

1

6

)
.

Therefore,

Y (s) =
4(3s+ 1)

3(s+ 1/2)(s+ 1/6)
+

4e−5s

s(s+ 1/2)(s+ 1/6)

=
2

(s+ 1/2)
+

2

(s+ 1/6)
+ e−5s

[
48

s
+

24

s+ 1/2
− 72

s+ 1/6

]
,

where we have applied the partial fractions decomposition. Taking the inverse Laplace trans-

form and using Theorem 8 in Section 7.6 for the inverse Laplace transform of the term having

the exponential factor, we get

y(t) = 2L−1

{
1

(s+ 1/2)

}
(t) + 2L−1

{
1

(s+ 1/6)

}
(t)

+

[
48L−1

{
1

s

}
+ 24L−1

{
1

s+ 1/2

}
− 72L−1

{
1

s+ 1/6

}]
(t− 5)u(t− 5)

= 2e−t/2 + 2e−t/6 +
[
48 + 24e−(t−5)/2 − 72e−(t−5)/6

]
u(t− 5).

From the second equation in (7.63), after some algebra, we find x(t).

x(t) = 3y′(t) + y = −e−t/2 + e−t/6 +
[
48 − 12e−(t−5)/2 − 36e−(t−5)/6

]
u(t− 5).

23. Recall that Kirchhoff’s voltage law says that, in an electrical circuit consisting of an inductor

of LH, a resistor of RΩ, a capacitor of C F, and a voltage source of E V,

EL + ER + EC = E, (7.64)
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Exercises 7.9

where EL, ER, and EC denote the voltage drops across the inductor, resistor, and capacitor,

respectively. These voltage grops are given by

EL = L
dI

dt
, ER := RI, EC :=

q

C
, (7.65)

where I denotes the current passing through the correspondent element.

Also, Kirchhoff’s current law states that the algebraic sum of currents passing through any

point in an electrical network equals to zero.

The electrical network shown in Figure 7.28 consists of three closed circuits: loop 1 through

the battery, R1 = 2 Ω resistor, L1 = 0.1 H inductor, and L2 = 0.2 H inductor; loop 2 through

the inductor L1 and R2 = 1 Ω resistor; loop 3 through the battery, resistors R1 and R2, and

inductor L2. We apply Kirchhoff’s voltage law (7.64) to two of these loops, say, the loop 1 and

the loop 2, and (since the equation obtained from Kirchhoff’s voltage law for the third loop is

a linear combination of the other two) Kirchhoff’s current law to one of the junction points,

say, the upper one. Thus, choosing the clockwise direction in the loops and using formulas

(7.65), we obtain

Loop 1:

ER1 + EL1 + EL2 = E ⇒ 2I1 + 0.1I ′3 + 0.2I ′1 = 6;

Loop 2:

EL1 + ER2 = 0 ⇒ 0.1I ′3 − I2 = 0

with the negative sign due to the counterclockwise direction of the current I2 in this loop;

Upper junction point:

I1 − I2 − I3 = 0.

Therefore, we have the following system for the currents I1, I2, and I3:

2I1 + 0.1I ′3 + 0.2I ′1 = 6,

0.1I ′3 − I2 = 0,

I1 − I2 − I3 = 0

(7.66)
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Chapter 7

with initial conditions I1(0) = I2(0) = I3(0) = 0.

Let I1(s) := L{I1} (s), I2(s) := L{I2} (s), and I3(s) := L{I3} (s). Using the initial condi-

tions, we conclude that

L{I ′1} (s) = sI1(s) − I1(0) = sI1(s),

L{I ′3} (s) = sI3(s) − I3(0) = sI3(s).

Using these equations and taking the Laplace transform of the equations in (7.66), we come

up with

(0.2s+ 2)I1(s) + 0.1sI3(s) =
6

s
,

0.1sI3(s) − I2(s) = 0,

I1(s) − I2(s) − I3(s) = 0

Expressing I2(s) = 0.1sI3(s) from the second equation and substituting this into the third

equation, we get

I1(s) − 0.1sI3(s) − I3(s) = 0 ⇒ I1(s) = (0.1s+ 1)I3(s).

The latter, when substituted into the first equation, yields

(0.2s+ 2)(0.1s+ 1)I3(s) + 0.1sI3(s) =
6

s

⇒ [
2(0.1s+ 1)2 + 0.1s

]
I3(s) =

6

s

⇒ I3(s) =
6

s[2(0.1s+ 1)2 + 0.1s]
=

300

s(s+ 20)(s+ 5)
.

We use the partial fractions decomposition to find that

I3(s) =
3

s
+

1

s+ 20
− 4

s+ 5

and so

I3(t) = L−1

{
3

s
+

1

s+ 20
− 4

s+ 5

}
(t) = 3 + e−20t − 4e−5t .

Now we can find I2(t) using the second equation in (7.66).

I2(t) = 0.1I ′3(t) = 0.1
(
3 + e−20t − 4e−5t

)′
= −2e−20t + 2e−5t .

Finally, the third equation in (7.66) yields

I1(t) = I2(t) + I3(t) = 3 − e−20t − 2e−5t .
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Review Problems

REVIEW PROBLEMS: page 418

1. By the definition of Laplace transform,

L{f} (s) =

∞∫
0

e−stf(t) dt =

2∫
0

e−st(3) dt+

∞∫
2

e−st(6 − t) dt.

For the first integral, we have

2∫
0

e−st(3) dt =
3e−st

−s
∣∣∣∣t=2

t=0

=
3(1 − e−2s)

s
.

The second integral is an improper integral. Using integration by parts, we obtain

∞∫
2

e−st(6 − t) dt = lim
M→∞

M∫
2

e−st(6 − t) dt = lim
M→∞

(6 − t)
e−st

−s
∣∣∣∣t=M

t=2

−
M∫

2

e−st

−s (−1)dt


= lim

M→∞

[
4e−2s

s
− (6 −M)e−sM

s
+
e−st

s2

∣∣∣∣t=M

t=2

]

= lim
M→∞

[
4e−2s

s
− (6 −M)e−sM

s
+
e−sM

s2
− e−2s

s2

]
=

4e−2s

s
− e−2s

s2
.

Thus

L{f} (s) =
3(1 − e−2s)

s
+

4e−2s

s
− e−2s

s2
=

3

s
+ e−2s

(
1

s
− 1

s2

)
.

3. From Table 7.1 on page 358 of the text, using the formula for the Laplace transform of eattn

with n = 2 and a = −9, we get

L{t2e−9t
}

(s) =
2!

[s− (−9)]3
=

2

(s+ 9)3
.

5. We use the linearity of the Laplace transform and Table 7.1 to obtain

L{e2t − t3 + t2 − sin 5t
}

(s) = L{e2t
}

(s) − L{t3} (s) + L{t2} (s) −L{sin 5t} (s)

=
1

s− 2
− 3!

s4
+

2!

s3
− 5

s2 + 52
=

1

s− 2
− 6

s4
+

2

s3
− 5

s2 + 25
.
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Chapter 7

7. We apply Theorem 6 in Section 7.3 and obtain

L{t cos 6t} (s) = − d

ds
L{cos 6t} (s) = − d

ds

[
s

s2 + 62

]
= −(s2 + 36) − s(2s)

(s2 + 36)2
=

s2 − 36

(s2 + 36)2
.

9. We apply formula (8), Section 7.6, on page 387 of the text and the linear property of the

Laplace transform to get

L{t2u(t− 4)
}

(s) = e−4sL{(t+ 4)2
}

(s) = e−4sL{t2 + 8s+ 16
}

(s)

= e−4s

(
2

s3
+

8

s2
+

16

s

)
= 2e−4s

(
1

s3
+

4

s2
+

8

s

)
.

11. Using the linearity of the inverse Laplace transform and Table 7.1 we find

L−1

{
7

(s+ 3)3

}
(t) =

7

2!
L−1

{
2!

[s− (−3)]3

}
(t) =

7

2
t2e−3t .

13. We apply partial fractions to find the inverse Laplace transform. Since the quadratic poly-

nomial s2 + 4s + 13 = (s + 2)2 + 32 is irreducible, the partial fraction decomposition for the

given function has the form

4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)
=

A

s− 1
+
B(s+ 2) + C(3)

(s+ 2)2 + 32
.

Clearing fractions yields

4s2 + 13s+ 19 = A[(s + 2)2 + 32] + [B(s + 2) + C(3)](s− 1) .

With s = 1, this gives 36 = 18A or A = 2. Substituting s = −2, we get

9 = 9A− 9C ⇒ C = A− 1 = 1.

Finally, with s = 0, we compute

19 = 13A+ (2B + 3C)(−1) ⇒ B = 2.

Thus
4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)
=

2

s− 1
+

2(s+ 2) + (1)(3)

(s+ 2)2 + 32
,

482

Remove Watermark
Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db
http://cbs.wondershare.com/go.php?pid=5261&m=db


Review Problems

and so

L−1

{
4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)

}
(t) = 2L−1

{
1

s− 1

}
(t) + 2L−1

{
s + 2

(s+ 2)2 + 32

}
(t)

+L−1

{
3

(s+ 2)2 + 32

}
(t)

= 2et + 2e−2t cos 3t+ e−2t sin 3t .

15. The partial fraction decomposition for the given function has the form

2s2 + 3s− 1

(s+ 1)2(s+ 2)
=

A

(s+ 1)2
+

B

s+ 1
+

C

s+ 2
=
A(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)2

(s+ 1)2(s+ 2)
.

Thus

2s2 + 3s− 1 = A(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)2 .

We evaluate both sides of this equation at s = −2, −1, and 0. This yields

s = −2 : 2(−2)2 + 3(−2) − 1 = C(−2 + 1)2 ⇒ C = 1,

s = −1 : 2(−1)2 + 3(−1) − 1 = A(−1 + 2) ⇒ A = −2,

s = 0 : −1 = 2A+ 2B + C ⇒ B = (−1 − 2A− C)/2 = 1.

Therefore,

L−1

{
2s2 + 3s− 1

(s+ 1)2(s+ 2)

}
(t) = L−1

{ −2

(s+ 1)2
+

1

s+ 1
+

1

s+ 2

}
(t) = −2te−t + e−t + e−2t .

17. First we apply Theorem 8 in Section 7.6 to get

L−1

{
e−2s(4s+ 2)

(s− 1)(s+ 2)

}
(t) = L−1

{
4s+ 2

(s− 1)(s+ 2)

}
(t− 2)u(t− 2). (7.67)

Applying partial fractions yields

4s+ 2

(s− 1)(s+ 2)
=

2

s− 1
+

2

s+ 2
⇒ L−1

{
4s+ 2

(s− 1)(s+ 2)

}
(t) = 2et + 2e−2t .

Therefore, it follows from (7.67) that

L−1

{
e−2s(4s+ 2)

(s− 1)(s+ 2)

}
(t) =

[
2et−2 + 2e−2(t−2)

]
u(t− 2) =

(
2et−2 + 2e4−2t

)
u(t− 2).
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Chapter 7

19. Applying the Laplace transform to both sides of the given equation and using the linearity of

the Laplace transform yields

L{y′′ − 7y′ + 10y} (s) = L{y′′} (s) − 7L{y′} (s) + 10L{y} (s) = 0. (7.68)

By Theorem 5 in Section 7.3,

L{y′} (s) = sL{y} (s) − y(0) = sL{y} (s),

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) + 3,

where we have used the initial conditions, y(0) = 0 and y′(0) = −3. Substituting these

expressions into (7.68), we get[
s2L{y} (s) + 3

]− 7 [sL{y} (s)] + 10L{y} (s) = 0

⇒ (s2 − 7s+ 10)L{y} (s) + 3 = 0

⇒ L{y} (s) =
−3

s2 − 7s+ 10
=

−3

(s− 2)(s− 5)
=

1

s− 2
− 1

s− 5
.

Thus

y(t) = L−1

{
1

s− 2
− 1

s− 5

}
(t) = L−1

{
1

s− 2

}
(t) −L−1

{
1

s− 5

}
(t) = e2t − e5t .

21. Let Y (s) := L{y} (s). Taking the Laplace transform of the given equation and using proper-

ties of the Laplace transform, we obtain

L{y′′ + 2y′ + 2y} (s) = L{t2 + 4t
}

(s) =
2

s3
+

4

s2
=

2 + 4s

s3
.

Since

L{y′} (s) = sY (s) − y(0) = sY (s), L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + 1,

we have [
s2Y (s) + 1

]
+ 2 [sY (s)] + 2Y (s) =

2 + 4s

s3

⇒ (s2 + 2s+ 2)Y (s) =
2 + 4s

s3
− 1 =

2 + 4s− s3

s3
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⇒ Y (s) =
2 + 4s− s3

s3(s2 + 2s+ 2)
=

2 + 4s− s3

s3[(s+ 1)2 + 12]
.

The partial fraction decomposition for Y (s) has the form

2 + 4s− s3

s3[(s+ 1)2 + 12]
=
A

s3
+
B

s2
+
C

s
+
D(s+ 1) + E(1)

(s+ 1)2 + 12
.

Clearing fractions, we obtain

2 + 4s− s3 = A[(s+ 1)2 + 1] +Bs[(s+ 1)2 + 1] + Cs2[(s+ 1)2 + 1] + [D(s+ 1) + E]s3 .

Comparing coefficients at the corresponding power of s in both sides of this equation yields

s0 : 2 = 2A ⇒ A = 1,

s1 : 4 = 2A+ 2B ⇒ B = (4 − 2A)/2 = 1,

s2 : 0 = A+ 2B + 2C ⇒ C = −(A + 2B)/2 = −3/2,

s4 : 0 = C +D ⇒ D = −C = 3/2,

s3 : −1 = B + 2C +D + E ⇒ E = −1 − B − 2C −D = −1/2.

Therefore,

Y (s) =
1

s3
+

1

s2
− 3/2

s
+

(3/2)(s+ 1)

(s+ 1)2 + 12
− (1/2)(1)

(s+ 1)2 + 12

⇒ y(t) = L−1 {Y (s)} (t) =
t2

2
+ t− 3

2
+

3

2
e−t cos t− 1

2
e−t sin t .

23. By formula (4) in Section 7.6,

L{u(t− 1)} (s) =
e−s

s
.

Thus, applying the Laplace transform to both sides of the given equation and using the initial

conditions, we get

L{y′′ + 3y′ + 4y} (s) =
e−s

s

⇒ [
s2Y (s) − 1

]
+ 3 [sY (s)] + 4Y (s) =

e−s

s

⇒ Y (s) =
1

s2 + 3s+ 4
+

e−s

s(s2 + 3s+ 4)
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Chapter 7

⇒ Y (s) =
1

(s+ 3/2)2 + (
√

7/2)2
+ e−s 1

s[(s+ 3/2)2 + (
√

7/2)2]
,

where Y (s) := L{y} (s). To apply the inverse Laplace transform, we need the partial fraction

decomposition of the last fraction above.

1

s[(s+ 3/2)2 + (
√

7/2)2]
=
A

s
+
B(s+ 3/2) + C(

√
7/2)

(s+ 3/2)2 + (
√

7/2)2
.

Solving for A, B, and C yields

A =
1

4
, B = −1

4
, C = − 3

4
√

7
.

Therefore,

Y (s) =
1

(s+ 3/2)2 + (
√

7/2)2
+ e−s

[
1/4

s
− (1/4)(s+ 3/2)

(s+ 3/2)2 + (
√

7/2)2
− (3/4

√
7)(

√
7/2)

(s + 3/2)2 + (
√

7/2)2

]

and the inverse Laplace transform gives

y(t) = L−1

{
1

(s+ 3/2)2 + (
√

7/2)2

}
(t)

+L−1

{
1/4

s
− (1/4)(s+ 3/2)

(s+ 3/2)2 + (7/4)
− (3/4

√
7)(

√
7/2)

(s+ 3/2)2 + (7/4)

}
(t− 1)u(t− 1)

=
2√
7
e−3t/2 sin

(√
7t

2

)

+

[
1

4
− 1

4
e−3(t−1)/2 cos

(√
7(t− 1)

2

)
− 3

4
√

7
e−3(t−1)/2 sin

(√
7(t− 1)

2

)]
u(t− 1).

25. Let Y (s) := L{y} (s). Then, from the initial conditions, we have

L{y′} (s) = sY (s) − y(0) = sY (s), L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s).

Moreover, Theorem 6 in Section 7.3 yields

L{ty′} (s) = − d

ds
L{y′} (s) = − d

ds
[sY (s)] = −sY ′(s) − Y (s),

L{ty′′} (s) = − d

ds
L{y′′} (s) = − d

ds

[
s2Y (s)

]
= −s2Y ′(s) − 2sY (s).
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Hence, applying the Laplace transform to the given equation and using the linearity of the

Laplace transform, we obtain

L{ty′′ + 2(t− 1)y′ − 2y} (s) = L{ty′′} (s) + 2L{ty′} (s) − 2L{y′} (s) − 2L{y} (s) = 0

⇒ [−s2Y ′(s) − 2sY (s)
]
+ 2 [−sY ′(s) − Y (s)] − 2 [sY (s)] − 2Y (s) = 0

⇒ −s(s+ 2)Y ′(s) − 4(s+ 1)Y (s) = 0 ⇒ Y ′(s) +
4(s+ 1)

s(s + 2)
Y (s) = 0.

Separating variables and integrating yields

dY

Y
= −4(s+ 1)

s(s + 2)
ds = −2

(
1

s
+

1

s+ 2

)
ds

⇒ ln |Y | = −2(ln |s| + ln |s+ 2|) + C

⇒ Y (s) = ± eC

s2(s+ 2)2
=

c1
s2(s+ 2)2

,

where c1 �= 0 is an arbitrary constant. Allowing c1 = 0, we also get the solution Y (s) ≡ 0,

which was lost in separation of variables. Thus

Y (s) =
c1

s2(s+ 2)2
=
c1
4

[
1

s2
− 1

s
+

1

(s+ 2)2
+

1

s+ 2

]
and so

y(t) = L−1 {Y (s)} (t) =
c1
4

(
t− 1 + te−2t + e−2t

)
= c
(
t− 1 + te−2t + e−2t

)
,

where c = c1/4 is an arbitrary constant.

27. Note that the original equation can be written in the form

y(t) + t ∗ y(t) = e−3t.

Let Y (s) := L{y} (s). Applying the Laplace transform to both sides of this equation and

using Theorem 11 in Section 7.7, we obtain

L{y(t) + t ∗ y(t)} (s) = Y (s) + L{t} (s)Y (s) = L{e−3t
}

(s)

⇒ Y (s) +
1

s2
Y (s) =

1

s+ 3
⇒ Y (s) =

s2

(s+ 3)(s2 + 1)
.
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Chapter 7

The partial fraction decomposition for Y (s) has the form

s2

(s+ 3)(s2 + 1)
=

A

s+ 3
+
Bs+ C

s2 + 1
=
A(s2 + 1) + (Bs+ C)(s+ 3)

(s+ 3)(s2 + 1)
.

Thus

s2 = A(s2 + 1) + (Bs+ C)(s+ 3).

Evaluating both sides of this equation at s = −3, 0, and −2 yields

s = −3 : ⇒ 9 = A(10) ⇒ A = 9/10,

s = 0 : ⇒ 0 = A + 3C ⇒ C = −A/3 = −3/10,

s = −2 : ⇒ 4 = 5A− 2B + C ⇒ B = (5A+ C − 4)/2 = 1/10.

Therefore,

Y (s) =
9/10

s+ 3
+

(1/10)s

s2 + 1
− 3/10

s2 + 1

⇒ y(t) = L−1 {Y (s)} (t) =
9

10
e−3t +

1

10
cos t− 3

10
sin t .

29. To find the transfer function, we use formula (15) on page 403 of the text. Comparing given

equation with (14), we find that a = 1, b = −5, and c = 6. Thus (15) yields

H(s) =
1

as2 + bs + c
=

1

s2 − 5s+ 6
.

The impulse response function h(t) is defined as L−1 {H} (t). Using partial fractions, we see

that

H(s) =
1

s2 − 5s+ 6
=

1

(s− 3)(s− 2)
=

1

s− 3
− 1

s− 2

⇒ h(t) = L−1

{
1

s− 3
− 1

s− 2

}
(t) = e3t − e2t .

31. Let X(s) := L{x} (s), Y (s) := L{y} (s). Using the initial condition, we obtain

L{x′} (s) = sX(s) − x(0) = sX(s), L{y′} (s) = sY (s) − y(0) = sY (s).
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Review Problems

Therefore, applying the Laplace transform to both sides of the equations in the given system

yields

sX(s) + Y (s) = L{0} (s) = 0,

X(s) + sY (s) = L{1 − u(t− 2)} (s) =
1

s
− e−2s

s
=

1 − e−2s

s
.

Expressing Y (s) = −sX(s) from the first equation and substituting this into the second

equation, we eliminate Y (s):

X(s) − s2X(s) =
1 − e−2s

s

⇒ X(s) = − 1 − e−2s

s(s2 − 1)
= − 1 − e−2s

s(s− 1)(s+ 1)
.

Since

− 1

s(s− 1)(s+ 1)
=

1

s
− 1/2

s− 1
− 1/2

s+ 1
,

the inverse Laplace transform yields

x(t) = L−1

{(
1 − e−2s

)(1

s
− 1/2

s− 1
− 1/2

s+ 1

)}
(t)

= L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t) −L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t− 2)u(t− 2)

= 1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2) .

We now find y(t) from the first equation in the original system.

y(t) = −x′(t) =
et − e−t

2
− et−2 − e−(t−2)

2
u(t− 2) .
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