University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics

Dr. Zeyid Tariq Ibraheem

Chapter Four

Lines and Planes in Space

Lines: In the plane, a line is determined by a point and a number giving the slope of the line. In space, a line is determined by a point and a vector giving the direction of the line.

Suppose that \boldsymbol{L} is a line in space passing through a point $\boldsymbol{P}_{\boldsymbol{o}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ parallel to a vector $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, then \boldsymbol{L} is the set of all points $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ for which $\overrightarrow{P P_{o}}$ parallel to \boldsymbol{v} (Figure 4.1). Thus, $\overrightarrow{P P}_{o}=t \mathbf{v}$, t is a scalar parameter $(-\infty, \infty)$.

$$
\left(x-x_{o}\right) \mathbf{i}+\left(y-y_{o}\right) \mathbf{j}+\left(z-z_{o}\right) \mathbf{k}=t\left(v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\right)
$$

or

$$
\frac{x-x_{o}}{v_{1}}=\frac{y-y_{o}}{v_{2}}=\frac{z-z_{o}}{v_{3}}=t
$$

Figure 4.1: A point P lies on L

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics Dr. Zeyid Tariq Ibraheem

Parametric Equations of a Line

The standard parametrization of the line through $\mathrm{P}_{\mathrm{o}}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{\mathrm{o}}, \mathrm{z}_{\mathrm{o}}\right)$ parallel to $\mathbf{v}=\boldsymbol{v}_{1} \mathbf{i}+$ $v_{2} \mathbf{j}+v_{3} \mathbf{k}$ is $x=x_{o}+v_{1} t, y=y_{o}+v_{2} t, z=z_{o}+v_{3} t$.

Example 1: Find parametric equations for the line through ($-2,0,4$) parallel to $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}$ $-2 \mathbf{k}$.

Solution: $x=-2+2 t, y=4 t, z=4-2 t$.

Distance from a Point \boldsymbol{S} to a Line Through \boldsymbol{P} Parallel to \boldsymbol{v} (see Figure 4.2)

Figure 4.2: The distance from the point to a line

Example 2: Find the distance from the point $S(1,1,5)$ to the line

$$
\mathrm{L}: x=1+t, y=3-t, z=2 t
$$

University of Anbar College of Engineering

Solution: from the equation for the $\boldsymbol{L}, \boldsymbol{L}$ passes through $\boldsymbol{P}(1,3,0)$ and parallel to $\mathbf{v}=\mathbf{i}-\mathbf{j}$

$$
+2 \mathbf{k} \cdot \overrightarrow{P S}=(1-1) \mathbf{i}+(1-3) \mathbf{j}+(5-0) \mathbf{k}=-2 \mathbf{j}+5 \mathbf{k} \text { and }
$$

$$
\begin{gathered}
\stackrel{\rightharpoonup}{P S} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 5 \\
1 & -1 & 2
\end{array}\right|=\mathbf{i}+5 \mathbf{j}+2 \mathbf{k} \\
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{\sqrt{1+25+4}}{\sqrt{1+1+4}}=\frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5} .
\end{gathered}
$$

Parallel Lines: $L_{1} \\| L_{2} \Rightarrow \mathbf{A} \times \mathbf{B}=0$.	Orthogonal Lines: $L_{1} \perp L_{2} \Rightarrow \mathbf{A} \cdot \mathbf{B}=0$.
$\underset{\sim}{\text { A }} L_{1}$	L_{1}

Angle Between Two Lines:

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}\right)
$$

Skew Lines are two lines that do not intersect and are not parallel.

University of Anbar College of Engineering

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and the vector normal (perpendicular) to the plane (see Figure 4.3).

Figure 4.3: A plane in space

Example 3: Find an equation for the plane through $\boldsymbol{P}_{\boldsymbol{o}}(-3,0,7)$ perpendicular to

$$
\mathbf{n}=5 \mathbf{i}+2 \mathbf{j}-\mathbf{k}
$$

Solution: the component equation is $5(x-(-3))+2(y-0)+(-1)(z-7)=0$

$$
5 x+2 y-z=-22
$$

Angle Between Two Planes:

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{\mathbf{2}}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right)
$$

Distance Between Point and Plane:

$$
\begin{gathered}
D=\frac{a x_{o}+b y_{o}+c z_{o}-d}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
D= \begin{cases}+ & \text { point } P \text { lies above } \\
- & \text { point P lies below } \\
0 & \text { point P lies on the plane }\end{cases}
\end{gathered}
$$

Or as you can see in the next example:

$$
D=\left|\stackrel{\rightharpoonup}{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|
$$

Example 4: Find the distance from $\boldsymbol{S}(1,1,3)$ to the plane $3 x+2 y+6 z=6$.

Solution: First, we find a point in the plane and calculate the length of the vector projection of $\overrightarrow{P S}$ onto a vector n normal to the plane (Figure 4.4). The coefficients in the equation gives

$$
\mathbf{n}=3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}
$$

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics
Dr. Zeyid Tariq Ibraheem

We can find interception points from the plane's equation. If we take P to be the y intercept $(0,3,0)$, then

Figure 4.4: The distance from point S to the plane

$$
\begin{gathered}
\overrightarrow{P S}=(1-0) \mathbf{i}+(1-3) \mathbf{j}+(3-0) \mathbf{k}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{z} \\
|\mathbf{n}|=\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}=\sqrt{49}=7
\end{gathered}
$$

The distance from S to the plane is

$$
D=\left|\stackrel{\rightharpoonup}{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\left|(\mathbf{i}-2 \mathbf{j}+3 \mathbf{z}) \cdot\left(\frac{3}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}+\frac{6}{7} \mathbf{z}\right)\right|=\left|\frac{3}{7}-\frac{4}{7}+\frac{18}{7}\right|=\frac{17}{7} .
$$

Solved Problems:

Prob 1. Find a vector that has a length 15 in the direction of $\mathbf{B}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

Solution:

$$
\begin{aligned}
& |\mathbf{B}|=\sqrt{(1)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{6}, \quad \frac{\mathbf{B}}{|\mathbf{B}|}=\frac{1}{\sqrt{6}} \mathbf{i}+\frac{2}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k} \\
& \mathbf{v}=15\left(\frac{1}{\sqrt{6}} \mathbf{i}+\frac{2}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}\right)=\frac{15}{\sqrt{6}} \mathbf{i}+\frac{30}{\sqrt{6}} \mathbf{j}-\frac{15}{\sqrt{6}} \mathbf{k} .
\end{aligned}
$$

Prob 2. Find a vector that has a length of 22 in the opposite direction of $\mathbf{A}=2 \mathbf{i}-3 \mathbf{j}$. Solution:

$$
\begin{aligned}
& |\mathbf{A}|=\sqrt{(2)^{2}+(-3)^{2}}=\sqrt{13}, \quad \frac{\mathbf{A}}{|\mathbf{A}|}=\frac{2}{\sqrt{13}} \mathbf{i}-\frac{3}{\sqrt{13}} \mathbf{j} \\
& \mathbf{v}=-22\left(\frac{2}{\sqrt{13}} \mathbf{i}-\frac{3}{\sqrt{13}} \mathbf{j}\right)=-\frac{44}{\sqrt{13}} \mathbf{i}+\frac{66}{\sqrt{13}} \mathbf{j}
\end{aligned}
$$

Prob 3. Using vectors, show that the sum of triangle angles is 180°, and the points of the triangle are $(1,1),(4,3)$, and $(2,5)$. Then, find the area of the triangle.

Solution:

$$
\begin{gathered}
\mathbf{A}=(2-1) \mathbf{i}+(5-1) \mathbf{j}=\mathbf{i}+4 \mathbf{j}, \quad|\mathbf{A}|=\sqrt{1+16}=\sqrt{17} \\
\mathbf{B}=(4-1) \mathbf{i}+(3-1) \mathbf{j}=3 \mathbf{i}+2 \mathbf{j}, \quad|\mathbf{B}|=\sqrt{9+4}=\sqrt{13} \\
\mathbf{C}=(2-4) \mathbf{i}+(5-3) \mathbf{j}=-2 \mathbf{i}+2 \mathbf{j},|\mathbf{C}|=\sqrt{4+4}=\sqrt{8} \\
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}\right)=\cos ^{-1}\left(\frac{3+8}{\sqrt{17} \sqrt{13}}\right)=\cos ^{-1}\left(\frac{11}{\sqrt{221}}\right)=42.27^{\circ} \\
\beta=\cos ^{-1}\left(\frac{-\mathbf{B} \cdot \mathbf{C}}{|\mathbf{B}||\mathbf{C}|}\right)=\cos ^{-1}\left(\frac{6-4}{\sqrt{13} \sqrt{8}}\right)=\cos ^{-1}\left(\frac{2}{\sqrt{104}}\right)=78.69^{\circ} \\
\alpha=\cos ^{-1}\left(\frac{-\mathbf{A} \cdot-\mathbf{C}}{|\mathbf{A}||\mathbf{C}|}\right)=\cos ^{-1}\left(\frac{-2+8}{\sqrt{17} \sqrt{8}}\right)=\cos ^{-1}\left(\frac{6}{\sqrt{136}}\right)=59.03^{\circ}
\end{gathered}
$$

University of Anbar College of Engineering
Department of Electrical Engineering (Stage: 2)
Engineering Mathematics
Dr. Zeyid Tariq Ibraheem
$\theta+\beta+\alpha=179.99 \approx 180^{\circ}$

$$
\begin{aligned}
\text { Area of traingle }=\frac{1}{2}|\mathbf{A} \times \mathbf{B}| & =\frac{1}{2}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 4 & 0 \\
3 & 2 & 0
\end{array}\right| \\
& =\frac{1}{2}|-10 \mathbf{k}|=5 \text { unit }^{2}
\end{aligned}
$$

Prob 4. Find equation of the plane has $\mathrm{P} 1(3,2,1), \mathrm{P} 2(2,1,-1)$, and $\mathrm{P} 3(-1,3,2)$.

Solution:

$$
\begin{aligned}
& \mathbf{A}=-3 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \\
& \mathbf{B}=\mathbf{i}+\mathbf{j}+2 \mathbf{k} \\
& \mathbf{n}=\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & 3 \\
1 & 1 & 2
\end{array}\right|=(4-3) \mathbf{i}-(-6-3) \mathbf{j}+(-3-2) \mathbf{k} \\
& \mathbf{n}=\mathbf{i}+9 \mathbf{j}-5 \mathbf{k} \text {, point } P_{2}(2,1,-1) \text {, or any point, we find } \\
& x+9 y-5 z=1(2)+9(1)-5(-1) \stackrel{\text { Equ. of plane is }}{\Longrightarrow} x+9 y-5 z=16 \text {. }
\end{aligned}
$$

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2)

Engineering Mathematics
Dr. Zeyid Tariq Ibraheem

Prob 5: Given equations of two planes, plane1 $(x+y+z=1)$ and plane2 $(2 x-3 y+z=4)$, find: (a) point \in plane1; (b) whether the two planes are parallel or not; (c) the intersection point, if they are intersecting; (d) equation of the line of intersection for the two planes.

Solution: (a) $y=z=0, \Rightarrow x=1, \Rightarrow$ point is $(1,0,0)$.
(b) $\left.\begin{array}{l}\mathbf{n}_{1}=\mathbf{i}+\mathbf{j}+\mathbf{k} \\ \mathbf{n}_{2}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}\end{array}\right\} \quad \mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & -3 & 1\end{array}\right|=(1+3) \mathbf{i} \ldots \ldots . . \ldots 0$, so they are not parallel.
(c) $\left.z=0, \Rightarrow \begin{array}{c}x+y=1 \\ 2 x-3 y=4\end{array}\right\} \xrightarrow{\text { Multiply }{ }^{\text {st }} \text { equ. by }} \frac{\begin{array}{l}3 x+3 y=3 \\ 2 x-3 y=4\end{array}}{\frac{5 x=7}{}}$

$$
x=\frac{7}{5}, y=-\frac{2}{5}, \text { point is } P\left(\frac{7}{5},-\frac{2}{5}, 0\right) \text {. }
$$

(d) $\quad \mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & -3 & 1\end{array}\right|=(1+3) \mathbf{i}-(1-2) \mathbf{j}+(-3-2) \mathbf{k}=4 \mathbf{i}+\mathbf{j}-5 \mathbf{k}$,
we have $P\left(\frac{7}{5},-\frac{2}{5}, 0\right)$ and the vector $\mathbf{v} \xlongequal{\text { Equ. of line is }} \frac{x-\frac{7}{5}}{4}=\frac{y+\frac{2}{5}}{1}=\frac{z}{-5}$.

Prob 6: Determine a point $\boldsymbol{P} \in$ plane $(x-2 y+3 z=0)$, then find the distance between that point P and an intersection point of the line (L) with the plane.

$$
L: \frac{4-z}{-3}=\frac{2 x}{3}=\frac{1-\frac{1}{2} y}{4}
$$

Solution: $y=z=0, \Rightarrow x=0, \Rightarrow P(0,0,0)$,

$$
\frac{4-z}{-3}=\frac{2 x}{3}=\frac{1-\frac{1}{2} y}{4} \xlongequal{\text { rearrange }} \frac{x}{3 / 2}=\frac{y-2}{-8}=\frac{z-4}{3}=t
$$

$$
\text { parametric equ. } \left.\begin{array}{c}
x=\frac{3}{2} t \\
y=2-8 t \\
z=4+3 t
\end{array}\right\} \stackrel{\text { substitute in plane }}{ }\left\{\begin{array}{c}
\frac{3}{2} t-2(2-8 t)+3(4+3 t)=0 \\
\frac{3}{2} t-4+16 t+12+9 t=0 \\
\frac{53}{2} t=-8 \Rightarrow t=-\frac{16}{53}
\end{array}\right.
$$

substitute t in parametric equ.

$$
\left.\begin{array}{r}
x=\frac{3}{2}\left(-\frac{16}{53}\right)=-\frac{24}{53} \\
y=2-8\left(-\frac{16}{53}\right)=\frac{234}{53} \\
z=4+3\left(-\frac{16}{53}\right)=\frac{164}{53}
\end{array}\right\}, D=\sqrt{\left(-\frac{24}{53}-0\right)^{2}+\left(\frac{234}{53}-0\right)^{2}+\left(\frac{164}{53}-0\right)^{2}}, \begin{gathered}
\text { point of intersection }\left(-\frac{24}{53}, \frac{234}{53}, \frac{164}{53}\right) \\
D=\frac{1}{53} \sqrt{(24)^{2}+(234)^{2}+(164)^{2}}=5.41 \text { unit }
\end{gathered}
$$

Prob7: Find the angle between two planes, plane1 $(2 x-3 y+3 z=1)$ and plane2 $\left(x-y+\frac{1}{3} z=0\right)$. Then, find the distance between $P(1,1,-2)$ and plane1.

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics Dr. Zeyid Tariq Ibraheem

Solution: $\left.\begin{array}{l}\mathbf{n}_{\mathbf{1}}=2 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k} \\ \mathbf{n}_{\mathbf{2}}=\mathbf{i}-\mathbf{j}+\frac{1}{3} \mathbf{k}\end{array}\right\}, \theta=\cos ^{-1}\left(\frac{\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{2}}}{\left|\mathbf{n}_{\mathbf{1}}\right|\left|\mathbf{n}_{\mathbf{2}}\right|}\right)=\cos ^{-1}\left(\frac{2+3+1}{\sqrt{4+9+9} \sqrt{1+1+\frac{1}{9}}}\right)$

$$
=\cos ^{-1}\left(\frac{6}{\sqrt{22} \sqrt{\frac{19}{9}}}\right)=28.3^{\circ}
$$

$D=\frac{2(1)-3(1)+3(-2)-1}{\sqrt{4+9+9}}=-\frac{8}{\sqrt{22}}=\frac{8}{\sqrt{22}}$, the point lies below the plane.

Prob 8: Check whether these two planes are parallel or not and find the distance between them: plane1 $(x-2 y+4 z=1)$ and plane2 $(3 x-6 y+12 z=5)$.
$\left.\begin{array}{ll}\text { Solution: } & \mathbf{n}_{\mathbf{1}}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k} \\ \mathbf{n}_{\mathbf{2}}=3 \mathbf{i}-6 \mathbf{j}+12 \mathbf{k}\end{array}\right\}, \mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 4 \\ 3 & -6 & 12\end{array}\right|$

$$
=(-24+24) \mathbf{i}-(12-12) \mathbf{j}+(-6+6) \mathbf{k}=0,
$$

so, plane1 || plane2,
Then, find point \in plane $1, y=z=0, \Longrightarrow x=1, P(1,0,0)$,
$D=\frac{3(1)-6(0)+12(0)-5}{\sqrt{9+36+144}}=-\frac{2}{\sqrt{189}}=-0.145=0.145$ unit, plane1 lies below plane2.

Prob 9: Find the intersection point of the line that passes through $(2,4,-1),(5,0,7)$ with xz-
plane.
Solution: $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}$, with initial point $(2,4,-1), \Rightarrow \frac{x-2}{3}=\frac{y-4}{-4}=\frac{z+1}{8}=t$,
$x z-$ plane $\Rightarrow y=0, \Rightarrow y=4-4 t \stackrel{y=0}{\Longrightarrow} 4-4 t=0 \Rightarrow t=1$,
$\left.\begin{array}{l}x=2+3(1)=5 \\ y=4-4(1)=0 \\ z=-1+8(1)=7\end{array}\right\} \stackrel{\text { the point is }}{ }(5,0,7)$.... .

Prob 10: Find the equation of the plane through $(1,2,-1)$ and perpendicular to the line of intersection of these two planes $(2 x+y+z=2),(x+2 y+z=3)$.

Solution: $\left.\begin{array}{l}\mathbf{n}_{\mathbf{1}}=2 \mathbf{i}+\mathbf{j}+\mathbf{k} \\ \mathbf{n}_{\mathbf{2}}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}\end{array}\right\}, \mathbf{v}=\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{array}\right|=(1-2) \mathbf{i}-(2-1) \mathbf{j}+(4-1) \mathbf{k}$
$\mathbf{v}=-\mathbf{i}-\mathbf{j}+3 \mathbf{k}$, which is the normal vector to the plane3,
$-x-y+3 z=-1(1)-1(2)+3(-1) \Rightarrow-x-y+3 z=-6 \xlongequal{\text { Equ. of plane }} x+y-3 z=6$.

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics Dr. Zeyid Tariq Ibraheem

$\underline{H . W(1)}$

1- (a) $L_{1}: \quad x=1+4 t ; \quad y=2+4 t ; \quad z=1+8 t, \quad L_{2}: \quad x=1+8 s ; \quad y=2+8 s ; \quad z=1+16 s$
(b) $L_{1}: \quad \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{-3}, \quad L_{2}: \quad \frac{x-3}{1}=\frac{y+4}{3}=\frac{z-2}{-7}$
(c) $L_{1}: \quad \frac{x+1}{3}=\frac{y-6}{1}=\frac{z-3}{2}, \quad L_{2}: \quad \frac{x-6}{2}=\frac{y-11}{2}=\frac{z-3}{-1}$
(d) $L_{1}: \quad x=2 t+1 ; \quad y=3 t+2 ; \quad z=4 t+3, \quad L_{2}: \quad x=s+2 ; \quad y=2 s+4 ; \quad z=-4 s-1$

Determine whether \boldsymbol{L}_{1} and $\boldsymbol{L}_{\mathbf{2}}$ are parallel, intersection, or skew lines.
2- Put the equation of the line in standard form $\frac{x-2}{3}=\frac{-y-5}{-2}=\frac{1-z}{6}$ and convert it into equations.

3- Find the equation of the plane that contains

$$
L_{1}: \quad x=1+2 t ; \quad y=5+t ; \quad z=3 t, \quad L_{2}: \quad x=5+4 s ; \quad y=-2 s ; \quad z=1+6 s
$$

4- Find the equation of the plane that contains $L: \quad x=1+t ; \quad y=2-t ; \quad z=4-3 t$ and is parallel to the plane $5 x+2 y+z=1$.

5- Find the equation of the plane passes through the point $(1,5,1)$ and perpendicular to Plane $_{1}: \quad 2 x+y-2 z=2, \quad$ Plane $_{2}: \quad x+3 z=4$.

6- Find the point of intersection between the line $L: \quad x=1+2 t ; \quad y=4 t ; \quad z=2-3 t$ and the plane $x+2 y-z+1=0$.

University of Anbar College of Engineering Department of Electrical Engineering (Stage: 2) Engineering Mathematics
Dr. Zeyid Tariq Ibraheem

7- Plane $1: 2 x+y-2 z=2$, Plane $_{2}: x+3 z=4$ find the line intersection between two planes.

8- Find the point of intersection between the line $L: x-2 z ; y=2 z$ with the plane $x+3 y-z+4=0$.

9- The line whose equation is given as the line $L: x=2 t-1 ; \quad y=3+t ; \quad z=-t+4$ intersects the $(\boldsymbol{x y})$ plane at point \boldsymbol{P}. Find the coordinates of \boldsymbol{P}.
10- Find the point of intersection between the line $\frac{x-2}{1}=\frac{y+3}{2}=\frac{z-2}{2}$ and the plane $x+2 y+2 z=13$.

11- Find the angle between the two planes $2 x-6 y-2 z=7$ and $2 x+y-2 z=5$.

12-Find a vector parallel to the line of intersection of the two planes $3 x-6 y-2 z=7$ and $2 x+y+2 z=5$.

13- Find the distance (d) between point $\boldsymbol{P}(2,-3,4)$ and the plane $x+2 y+2 z=13$.

14- Find the distance from the point $\boldsymbol{P}(1,1,5)$ to the $L: \quad x=1+t ; \quad y=3-t ; \quad z=2 t$.

15- Find the distance from point $\boldsymbol{P}(1,1,3)$ to the plane $3 x+2 y+6 z=6$.

16- Find a vector parallel to the line of intersection of the two planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$, and find the angle between the two planes.

