Computer
Networks

Transport Layer

L) dzala
Aol) i) anid
2021 - cswlal) il 3ala
gad) Ao £ 0,0

* A transport-layer protocol provides for logical communication between application
processes running on different hosts. Logical communication means that from an
application’s perspective, it is as if the hosts running the processes were directly
connected; in reality, the hosts may be on opposite sides of the planet, connected via
numerous routers and a wide range of link types.

A n O Ve rV i e W * Data units are called segments.

* On the sending side, the transport layer converts the application-layer messages it
O t e receives from a sending application process into transport-layer segments.

* This is done by breaking the application messages into smaller chunks and adding a

Tra n S p O rt transport-layer header to each chunk to create the transport-layer segment.

* The transport layer then passes the segment to the network layer at the sending end
L a e r system, where the segment is encapsulated within a network-layer packet (a
y datagram) and sent to the destination.

* On the receiving side, the network layer extracts the transport-layer segment from
the datagram and passes the segment up to the transport layer. The transport layer
then processes the received segment, making the data in the segment available to the

receiving application. /

; 7. 8
g

National or
D Global ISP
Mobile Network
@ ==
i S Network
— Data link
Physical
‘ 1‘ Network =
@ — Data link @ @
Physical - '
Application Liialiok Netwc'wrk
Transport - oS Regional ISP Data link
Network Home Network Physical
Data link (Og ‘ Network
c, 5
Physical Ve Data link
7,
g Prvaical Network
N o - Data link
l—~ d"%ol @ Physical

Enterprise Network

Figure 3.1 ¢ The transport layer provides logical rather than physical
communication between application processes

Application

Transport

Network

Data link

Physical

Logical End-to-end Transport

A transport-layer protocol provides logical
communication between processes
running on different hosts (computers,
mobile devices, etc.).

Transport Layer Protocols

e provides a reliable, e provides an

connection-oriented unreliable,

service to the invoking connectionless service

application. to the invoking
application.

Multiplexing and
Demultiplexing

Multiplexing : The job of gathering data chunks at the source host
from different sockets, encapsulating each data chunk with header
information (that will later be used in demultiplexing) to create
segments, and passing the segments to the network layer.

Demultiplexing : At the destination host, the transport layer receives
segments from the network layer just below. The transport layer has
the responsibility of delivering the data in these segments to the
appropriate application process running in the host.

How multiplexing and demultiplexing are done?

Each segment have special fields that indicate the socket to which the
segment 1s to be delivered. These special fields are the source port
number field and the destination port number field.

Each port number is a 16-bit number, ranging from 0 to 65535.

The port numbers ranging from 0 to 1023 are called well-known port
numbers and are restricted, which means that they .are reserved for
use by well-known application protocols such as HTTP.

Each socket in the host is assigned a port number, and when a
segment arrives at the host, the transport layer examines the
destination port number in the segment and directs the segment to the
corresponding socket. The segment’s data then passes through the
socket into the attached process.

Segment
Format

32 bits
I

Source port # Dest. port #

Other header fields

Application
data
(message)

Figure 3.3 ¢ Source and destination port-number fields in a transport-layer
segment

* Source port number and destination port number are
used for multiplexing/demultiplexing.

Sender

send pkto0

rcv ACKO
send pktl

rcv ACKl1
send pktO

Reliable Data Transfer (rdt)

a. Operation with no loss

Receiver

rcv pktoO
send ACKO

rcv pktl
send ACKl1

rcv pktoO
send ACKO0

Sender

send pktO

rcv ACKO —
send pktl

timeout
resend pktl —

rcv ACK1
send pktO

b. Lost packet

Pktg
0
pCE

Pkt

Pkt 7
pCE
Pkto

PO

Receiver

rcv pktoO
send ACKO

rcv pktl
send ACK1

rcv pktoO
send ACKOD

resend pktl —

Sender

send pktO

rcv ACKO —
send pktl

timeout

rcv ACKl1
send pkt0

c. Lost ACK

Pk to
0
pCE
Pkt7

XeS

Receiver

rcv pkt0
send ACKO0

rcv pktl
send ACKl1

rcv pktl
(detect
duplicate)
send ACKl

rcv pkto
send ACKO0

Sender

send pkt0

rcv ACKO
send pktl

timeout
resend pktl

rcv ACK1
send pkt0

rcv ACKl1
do nothing

Pkto

Pkt

Pktq

Pkto

d. Premature timeout

N

Receiver

rcv pkt0
send ACKO0

rcv pktl
send ACK1

rcv pkt 1
(detect duplicate)
send ACKl

rcv pkt0
send ACKO0

Operation of rdt3.0, the alternating-bit protocol

Stop-and Wait
V/s. Pipeline

Protocols
Data packet Data packets
* Send one segment and 1 N — — -—\{Wmtht‘ni’ni\ - —
wait until an ACK is G ‘j | acKpackes ==
received is called stop- N [B LA\ NG N W N

and-wait.

¢ Sending a bundle of a. A stop-and-wait protocol in operation b. A pipelined protocol in operation
segments and wait for an
ACK for all the sent
segments is called
pipeline.

Figure 3.17 ¢ Stop-and-wait versus pipelined protocol

Application-Layer Underlying Transport

Application Protocol Profocol
Electronic mail SMTP TCP

Remote terminal access Telnet TCP

Web HTTP TCP

File transfer FTP TCP

Remote file server NFS Typically UDP
Streaming multimedia typically proprietary UDP or TCP
Internet telephony typically proprietary UDP or TCP
Network management SNMP Typically UDP
Routing protocol RIP Typically UDP
Name translation DNS Typically UDP

Figure 3.6 ¢ Popular Internet applications and their underlying transport
protocols

