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* A transport-layer protocol provides for logical communication between application
processes running on different hosts. Logical communication means that from an
application’s perspective, it is as if the hosts running the processes were directly
connected; in reality, the hosts may be on opposite sides of the planet, connected via
numerous routers and a wide range of link types.

A n O Ve rV i e W * Data units are called segments.

* On the sending side, the transport layer converts the application-layer messages it
O t e receives from a sending application process into transport-layer segments.

* This is done by breaking the application messages into smaller chunks and adding a

Tra n S p O rt transport-layer header to each chunk to create the transport-layer segment.

* The transport layer then passes the segment to the network layer at the sending end
L a e r system, where the segment is encapsulated within a network-layer packet (a
y datagram) and sent to the destination.

* On the receiving side, the network layer extracts the transport-layer segment from
the datagram and passes the segment up to the transport layer. The transport layer
then processes the received segment, making the data in the segment available to the

receiving application. /
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Figure 3.1 ¢ The transport layer provides logical rather than physical
communication between application processes
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A transport-layer protocol provides logical
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running on different hosts (computers,
mobile devices, etc.).
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Multiplexing and
Demultiplexing

Multiplexing : The job of gathering data chunks at the source host
from different sockets, encapsulating each data chunk with header
information (that will later be used in demultiplexing) to create
segments, and passing the segments to the network layer.

Demultiplexing : At the destination host, the transport layer receives
segments from the network layer just below. The transport layer has
the responsibility of delivering the data in these segments to the
appropriate application process running in the host.

How multiplexing and demultiplexing are done?

Each segment have special fields that indicate the socket to which the
segment 1s to be delivered. These special fields are the source port
number field and the destination port number field.

Each port number is a 16-bit number, ranging from 0 to 65535.

The port numbers ranging from 0 to 1023 are called well-known port
numbers and are restricted, which means that they .are reserved for
use by well-known application protocols such as HTTP.

Each socket in the host is assigned a port number, and when a
segment arrives at the host, the transport layer examines the
destination port number in the segment and directs the segment to the
corresponding socket. The segment’s data then passes through the
socket into the attached process.
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Figure 3.3 ¢ Source and destination port-number fields in a transport-layer
segment

* Source port number and destination port number are
used for multiplexing/demultiplexing.
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Operation of rdt3.0, the alternating-bit protocol
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Figure 3.17 ¢ Stop-and-wait versus pipelined protocol



Application-Layer Underlying Transport

Application Protocol Profocol
Electronic mail SMTP TCP

Remote terminal access Telnet TCP

Web HTTP TCP

File transfer FTP TCP

Remote file server NFS Typically UDP
Streaming multimedia typically proprietary UDP or TCP
Internet telephony typically proprietary UDP or TCP
Network management SNMP Typically UDP
Routing protocol RIP Typically UDP
Name translation DNS Typically UDP

Figure 3.6 ¢ Popular Internet applications and their underlying transport
protocols



