CHAPTER EIGHT

TEMPERATURE

Macroscopic Description of an Ideal Gas

It is convenient to express the amount of gas in a given volume in terms of the number of moles (n).
One (mole) is: the amount of substance that contains (Avogadro's number, $\mathbf{N}_{\mathrm{A}}=6.022 * 10^{23}$) of constituent particles (atoms or molecules).

* $\mathrm{n}=\mathrm{m} / \mathrm{M}$
$\mathrm{m}=$ mass of object $\& \mathrm{M}=$ molar mass of the substance $(\mathrm{gr} / \mathrm{mol})$
example: the mass of the (He) atom is $(4 \mathrm{u})$, so the molar mass of (He) is $(4$ $\mathrm{g} / \mathrm{mol}$).

Boyle's law: when the gas is kept at a constant temperature, it's pressure is inversly proportional to its volume.
Charle's and Gay-Lussac: when the pressure of gas is kept constant, it's volume is directly proportional to the temperature.

Equation of state for ideal gas:

P.V = n.R.T

$\mathrm{R}=$ constant or universal gas constant
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{k}=0.08214 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{k}$
In SI units, pressure is expressed in (pascal $=\mathrm{N} / \mathrm{m}^{2}$)

* The product of (pv) has units of (N.m) or (Jouls), ($1 \mathrm{~J}=1 \mathrm{~N} . \mathrm{m}$)
* The volume occupied by (1 mol) of any gas at atmospheric pressure and at $\left(0^{\circ} \mathrm{c}\right.$ or 273 k) is $\mathbf{2 2 . 4} \mathbf{~ L}$

The ideal gas law:

P.V = n.R.T $=\left(N / N_{A}\right)$ R.T
$\mathbf{P} . \boldsymbol{V}=\mathbf{N} . \mathbf{K}_{\mathrm{B}} . \mathbf{T}$
$\mathrm{N}=$ total number of molecules
$\mathrm{K}_{\mathrm{B}}=$ Boltzmann's constant $=\mathrm{R} / \mathrm{N}_{\mathrm{A}}=1.38 * 10^{-23} \mathrm{~J} / \mathrm{k}$
Example 3: A spray can containing a propellant gas at twic atmpsoheric pressure (202 Kpa) and having a volume of $\left(125 \mathrm{~cm}^{3}\right)$ is at $\left(22^{\circ} \mathrm{c}\right)$. It's then tossed into an open fire. When the temperature of the gas in the can reaches $\left(195^{\circ} \mathrm{c}\right)$.
(a) what is the pressure inside the can? Assume any change in the volume of the can is negligible.
(b) If we include a volume change due to the thermal expansion of the steel can as the temperature increases. Does this alter out answer for the final pressure significantly?
Solution:
(a) $\mathbf{P}_{\mathrm{i}} \cdot \mathbf{V}_{\mathrm{i}} / \mathbf{T}_{\mathrm{i}}=\mathbf{P}_{\mathrm{f}} . \mathbf{V}_{\mathrm{f}} / \mathbf{T}_{\mathrm{f}}$

Because $V_{i}=V_{f}$ then
$P_{i} / T_{i}=P_{f} / T_{f}$
$\mathbf{P}_{\mathbf{f}}=\left(\mathbf{T}_{\mathbf{f}} / \mathbf{T}_{\mathbf{i}}\right) \mathbf{P}_{\mathbf{i}}=(468 \mathrm{k} / 295 \mathrm{k})(202 \mathrm{kpa})=320 \mathrm{Kpa}$
(b) because (steel) is very small, we do not expect much of an effect on our final answer.
The change in volume of the can is:
$\Delta \mathrm{V}=\beta . \mathrm{Vi} . \Delta \mathrm{T}=3 \alpha . \mathrm{Vi} . \Delta \mathrm{T}=3\left(11^{*} 10^{-6} /{ }^{\circ} \mathrm{c}\right)\left(125 \mathrm{~cm}^{3}\right)\left(173{ }^{\circ} \mathrm{c}\right)=0.71 \mathrm{~cm}^{3}$
The final volume of the can is $\left(125.71 \mathrm{~cm}^{3}\right)$.
$\mathrm{P}_{\mathrm{f}}=\left(\mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{i}}\right)\left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{f}}\right) \mathrm{P}_{\mathrm{i}}$
$\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{f}}=\left(125 \mathrm{~cm}^{3}\right) /\left(125.71 \mathrm{~cm}^{3}\right)=99.4 \%$
Thus the final pressure will differ by only (0.6%) from the value we calculated with out considering the thermal expansion of the can.
The final pressure $=318 \mathrm{kpa}$
H.W: A cube $(10 \mathrm{~cm})$ on each side contains air [with equivalent molar mass $=$ $28.9 \mathrm{~g} / \mathrm{mol}$ at atmosphiric pressure and temperature of $\left.\left(300 \mathrm{k}^{\circ}\right)\right]$. Find (a) the mass of gas? (b) its weight? (c) the force exerts on each face of the cube?
H.W: The triple point of of neon and carbon dioxide are (24.57 k and 216.55 k), respectively. Express these temperatures on the celsius and fehrenheit scales?
H.W: A steel tape $(1 \mathrm{~m})$ long is correctly calibrated for a temperature of $\left(27^{\circ} \mathrm{c}\right)$. The length of a steel rod measured by this tape is found to be (63 cm). On a hot day when the temperature is $\left(45^{\circ} \mathrm{c}\right)$. What is the actual length of the same steel rod on a day when the temperature is $\left(27^{\circ} \mathrm{C}\right)$? Take: $\boldsymbol{\alpha}_{\mathrm{st}}=12 * 10^{-6} /{ }^{\circ} \mathrm{C}$

