CHAPTER NINE ENERGY AND ENERGY TRANSFAR

Kinetic Energy and The Work-Kinetic Energy Theorm

$\Sigma W=(1 / 2)\left(V_{f}\right)^{2}-(1 / 2)\left(V_{i}\right)^{2}$
$\mathrm{K}=(1 / 2) \mathrm{mV}^{2}$
$\mathrm{K}=$ kinetic energy, $\mathrm{m}=$ mass, $\mathrm{v}=$ speed
$\mathrm{W}=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}=\Delta \mathrm{k}$
H.W: A particle moves from point (5, $-3,-4) \mathrm{m}$ to $(-1,3,4) \mathrm{m}$ under the influence of a force $\mathrm{F}=(-3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}) \mathrm{N}$. Calculate the work done by the force?
H.W: A force of $(3 \mathrm{i}+4 \mathrm{j}) \mathrm{N}$ makes a body moves on a rough plane with a velocity $(6 i+5 j+2 k) \mathrm{m} / \mathrm{s}$. Clculate the power in watt?
H.W: A body of mass (30 kg) is at rest. A force of (5 N) is applied on it. Calculate the force done in third second?
$\underline{H . W}$: The force displacement-graph of a body moving under the influence of a variable force is as shown if figure. Calculate the work done displacing the body from (A) to (B)?
H.W: A force $\left(\mathrm{F}=4 \mathrm{X}^{3}+2 \mathrm{X}+1\right) \mathrm{N}$, acts on a body in x -direction. Calculate the work done if the particle moves from ($\mathrm{x}=0$) m to $(\mathrm{x}=2) \mathrm{m}$?
H.W: A bullet of mass (0.05 kg) is moving with a velocity of ($100 \mathrm{~m} / \mathrm{s}$). It just penetrates a wall $(10 \mathrm{~cm})$ thick. Calculate the resistive force of the wall on the bullet?
H.W: A bullet weighting (10 g) is fired with a velocity of ($800 \mathrm{~m} / \mathrm{s}$). After passing through a mud wall (1 m) thick, its velocity decreases to ($100 \mathrm{~m} / \mathrm{s}$). Find the average resistance offered by the mud wall?

University of Anbar	Physics
College of Engineering	Dr. Ghassan S. Jameel
Dams \& Water Resources Eng. Dept.	Phase:1

