الخواص الفيزيائية والهندسية للصخور

Physical and engineering properties of the rocks

يعتبر سلوك التربة والصخور في ظروف معينة على خصائصها الفيزيائية (الطبيعية) والهندسية (الميكانيكية) للمواد (المعادن) الموجودة بها، ولهذا يمكن تصنيف هذه الخصائص أو الصفات إلى:

1. خصائص فيزيائية

هي مجموعة من الخصائص التي تؤثر على قيمها Physical properties العوامل الجيولوجية الطبيعية مثل نوع الصخور والتركيب المعدني Rock type وحجم الحبيبات Grain size وم₀ وم₂ والمحتوى composition.

الخ: Mechanical properties

وهي الخواص التي تصف السلوك الهندسي للصخور أو التربة مثل المرونة ومقاومة الصخور للاجهاد المختلفة.

: Rocks (Soil) Phases

تتكون الصخور والتربة من ثلاثة مكونات (اطوار phases) هي المكونات الصلبة Solids أو الفراغات أور (water) أو الهواء Air أو كلاهما في التربة غير المشبعة. يمكن التعبير عن هذه المكونات بشكل وزني (كتلي) أو حجمي وتعقد هذه المكونات وعلاقتها ببعضها خصائص الصخور والتربة بشكل كبير.
حساب الحجوم:

تعتمد العلاقات النسبية بين مكونات التربة أو الصخور على قياس الحجوم ويتم ذلك:

1. الأشكال غير المنتظمة: يتم قياس الحجوم في حجم معلوم من الماء في المختبر باستخدام اسطوانة مدرجة حيث ان الماء الزائد يمثل حجم العينة.

2. الأشكال المنتظمة: يتم حساب الحجم باستخدام القوانين الرياضية كحجم المكعب (الطول*العرض*ارتفاع) وحجم الشكل الإسطواني (مساحة القاعدة*ارتفاع).

الخصائص الفيزيائية:

هناك خصائص فيزيائية اهمها:

1. الكثافة

Density: الكثافة

هي النسبة بين كتلة الصخرة وحجمها وتقاس بوحدة سطح الأرض كثافة تتراوح بين (3.0-15.0) g/cm³.

\[\text{Density} = \frac{\text{Mass}}{\text{Volume}} \]

\[\rho = \frac{M}{V} \]

M: Mass, V: Volume

وتسمى إلى أنواع:

Bulk Density (A) الكثافة الكلية

هي النسبة بين كتلة المواد الكلية في الصخرة (معادن، وسائ) إلى الحجم الكلي.

\[\rho_B = \frac{M_s + M_w}{V_T} \]

Dry Density (B) الكثافة الجافة

هي النسبة بين كتلة المادة الصلبة \(M_s \) في الصخور عندما تكون الفراغات خالية من الماء وحجمها الكلبي.

\[\rho_d = \frac{M_s}{V_T} \]
Unit Weight

وتسمى أيضا الكثافة الوزنية وهي النسبة بين وزن الصخرة وحجمها وتناسب بوحدة نيوتن/م³ (N/m³).

Unit Weight = Weight/Volume

\[\gamma = \frac{W}{V} \]

Weight = \(M.g\)

\[\gamma = \frac{W}{V} = \frac{M.g}{V} = \rho . g \]

حيث \(g\) هو التعجل الارضي (9.8 m/s²).

3. الوزن النوعي (Specific Gravity)

هو النسبة بين كثافة الصخرة \(\rho\) وكتافة الماء \(\rho_w\) وهي بدون وحدات يرمز لها \(G\).

\[G = \frac{\rho}{\rho_w} \]

\[G = \frac{\rho.g}{\rho_w.g} = \frac{\gamma}{\gamma_w} \]

مثال: كثافة صخرية منتظمة ذات ابعاد 85.5cm, 79cm, 43.8cm ولها كثافة مقدارها 953Kg, حاكم الوزن النوعي للصخرة؟

Volume V = 0.855x0.79x0.438

= 0.2958m³

\[\rho = \frac{M}{V} = \frac{953 \text{ Kg}}{0.2958 \text{ m}^3} = 3222 \text{ Kg/m}^3 \]

\[G = \frac{\rho}{\rho_w} = \frac{3222 \text{ Kg/m}^3}{1000 \text{ Kg/m}^3} = 3.22 \]
يتم حساب الوزن النوعي (النسبة بين وزن حجم معين من المواد الصلبة إلى وزن نفس الحجم المساوي له من الماء) في المختبر باستخدام العلاقة التالية:

\[G = \frac{W_1}{W_1 - W_2} \]

الوزن النوعي = وزن العينة الجافة 1/ (وزن العينة الجافة 1 - وزن العينة وهي مغمورة في الماء 2)

4. المسامية

المسامية المعنوية لحجم الفراغات في الصخرة إلى الحجم الكلي للصخرة.

\[n = \frac{V_f}{V_t} \times 100 \]

5. النفاذية

النافاذية. وهي قابلية التربة أو الصخور على امتصاص السوائل عبر مساماتها المنفصلة وتحسب باستخدام قانون دراسي:

\[Q = KIA \]

Q: Discharge, K: Hydraulic conductivity, I: Hydraulic gradient, A: Cross section area
Void Ratio

\[e = \frac{V_V}{V_S} \]

Moisture (water) content

هو كمية المياه في الصخرة أو محتوى الرطوبة الذي يمكن التعبير عنها بصورة وزنية أو حجمية.(Volumetric moisture content) (Gravimetric moisture content)

Gravimetric moisture content

\[w = \frac{M_w}{M_s} \times 100 \]

Volumetric moisture content

\[\theta = \frac{V_w}{V_T} \times 100 \]

يتم حساب المحتوى المائي في المختبر بطريقة مباشرة من خلال قياس كتلة العينة قبل وبعد تجفيفها في فرن بدرجة 105 درجة مئوية لمدة 24 ساعة واستخدام العلاقة:

\[w = \frac{M_w}{M_s} \times 100 = \frac{M_{wet} - M_{dry}}{M_{dry}} \times 100 \]

Neutron Probe

أو باستخدام طرق غير مباشرة كاستخدام المجسات المختلفة مثل مجس النيوترون وبعض الطرق الجيوفيزيائية مثل طريقة المقاومة النوعية الكهربائية والتحسس النائي.
Degree of saturation

\[S_r = \frac{V_w}{V_v} = \frac{V_w}{V_T \cdot n} = \frac{\theta}{n} \]

Engineering Properties of Rocks

الخواص الهندسية للصخور

وهي الخواص التي تصف السلوك الهندسي (الميكانيكي) للصخور التي تساعد في اختيار الموقع الملائم للي منشأ هندسي وتساعد في تقدير المخاطر المحتملة وتقييم الحلول لها إضافة إلى أهميتها عند استخدام هذه الصخور كمواد بناء لإنشاء المنشآت الهندسية المختلفة.

تعرف القوة المسلطة على سطح الصخور بالجهد الذي قد يتم عليه تشوه يعرف به Stress بالاجهاد خارجية، وتحدد طبيعة العلاقة بين الجهد والاجهاد السلكي للصخور، إذ أن الإجهاد Elasticity التي يحكمها قانون هوك يتناسب طرديا مع الجهد المسلط ضمن حدود المرونة Hook’s Law، كما يبين في الشكل، وبعد زيادة القوة المسلطية إلى حد معين فإن الصخور Ductile or plastic الصخرة عندما في نطاق الالغاثة أو الكرست Rupture إلى حد لا يمكن ان تتحمله فتتعرض للانهيار أو الكسر.
مقاومة الصخور

تحاول القوة المطلقة على وحدة مساحة من الصخور (الجهد) ان تغير من شكلها أو حجمه وتعرف قابلية الصخرة على تحمل أو مقاومة القوى الخارجية المطلقة عليها بمقاومة أو قوة الصخور وتفيد في تحديد قابلية الصخرة لتحمل الاحماق الناتجة عن اقامة المنشأت Geological factors.

المهمة:因素:

1. نوع الصخور
2. حجم الحبيبات
3. التركيب المعدني
4. درجة التجميد
5. المسامية ونافذة Porosity
6. الفواصل والصدوع ودورة التشبع Saturation ودورة التشبع Water Content.
7. حالات الت🌊 Water Content ودورة التشبع Water Content بالاضافة إلى عوامل هندسية Engineering Factors مثل مقدار الحمل حملة، وانبعاث الصخور، Load Type ونوعية الصخور،، وانبعاث الصخور، Load Type.

وتصنف مقاومة الصخور تبعاً الى طبيعة القوى المطلقة عليها إلى ثلاثة اقسام رئيسة:

Compressive Strength مقاومة الانضغاط (a)
Tension Strength مقاومة الشد (b)
Shearing Strength مقاومة الفصل (c)
is a measure of the rock's compressive strength. Compressive Strength attempts to compress or crush samples of rock and cause the rock to fracture. This process is repeated until the rock fractures. When it fractures, it is placed under a load and the load is measured.

Uniaxial Compressive Strength

Uniaxial Compressive Strength is a test where a sample of rock is placed under a load and the load is measured. The load is then increased until the rock fractures. The load at which the rock fractures is called the failure load.

\[
\sigma = \frac{F}{A} = \text{N/m}^2
\]

\(\sigma\): Stress, \(F\): Force, \(A\): Area,
ب) مقاومة الانضغاط الثلاثي المحور (المحصور) (confined)

تتعرض الصخور عادة في الطبيعة إلى قوى باتجاه واحد، وغالباً ما تتعرض إلى اتجاهات من ثلاثة اتجاهات متعامدة، عندما تتعرض الى ضغوط من جميع الاتجاهات فيعرف بالضغط الهندسي أو الليئوسيكي.

Triaxial compressive strength

Tensile Strength 2. مقاومة الفد

وتتعرض على أنها أكثر جهد لقوى شد يمكن أن تتحمله الصخور وغالبا ما تتعرض الصخور الى قوى شديدة تؤدي تشغيل وتصدع الصخور والتي تمثل مناطق ضعف في التركيب الهندسي كالسدو والانفجارات والمناجم ويتؤثر عوامل كبرى الحالة ووقوع الزلازل على مقاومة الصخور في هذه المواقع.
Shear Strength

3. какие свойства материала влияют на прочность связки, если материал подвергается действию сдвига?

Sliding failure

ثبات الاتجاه الأكثر شيوعًا للكتل العالية في حالة عدم التوافق مع القوى المحركة للإنسان. كما تحدث في الانفجار والانفجار وتستخدم مقاومة القص على مقاومة الاتجاه أو أمثلة عديدة مثل وجود التقطيعات والنشر المعتدل والرقيق في ضعف مقاومة القص.

Shear stress

Deformations

تشوهات: هو أي تغيير في شكل أو حجم الصخور نتيجة لتعرضها لقوى التي قد تكون تضاغطية، أو شديدة tensile أو قصية compressive

Deformations

تشوهات: هو أي تغيير في شكل أو حجم الصخور نتيجة لتعرضها لقوى التي قد تكون تضاغطية، أو شديدة tensile أو قصية compressive

Deformation types

أنواع التشوهات: اعتماداً على نوع من الصخور، وحجمها وشكلها وخصائصها المختلفة والتي تتعرض لها. هناك أنواع مختلفة من التشوهات:

Elastic Deformation

تشوه مرن: وهو تشوه وظيفي في شكل أو حجم الصخور التي تعود إلى حالاتها الأصلية بعد زوال القوى المؤثرة ويحسم إلى قانون هوك Hook's Law الذي ينص على أن التشوه يتناسب طردياً مع الجهد ضمن حدود المرونة:

\[\sigma = E \varepsilon \]

Where \(\sigma \) is the applied stress, \(E \) is a material constant called Young's modulus, and \(\varepsilon \) is the resulting strain.
Plastic (Ductile) Deformation

Brittle Deformation

Cohesion

Longitudinal Elasticity

μ = \frac{F}{\Delta L/L}
Volume or Bulk Elasticity

The bulk modulus (المرونة الحجمية) is defined as the resistance of the rock to the forces acting on it, which attempts to change its volume.

\[K = \frac{\text{Volume Stress}}{\text{Volume Strain}} = \frac{F/A}{\Delta v/v} \]

And is known as Compressibility (B=1/K).

Shear Elasticity

Shear modulus (المرونة الشكلية) relates to the resistance of the rock to the forces acting on it, which causes a change in its shape.

\[\mu = \frac{\text{Shear Stress}}{\text{Shear strain}} = \frac{F/A}{\Delta x/\Delta l} \]

\(\Delta x \) is the transverse displacement, \(\Delta l \) is the initial length.
تحدد عوامل مثل نوعية الصخور وخصائصها، درجة الحرارة، ومقدار وتوزع الجهد المسلط شكل وطبيعة التشوهات في الصخور في الحالة مما يؤدي إلى نشوء تراكيب مختلفة كالطيات والصدوع (تشوهات هضبة (Ductile) والتي يمكن أن تنتج عن قوى تضاغطية أو ثدية أو قصية كما مبين في الشكل، هذه التراكيب يجب أن تؤخذ في الاعتبار في التصميم الهندسي لذا يجب دراسة خصائص الصخور الفيزيائية والهندسية ليتم تقدير التشوهات المحتملة ووضع تصاميم هندسية توفر مقاومة وسلامة عالية بحيث تصبح التراكيب الهندسية ذات مقاومة عالية للإحجام التي تتعرض لها، وهنا وقبل الطرح باي مشروع هندسي in situ لا بد من دراسة الجهود الأولية initial stresses أو ما يعرف الجهود الموقعة stresses التي غالبا ما تكون أفقية أكبر من العمودية قرب سطح الأرض وتصبح متساوية على امتداد كبيرة حيث يصبح الضغط هيدروستاتيكي متساوي ويتم ذلك باستخدام طرق حقلية وخبرية لتقييم السلوك الهندسي للصخور ومدى ملاءمتها لإقامة المشاريع الهندسية وتقديم المخاطر المحتملة وكيفية حل المشاكل الناتجة.