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Introduction

-:languagesProgramming
Interactions involving humans are most effectively carried out

through the medium of language . language permits the expression of
thoughts and ideas , and without it , communication as we know it
would be very difficult indeed .

In computer programming , programming language serves as
means of communication between the person with a problem and the
computer used to solve it . programming language is a set of symbols ,
words , and rules used to instruct the computer .

A hierarchy of programming languages based on increasing
machine independence include the following :-

1- machine language : is the actual language in which the
computer carries out the instructions of program . otherwise , " it is
the lowest from of computer language , each instruction in
program is represented by numeric cod , and numeric of addresses
are used throughout the program to refer to memory location in the
computer memory .
2- Assembly languages : is a symbolic version of a machine
language ,each operation code is given a symbolic code such a
Add , SUB ,…. Moreover , memory location are given symbolic
name , such as PAY , RATE .
3-high level language :Is a programming language where the
programming not require knowledge of the actual computing
machine to write a program in the language .H.L.L . offer a more
enriched set of language features such as control structures , nested
statements , block …
4- problem-oriented language : It provides for the expression of
problems in a specific application . Examples of such language
are SQL for Database application and COGO for civil engineering
applications .



Advantages of H.L.L over L.L.L include the following :

1- H.L.L are easier to learn then L.L.L
2- A programmer is not required to know how to convert data

from external from to internal within memory . 
3- Most H.L.L offer a programmer a variety of control structures

which are not available in L.L.L
4- Programs written in H.L.L are usually more easily debugged

than L.L.L. equivalents.
5- Most H.L.L offer more powerful data structure than L.L.L.
6- Finally ,High level languages are relatively machine-

independent. Consequently certain programs are portable

Translator: High- Level language programs must be translated
automatically to equivalent machine- language programs . 
A translator input and then converts a " source program" into an object
or target program . the source program is written in a source language
and the object program belong to an object language . 
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1- If the source program is written in assembly language and the
target program in machine language .the translator is
called " Assembler "

2- If the source language is H.L.L. and the object language is L.L.L.
,then the translator is called " Compiler " . 

3- If the source language is L.L.L. and the object language is H.L.L.,
then the translator is called "Decompiler"
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- The time at which conversion of a source program to an object
program occurs is called " Compile time " .The object program is
executed at " Run time " ,note that the source program and data
are process at different time . 

Another kind of translator ,called an " Interpreter " in which
processes an internal form of source program and data at the same
time . that is interpretation of the internal source from occurs at run
time and no object program is generated . 

Data

Source Program Interpreter Result

( Interpretive process )

Compiled programs usually run faster than interpreter ones
because the overhead of understanding and translating has already
been done .However ,Interpreters are frequent easier to write than
Compilers , and can more easily support interactive debugging of
program . 

Remark :Some programming language implementations support
both interpretation and compilation.



Compilation concepts

What is compiler?

A compiler is a program that translates a computer
program(source program) written in H.L.L (such as Pascal,C++)
into an equivalent program (target program) written in L.L.L.

Source program compiler target program

Error messages

Model of Compiler:

The task of constructing a compiler for a particular source
language is complex. The complexity of the compilation process
depend on the source language.A compiler must perform two
major tasks:

1. Analysis :deals with the decomposition of the source program
into its basic parts.

2. Synthesis:builds their equivalent object program using these
basic parts.

To perform these tasks, compiler operates in phases each of
which transforms the source program from one representation to
another. A typical decomposition of a compiler is shown in the
following figure.
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Compiler phases

1.Lexical Analyzer: whose purpose is to separate the incoming
source code into small pieces (tokens) , each representing a
single atomic unit of language, for instance "keywords",
"Constant "," Variable name" and "Operators".

2.Syntax Analyzer : whose purpose is to combine the tokens into
well formed expressions (statements) and program and it check
the syntax error

3.Semantic Analyzer: whose function is to determine the
meaning of the source program.

4. Intermediate Code Generator: at this point an internal form
of a program is usually created.For example:

Y=(a+b)*(c+b)
(+,a,b,t1)
(+,c,d,t2)
(*,t1,t2,t3)



5.Code Optimizer :Its purpose is to produce a more efficient
object program (Run faster or take less space or both)

6.Code Generator: Finally, the transformed intermediate
representation is translated into the target language.

The grouping of phases : the phases of compiler are collection
into :

1. Front-End :It consists of those phases that depend on the
source language and are largely independent of the target
machine ,those include : (lexical analysis ,syntax analysis ,
semantic analysis, and intermediate code generation )

2. Back-End : Includes those phases of compiler that depend on
the target machine and not depend on the source language .
these include:( code optimization phase and code
generation phase )

The grouping of Compiler Phases


