Compiler

Lecture one

¥ Gaals

ks 14350 9 igusaldl pole Gplss
Slaglaedl
Cihasland! miad mud

COMPILER

Principles & Techniques

@%M@o@ﬁc’@

Compilers Anbar University — Computer College
Principle , Techniques, and Tools

Introduction

Programming languages :-

Interactions involving humans are most effectively carried out
through the medium of language . language permits the expression of
thoughts and ideas , and without it , communication as we know it
would be very difficult indeed .

In computer programming , programming language serves as
means of communication between the person with a problem and the
computer used to solve it . programming language is a set of symbols ,
words , and rules used to instruct the computer .

A hierarchy of programming languages based on increasing
machine independence include the following :-

1- machine language : is the actual language in which the
computer carries out the instructions of program . otherwise , " it is
the lowest from of computer language , each instruction in
program is represented by numeric cod , and numeric of addresses
are used throughout the program to refer to memory location in the
computer memory .

2- Assembly languages : is a symbolic version of a machine
language ,each operation code is given a symbolic code such a
Add , SUB ,.... Moreover , memory location are given symbolic
name , such as PAY , RATE .

3-high — level language :Is a programming language where the
programming not require knowledge of the actual computing
machine to write a program in the language .H.L.L . offer a more
enriched set of language features such as control structures , nested
statements , block ...

4- problem-oriented language : It provides for the expression of

problems in a specific application . Examples of such language
are SQL for Database application and COGO for civil engineering
applications .

With My Best Wistes 7 Esam

Compilers Anbar University — Computer College
Principle , Techniques, and Tools

Advantages of H.L..L. over L.L.L include the following :

1- H.L.L are easier to learn then L.L.L

2- A programmer is not required to know how to convert data
from external from to internal within memory .

3- Most H.L.L offer a programmer a variety of control structures
which are not available in L.L.L

4- Programs written in H.L.L are usually more easily debugged
than L.L.L. equivalents.

5- Most H.L.L offer more powerful data structure than L.L.L.

6- Finally ,High level languages are relatively machine-
independent. Consequently certain programs are portable

Translator: High- Level language programs must be translated
automatically to equivalent machine- language programs .

A translator input and then converts a " source program" into an object
or target program . the source program is written in a source language
and the object program belong to an object language .

Source Object
~program > program
1- If the source program is written in assembly language and the
target program in machine language .the translator 1is
called " Assembler "
2- If the source language is H.L.L. and the object language is L.L.L.
,then the translator is called " Compiler " .

3- If the source language is L.L.L. and the object language is H.L.L.,
then the translator is called "Decompiler"

Source Object Executing
e (| COmpiler || s — R €5 U1
program program computer

compile Time run Time

(compilation Process)

With My Best Wistes 2 Esam

Compilers Anbar University — Computer College
Principle , Techniques, and Tools

- The time at which conversion of a source program to an object
program occurs is called " Compile time " .The object program is
executed at " Run time " ,note that the source program and data
are process at different time .

Another kind of translator ,called an " Interpreter " in which
processes an internal form of source program and data at the same
time . that is interpretation of the internal source from occurs at run
time and no object program is generated .

Data

Source Program = r— R esult

(Interpretive process)

Compiled programs usually run faster than interpreter ones
because the overhead of understanding and translating has already
been done .However ,Interpreters are frequent easier to write than
Compilers , and can more easily support interactive debugging of
program .

Remark :Some programming language implementations support
both interpretation and compilation.

A bad workman guarrels fis
tools

With My Best Wistes 3 Esam

Compilers Anbar Untversity — Computer College
Principle , Technigues, and Tools

Compilation concepts

What is compiler?

A compiler is a program that translates a computer
program(source program) written in H.L.L (such as Pascal,C++)
into an equivalent program (target program) written in L.L.L.

Source program mep- || compiler | =—p target program

\

Error messages

Model of Compiler:

The task of constructing a compiler for a particular source
language 1s complex. The complexity of the compilation process
depend on the source language.A compiler must perform two
major tasks:

1. Analysis :deals with the decomposition of the source program
into its basic parts.

2. Synthesis:builds their equivalent object program using these
basic parts.

To perform these tasks, compiler operates in phases each of
which transforms the source program from one representation to
another. A typical decomposition of a compiler is shown in the
following figure.

With My Best Wishes 4 Esam

Compilers Anbar Untversity — Computer College
Principle , Technigues, and Tools

Source program

|

Lexical analyzer

A 4

Syntax analyzer

A 4

Semantic analyzer

Symbol Table v Error Handler

Intermediate code
generation

\ 4

Code optimization

\ 4

Code generation

!

Target program

Compiler phases

1.Lexical Analyzer: whose purpose is to separate the incoming
source code into small pieces (tokens) , each representing a
single atomic unit of language, for instance "keywords",
"Constant "," Variable name" and "Operators".

2.Syntax Analyzer : whose purpose is to combine the tokens into
well formed expressions (statements) and program and it check
the syntax error

3.Semantic Analyzer: whose function is to determine the
meaning of the source program.

4.Intermediate Code Generator: at this point an internal form
of a program is usually created.For example:

(+,a,b,tl)
Y=(atb)*(ctb) (+,¢,d,t2)
(*,t1,t2,t3)

With My Best Wishes 5 Esam

Compilers Anbar Untversity — Computer College
Principle , Technigues, and Tools

5.Code Optimizer :Its purpose is to produce a more efficient
object program (Run faster or take less space or both)

6.Code Generator: Finally, the transformed intermediate
representation is translated into the target language.

The grouping of phases : the phases of compiler are collection
into :

1. Front-End :It consists of those phases that depend on the
source language and are largely independent of the target
machine ,those include : (lexical analysis ,syntax analysis ,
semantic analysis, and intermediate code generation)

2. Back-End : Includes those phases of compiler that depend on
the target machine and not depend on the source language .
these include:(code optimization phase and code
generation phase)

source program

|

intermediate
code

F

target code

The grouping of Compiler Phases

With My Best Wishes 6 Esam

