
Bottom-Up Parsing
The term "Bottom-Up Parsing" refer to the order in which

nodes in the parse tree are constructed, construction starts at the
leaves and proceeds towards the root. Bottom-Up Parsing can
handle a large class of grammars.

1. Shift-Reduce Parsing: Is a general style of Bottom-up
syntax analysis , it attempts to construct a parse tree for an
input string beginning at leaves and working up towards
the root,(reducing a string w to the start symbol of
grammar).At each reduction step a particular substring
matching the right side of production is replaced by the
symbol on the left of that production.

Example : consider the grammar

And the input is abbcde
The implementation Bottom-Up Parsing is

Handle : Is a substring that matches the right side of a
production.

Stack Implementation of Shift-Reduce Parsing:
A convenient way to implement a shift-reduce parser is to use a
Stack to hold a grammar symbols and an input buffer to hold the
sting w to be parsed. We use $ to mark the bottom of stack and
also the right end of the input string. There are actually four
possible actions:

S aABe

A Abc b

B d

a b b c d e
a A b c d e
a A d e
a A B e
S
Accept

1. Shift : The next input symbol is Shifted onto the top
of stack.

2. Reduce : Replace the handle with nonterminal.
3. Accept : The parser announces successful

completion of parsing .
4. Error : The parser discovers that syntax error has

occurred and calls an error recovery routine.
Example: Consider the following grammar

And the input string is id + id * id, then the
implementation is :

Stack Input Buffer
Action

$
$id
$E
$E+
$E+id
$E+E
$E+E*
$E+E*id
$E+E*E
$E+E
$E

id+id*id$
+id*id$
+id*id$

id*id$
*id$
*id$

id$
$
$
$
$

Shift
Reduce: E id
Shift
Shift
Reduce: E id
Shift(*)
Shift
Reduce: E id
Reduce: E E*E
Reduce: E E+E
Accept

Conflicts During Shift-Reduce Parsing:

There are context free grammars for which shift-reduce
parsing cannot be used. Ambiguous grammars lead to parsing
conflicts. Can fix by rewriting grammar or by making
appropriate choice of action during parsing. There are two type
of conflicts :

E E+E E*E (E) id

1. Shift/Reduce conflicts: should we shift or reduce? (See
previous example (*))

2. Reduce/Reduce conflicts: which production should we
reduce with? for example:

stmt id(param)
param id
expr id(expr) | id

Stack Input Buffer Action

$...id(id ,id)...$ Reduce by ??

Should we reduce to param or to expr ?

LR Parsers
This section presents an efficient Bottom-Up syntax

analysis technique that can be used to parse a large class of
context-free grammars. The technique is called LR(k) parsing,
the "L" is for left to right scanning of input, the "R" for
constructing a rightmost derivation in reverse, and "k" for the
number of input symbols of lookahead that are used in making
parsing decisions-when "k" is omitted , k is assumed to be 1).
LR parsing is attractive for a variety of reasons:-

1. LR parsers can be constructed to recognize virtually all
programming language constructs for which context-free
grammars can be written.

2. The LR parsing method is the most general
nonbacktracking shift-reduce parsing method known, yet it
can be implemented as efficiently as other shift-reduce
methods.

3. The class of grammars that can be parsed using LR
methods is a proper superset of the class of grammars that
can be parsed with predictive parsers.

The schematic form of an LR parser is shown in following
figure .It consists of an Input,an Output,a Stack,a Driver
program,and a Parsing table that has two parts (action and
goto) .

a1 …… ai ……. an $

Sm

Xm

Sm-1
Xm-1

………

S0

LR
Parsing program

action goto

Output

Input

Stack
Model of an LR parser

