
LR Parsers
This section presents an efficient Bottom-Up syntax

analysis technique that can be used to parse a large class of
context-free grammars. The technique is called LR(k) parsing,
the "L" is for left to right scanning of input, the "R" for
constructing a rightmost derivation in reverse, and "k" for the
number of input symbols of lookahead that are used in making
parsing decisions-when "k" is omitted , k is assumed to be 1).
LR parsing is attractive for a variety of reasons:-

1. LR parsers can be constructed to recognize virtually all
programming language constructs for which context-free
grammars can be written.

2. The LR parsing method is the most general
nonbacktracking shift-reduce parsing method known, yet it
can be implemented as efficiently as other shift-reduce
methods.

3. The class of grammars that can be parsed using LR
methods is a proper superset of the class of grammars that
can be parsed with predictive parsers.

The schematic form of an LR parser is shown in following
figure .It consists of an Input,an Output,a Stack,a Driver
program,and a Parsing table that has two parts (action and
goto) .

a1 …… ai ……. an $

Sm

Xm

Sm-1
Xm-1

………

S0

LR
Parsing program

action goto

Output

Input

Stack
Model of an LR parser

There are three techniques for LR parser depending on the
construct of LR parsing table for a grammar :

1. Simple LR parser (SLR for short):Is the easiest to
implement but the least powerful of the three.It may be
fail to produce a parsing table for certain grammars on
which the other methods succeed.

2. Canonical LR parser: It is most powerful, and most
expensive.

3. Lookahead LR parser (LALR for short):It is
intermediate in power and cost between other two. The
LALR method will work on most programming-language
grammars and ,with some effort ,can be implemented
efficiently.

The LR parsing Algorithm :- The LR program is the same for
all LR parsers, only the parsing table changes from one parser to
another.

Implementation of SLR parser:-
The SLR-parser Extremely tedious to build by hand, so

need a generator. The following steps represents the main
stages, which are used to build system that is used for
implementing the SLR-parser:

1. Input stage : In this state the grammar has been reading
and the symbols of grammar (terminals and nonterminals)
could be specified and each production of grammar must be
on one straight line. Finally, the productions has been
numbered.

For example, consider the grammar

2. Compute First & Follow stage : Through this state First
& Follow could be detected for each nonterminal.

3. Construct DFA stage:By using a deterministic finite
automaton (DFA)the SLR-parser know when to shift and
when to reduce. the edges of DFA are labeled by symbols
of grammar(terminals & nonterminals).In this state, where
the input begins with S'(root),that means that it begins with
any possible right-hand side of an S-production we indicate
that by

Call this state1 or state0,a productions combined with the
dot(.) that indicates a position of parser.Firstly ,for each
production in state1 we exam the symbol that occur after
dot, there are three cases :

1. If the symbol is null (the dot has been occurred in the end
of right side of production),then there are no new state .

2. If the symbol is "$" sign, then there are no new state.

E E+T T

T T*F F

F (E) id

1 E E+T
2 E T
3 T T*F
4 T F
5 F (E)
6 F id

S' .S$
S .
.
.

3. If the symbol is a terminal or nonterminal, then there are
new state, this state start with current production after the dot
has been proceeded one step forward. If the symbol has been
occurred after the dot(in new position)is nonterminal such as A,
then we add all possible right hand side of A to a new state, and
so on.
You must know that any new state must built firstly in a buffer,
and we compare it with a previous states in DFA, if there are no
similarity situation then the new state is added to DFA and give
it a new number equal to number of states in DFA plus one.
Finally ,we repeat this steps on all new states until the DFA
completed.
Example : consider grammar

Initially, it will have an empty stack, and the input will be
a complete S-sentence followed by $;that is the right-hand side
of the S' rule will be on the input. we indicate this as S' . S$
where the dot indicates the current position of the parser. So:

E T+E
E T
T x

0 S' E$
1 E T+E
2 E T
3 T x

S' . E$
E .
T+E
E . T

E T+ E
.

T x .

S' E .

E T .
+E

E T+
.E
E .
T+E
E .T

E
x

T

E

x

0

3

2

4

1

5

+T

Deterministic finite automaton (DFA)

4. Construct SLR table stage:The SLR-table is a data
structure consist of many rows equal to the number of the
states in DFA,also many columns equal to the number of
grammar symbols plus "$" sign .As know ,data structure
presents fast in information treatment and information
retrieve .In this stage SLR-table is constructed .this table had
seen as two subtables:

1. The Action table: consist of many rows equal to number
of states in DFA,and many columns equal to number of
terminals plus "$" sign(the end of input).

2. The Goto table: consist of many rows equal to number of
states in DFA,and many columns equal to number of
nonterminals.

the elements(entries) in the SLR-table are labeled with four
kinds of actions:

 Sn shift into state n
 gn goto state n
 rk reduce by production k
 a accept
 error (denoted by blank entry in the table)

For the construction of this table and the contribution the
actions on the tables cells must pass to each state in DFA
individually :

 Shift action & Goto action could be specified according to the
edge which has been moved from the current state(n) to the
new state.
If the edge was terminal symbol (t) then

Cell[n-1,t]= sn
If the edge was nonterminal symbol (N) then

Cell[n-1,N]= gn

N

State
n+1

State
n

t
State
n-1

 If there are production in current state has the form
(the dot in the end of right hand side, is any

string),then the action is reduce
 Cell[n-1,f]=rk { f in Follow(A), k is the no. of

production}
 If there are production in current state has the form

 {the dot occurred before $ sign, is any string },then
the action is accept

 Cell[n-1,$]=a
 Finally, any empty cell in row n-1 means error action.
Repeat the above steps for each states in DFA.

state x + $ E T
0 S4 g1 g2
1 Accept
2 S3 r2
3 S4 g5 g2
4 r3 r3
5 r1

5.Implement LR Algorithm : Suppose input string is x+x.
After insert input string the LR-program is executed, as
follows:

Stack Input Action
0 x+x $ shift
0S4 +x$ Reduce by T x
0T2 +x$ shift
0T2S3 x$ Shift
0T2S3S4 $ Reduce by T x
0T2S3T2 $ Reduce by E T
0T2S3E5 $ Reduce by E T+E
0E1 $ Accept

A .

A .$

Semantic Analysis
The semantic analysis phase of compiler connects variable

definition to their uses ,and checks that each expression has a
correct type.
This checking called "static type checking" to distinguish it
from "dynamic type checking" during execution of target
program. This phase is characterized be the maintenance of
symbol tables mapping identifiers to their types and locations.

Examples of static type checking:-
1. Type checks : A compiler should report an error if an

operator is applied to an incompatible operand.
2. Flow of control checks:- Statements that cause flow of

control to leave a construct must have some place to which
to transfer the flow of control. For example, a "break"
statement in 'C' language causes control to leave the
smallest enclosing while , for , or switch statement ;an
error occurs if such an enclosing statement does not exist.

3. Uniqueness checks:- There are situations in which an
object must be defined exactly once. For example, in
'Pascal' language, an identifier must be declared uniquely.

4. Name-related checks:- Sometimes, the same name must
appear two or more times. For example, in 'Ada' language
a loop or block may have a name that appear at the
beginning and end of the construct. The compiler must
check that the same name is used at both places.

Type system:-
The design of type checker for a language is based on

information about the syntactic constructs in the language, the
notation of types, and the rules for assigning types to language
constructs.
The following excerpts are examples of information that a
compiler writer might have to start with.

 If both operands of the arithmetic operators "addition",
"subtraction", and "multiplication" are of type integer ,
then the result is of type integer.

