
Semantic Analysis
The semantic analysis phase of compiler connects variable

definition to their uses ,and checks that each expression has a
correct type.
This checking called "static type checking" to distinguish it
from "dynamic type checking" during execution of target
program. This phase is characterized be the maintenance of
symbol tables mapping identifiers to their types and locations.

Examples of static type checking:-
1. Type checks : A compiler should report an error if an

operator is applied to an incompatible operand.
2. Flow of control checks:- Statements that cause flow of

control to leave a construct must have some place to which
to transfer the flow of control. For example, a "break"
statement in 'C' language causes control to leave the
smallest enclosing while , for , or switch statement ;an
error occurs if such an enclosing statement does not exist.

3. Uniqueness checks:- There are situations in which an
object must be defined exactly once. For example, in
'Pascal' language, an identifier must be declared uniquely.

4. Name-related checks:- Sometimes, the same name must
appear two or more times. For example, in 'Ada' language
a loop or block may have a name that appear at the
beginning and end of the construct. The compiler must
check that the same name is used at both places.

Type system:-
The design of type checker for a language is based on

information about the syntactic constructs in the language, the
notation of types, and the rules for assigning types to language
constructs.
The following excerpts are examples of information that a
compiler writer might have to start with.

 If both operands of the arithmetic operators "addition",
"subtraction", and "multiplication" are of type integer ,
then the result is of type integer.

 The result of Unary & operator is a pointer to the object
referred to by the operand. If the type of operand is T , the
type of result is ' pointer to T '.

We can classify type into :
1. Basic type: This type are the atomic types with no

internal structure , such as Boolean, Integer, Real,
Char, Subrange, Enumerated, and a special basic
types " type-error , void ".

2. Construct types: Many programming languages
allows a programmer to construct types from basic
types and other constructed types. For example
array, struct, set.

3. Complex type: Such as link list, tree, pointer.

 Type system:- is a collection of rules for assigning type
expressions to the various parts of a program. A type checker
implements a type system.

Specification of a simple type checker:-
The type checker is a translation scheme that synthesizes

the type of each expression from the types of its subexpressions.
In this section, we specify a type checker for simple language in
which the type of each identifier must be declared before the
identifier is used.
Suppose the following grammar to generates program,
represented by nonterminal P, consisting of a sequence of
declarations D followed by a single expression E.

Type checker (translation scheme) produce the following part
that saves the type of an identifier:

P D ; E

D D ; D id : T

T char int array[num] of T T

E literal num id E mod E E[E] E

 The type checking of expression: the following some
of semantic rules:

We can use a function lookup(e) to fetch the type saved in ST
,if identifier " e " appears in an expression:

 The type checking of statements :

P D;E
D D;D
D id:T {addtype(id.entry,T.type)}
T char {T.type=char}
T int {T.type=int}
T T1 {T.type=pointer(T1.type)}
T array[num] of T1 {T.type=array(1..num.val,T1.type)}

E literal {E.type=char} //constants represented
E num {E.type=int} // = =

E id {E.type=lookup(id.entry)}

The following expression formed by applying (mod) to two subexpression:

E E1 mod E2 {E.type= if E1.type=int and E2.type=int then int
Else type-error }

An array reference:
E E1[E2] { E.type= if E2.type=int and E1.type=array[s,t] then t

Else type-error}

E E1 { E.type= if E1.type=pointer(t) then t
Else type-error}

S id=E {S.type=if id.type = E.type then void
Else type-error)}

S if E then S1 {S.type= if E.type=boolean then S1.type
Else type-error }

S while E do S1 {S.type= if E.type=boolean then S1.type
Else type-error }

S S1 ; S2 { S.type= if S1.type=void and S2.type=void then void
Else type-error}

Intermediate Code Generation (IR)

IR is an internal form of a program created by the
compiler while translating the program from a H.L.L to
L.L.L.(assembly or machine code),from IR the back end of
compiler generates target code.
Although a source program can be translated directly into the
target language,some benefits of using a machine independent
IR are:

1. A compiler for different machine can be created by
attaching a back end for a new machine into an existing
front end.

2. Certain optimization strategies can be more easily
performed on IR than on either original program or L.L.L.

3. An IR represents a more attractive form of target code.
Intermediate Languages:-

1. Syntax Tree and Postfix Notation are tow kinds of
intermediate representations, for example a=b*-c+b*-c

 = =

a + a +

* * *

b - b - b -

c c c

 A DAG give the same information in syntax tree but in
compact way because common subexpressions are
identified.

 Postfix notation is a linearized representation of a syntax
tree, for example: a b c - * b c - * + =

 Two representation of above syntax tree are:

Syntax Tree DAG

2. Three-Address Code is a sequence of statements of the
general form :

X=Y op Z // op is binary arithmetic
operation

For example : x + y * z

t1 = y * z
t2 = x + t1

where t1 ,t2 are compiler generated temporary.

=

id c

id b

id a

+

*

-

id c

id b

-

*

id b

id c

- 1

* 0 2

id b

id c
- 5

* 4 6

+ 3 7

id a

= 9 8

…. ….. …..

….. ….. …..

0

1

2

3

4

5

6

7

8

9

10

1 2

