
2. Three-Address Code is a sequence of statements of the
general form :

X=Y op Z // op is binary arithmetic
operation

For example : x + y * z

t1 = y * z
t2 = x + t1

where t1 ,t2 are compiler generated temporary.

=

id c

id b

id a

+

*

-

id c

id b

-

*

id b

id c

- 1

* 0 2

id b

id c
- 5

* 4 6

+ 3 7

id a

= 9 8

…. ….. …..

….. ….. …..

0

1

2

3

4

5

6

7

8

9

10

1 2

Types of three address code statement:-

1. Assignment statements of the form X=Y op Z (where
op is a binary arithmetic or logical operator).

2. Assignment instructions of the form X= op Y (op is
a unary operator).

3. Copy statements of the form X=Y .
4. Unconditional jump (Goto L).
5. Conditional jump (if X relop Y goto L).
6. Param X & Call P,N for procedure call and and

return Y , for example :
Param x1
Param x2
……..
Param xn
Call P,n

7. Index assignments of the form X=Y[i] & X[i]=Y.
8. Address & Pointer Assignments

X= &Y
X= * Y

*X= Y
Example : a= b * -c + b * -c

t1 = - c
t2 = b * t1
t3 = - c
t4 = b * t3
t5 = t2 + t4
a = t5

t1 = - c
t2 = b * t1
t5 = t2 + t2
a = t5

Three address code
For syntax tree

Three address code
For DAG

Note: Three-address statements are a kin to assembly code
statements can have symbolic labels and there are statements for
flow of control.

Implementation of Three Address Code :-

In compiler , three-address code can be implement as
records, with fields for operator and operands.

1. Quadruples :- It is a record structure with four
fields:

OP // operator
arg1 , arg2 // operands
result

2. Triples :- To avoid entering temporary into ST , we
might refer to a temporary value by position of the
statement that compute it . So three address can be
represent by record with only three fields:

OP // operator
arg1 , arg2 // operands

Example: a = b * -c + b * -c

i. By Quadruples

Position OP arg1 arg2 result

0 - c t1
1 * b t1 t2
2 - c t3
3 * b t3 t4
4 + t2 t4 t5
5 = t5 a

ii. By Triples

Position OP arg1 arg2
0 - c
1 * b (0)
2 - c
3 * b (2)
4 + (1) (3)
5 = a (4)

Code Optimization
Compilers should produce target code that is as good as can be
written by hand. This goal is achieved by program
transformations that are called " Optimization " . Compilers that
apply code improving transformations are called " Optimizing
Compilers ".
Code optimization attempts to increase program efficiency by
restructuring code to simplify instruction sequences and take
advantage of machine specific features:-

 Run Faster , or
 Less Space , or
 Both (Run Faster & Less Space).

The transformations that are provided by an optimizing compiler
should have several properties:-

1. A transformation must preserve the meaning of
program. That is , an optimizer must not change the
output produce by program for an given input, such
as division by zero.

2. A transformation must speed up programs by a
measurable amount.

This lecture concentrates on the transformation of intermediate
code (Mid-Optimization or Independent Optimization),this
optimization using the following organization:-

Source
Code Front End Code

Generation

Intermediate
Representation

Target
Code

High-Level
Optimization

Low-Level
Optimization

Mid-Level
Optimization

Places for Optimization

