
Code Optimization
Compilers should produce target code that is as good as can be
written by hand. This goal is achieved by program
transformations that are called " Optimization " . Compilers that
apply code improving transformations are called " Optimizing
Compilers ".
Code optimization attempts to increase program efficiency by
restructuring code to simplify instruction sequences and take
advantage of machine specific features:-

 Run Faster , or
 Less Space , or
 Both (Run Faster & Less Space).

The transformations that are provided by an optimizing compiler
should have several properties:-

1. A transformation must preserve the meaning of
program. That is , an optimizer must not change the
output produce by program for an given input, such
as division by zero.

2. A transformation must speed up programs by a
measurable amount.

This lecture concentrates on the transformation of intermediate
code (Mid-Optimization or Independent Optimization),this
optimization using the following organization:-

Source
Code Front End Code

Generation

Intermediate
Representation

Target
Code

High-Level
Optimization

Low-Level
Optimization

Mid-Level
Optimization

Places for Optimization

This organization has the following advantages :-
1. The operations needed to implement high-level constructs

are made explicit in the intermediate code.
2. The intermediate code can be independent of the target

machine, so the optimizer does not have to change much if
the code generator is replaced by one for different
machine.

Basic Blocks:-
The code is typically devided into a sequence of "Basic

Blocks". A Basic Block is a sequence of straight-line code,with
no branches " In " or " Out " except a branch "In" at the top of
block and a branch "Out" at the bottom of block.

 Set of Basic Block : The following steps are used to set
the Basic Block:

1. Determine the Block beginning:
i- The First instruction
ii- Target of conditional & unconditional

Jumps.
iii- Instruction follow Jumps.

Front End Optimizer
Code

Generation

Control
Flow

Analysis

Data
Flow

Analysis
Transformations

Organization of the Optimizer

2. Determine the Basic Blocks:
i-There is Basic Block for each Block beginning.
ii-The Basic Block consist of the Block beginning

and runs until the next Block beginning or
program end.

Example\\

1) i=0
2) t=0
3) t=t+1
4) i=i+1
5) if I < 10 then goto 3
6) x=t

1) i=0
2) t=0

3) t=t+1
4) i=i+1
5) if I < 10 then goto B2

6) x=t

B2

B3

B1

1) i=0
2) t=0

B1

6) x=t
B3

3) t=t+1
4) i=i+1
5) if I < 10 then goto 3

B2

Basic Blocks

Control Flow

Data Flow Analysis (DFA)
In order to do code optimization a compiler needs to

collect information about program as a whole and to distribute
this information to each block in the flow graph. DFA provides
information about how the execution of a program may
manipulate its data , and it provides information for global
optimization .

There are many DFA that can provide useful information
for optimizing transformations. One data-flow analysis
determines how definitions and uses are related to each other,
another estimates what value variables might have at a given
point, and so on. Most of these DFAs can be described by data
flow equations derived from nodes in the flow graph.

Reaching Definitions Analysis: All definitions of that variable,
which reach the beginning of the block, as follow:

1. Gen[B] : contains all definitions d:v=e , in block B that v
is not defined after d in B.

2. Kill[B] : if v is assigned in B , then Kill[B] contains all
definitions d:v=e,in block different from B.

3. In[B] : the set of definitions reaching the beginning of B.

In[B] = Out[H] where H Pred[B]

4. Out[B] : the set of definitions reaching the end of B.

Out[B] = Gen[B] (In[B] Kill[B])

Example d1 : a=
d2 : b=
d3 : c=

d4 : b=

d6 : b=
d7 : c=

d5 : c=

d8 : a=

B1

B2 B3

B4

B5

Block Gen Kill In Out

B1 d1d2d3 d4d5d6d7d8 Ø d1d2d3

B2 d4 d2d6 d1d2d3 d1d3d4
B3 d5 d3d7 d1d2d3d6d7 d1d2d5d6
B4 d6d7 d2d3d4d5 d1d2d5d6 d1d6d7
B5 d8 d1 d1d2d3d4d5d6 d2d3d4d5d6d8

Loop Information: The simple iterative loop which causes the
repetitive execution of one or more basic blocks becomes the
prime area in which optimization will be considered.Here we
determine all the loops in program and limit headers &
preheaders for every loop, for example:

Loop No. Header Preheader Blocks

1 B2 B1 2-3-4-5-2
2 B2 B1 2-2
3 B3 B2 3-3

B1

B2

B3

B4

B6B5

Flow Graph

Loop Information

Code Optimization Methods
A transformation of program is called " Local " if it can
performed by looking only at the statements in a Basic Block,
otherwise, it is called " Global " .

Local Transformations:
1. Structure-Preserving Transformations:-

 Common Subexpression Elimination
 Dead Code Elimination

2. Algebraic Transformations:-This transformations uses to
change the set of expressions ,computed by a basic block,
with an algebraically equivalent set. The useful ones are
those that simplify expressions or replace expensive
operations by cheaper one, such as:

x:=x+0
x:=x*1 Eliminated
x:=x/1

x:= y^2 x:=y*y
Another class of algebraic transformations is Constant Folding
,that is, we can evaluate constant expressions at compiler time
and replace the constant expressions by their values, for
example, the expression 2*3.14 would be replaced by 6.28.

Global Transformations:
1. Common Subexpression Elimination

a=b+c a=b+c
c=b+c c=a
d=b+c d=b+c

2. Dead Code Elimination: Variable is dead if never used

x=y+1
y=1 y=1
x=2*z x=2*z

3. Copy Propagation

Origin Copy Propagation Dead Code
x=t3 x=t3
a[t2]=t5 a[t2]=t5 a[t2]=t5
a[4]=x a[4]=t3 a[4]=t3
Goto B2 Goto B2 Goto B2

4. Constant Propagation

Origin Copy Propagation Dead Code
x=3 x=3
a[t2]=t5 a[t2]=t5 a[t2]=t5
a[4]=x a[4]=3 a[4]=3
Goto B2 Goto B2 Goto B2

5. Loop Optimization
Code Motion: An important modification that
decreases the amount of code in a loop is Code
Motion. If result of expression does not change
during loop(Invariant Computation),can hoist its
computation out of the loop.

For(i=0;i<n;i++)
A[i]=a[i]+(x*x)/(y*y);

c=(x*x)/(y*y);
For(i=0;i<n;i++)

A[i]=a[i]+c;

 Strength Reduction: Replaces expensive operat-
-ions (Multiplies, Divides)by cheap ones (Adds,
Subs).For example, suppose the following
expression:

For(i=1;i<n;i++){v=4*i;s=s+v;} i is induction variable

Then:

v=0;
For(i=1;i<n;i++){ v=v+4; s=s+v; }

Induction Variable: is a variable whose value changes by a
constant amount on each loop iteration.

Code Generation

In computer science, code generation is the process by
which a compiler's code generator converts some internal
representation of source code into a form(e.g., machine
code)that can be readily executed by a machine.
Issues in the Design of a Code Generator:-

1. Input to the Code Generator :The input to the code
generator consists of the intermediate representation of the
source program(Optimized IR),together with information
in ST that is used to determine the Run Time Addresses of
the data objects denoted by the names in IR. Finally, the
code generation phase can therefore proceed on the
assumption that its input is free of the errors.

2. Target Programs : The output of the code generator is the
target program. The output code must be Correct and of
high Quality, meaning that it should make effective use of
the resources of the target machine. Like the IR ,this
output may take on a variety of forms:

a. Absolute Machine Language // Producing this form
as output has the advantage that it can placed in a
fixed location in memory and immediately executed.
A small program can be compiled and executed
quickly.

b. Relocatable Machine Language // This form of the
output allows subprograms to be compiled
separately. A set of relocatable object modules can
be linked together and loaded for execution by
linking-loader.

3. Memory Management : Mapping names in the source
program to addresses of data objects in run time memory.
This process is done cooperatively by the Front-end &
code generator.

4. Major tasks in code generation : In addition to the basic
conversion from IR into a linear sequence of machine
instructions, a typical code generator tries to optimize the
generated code in some way. The generator may try to use

