
 Multimedia - Image Compression

JPEG-LS

The lossless mode of JPEG is inefficient and often is not even implemented. As a

result, the ISO decided to develop a new standard for the lossless (or near-lossless)

compression of continuous-tone images. The result became popularly known as

JPEG-LS. This method is not simply an extension or a modification of JPEG. It is a

new method, designed to be simple and fast. It does not use the DCT, does not use

arithmetic coding, and uses quantization in a limited way, and only in its near-

lossless option.

JPEG-LS examines several of the previously seen neighbors of the current pixel,

uses them as the context of the pixel, uses the context to predict the pixel and to

select a probability distribution out of several such distributions, and uses that

distribution to encode the prediction error with a special Golomb code. There is also

a run mode, where the length of a run of identical pixels is encoded.

Vector Quantization

This is a generalization of the scalar quantization method. It is used for both image

and sound compression. In practice, vector quantization is commonly used to

compress data that has been digitized from an analog source, such as sampled sound

and scanned images (drawings or photographs). Such data is called Digitally

Sampled Analog Data (DSAD). It is a lossy compression method.

Vector quantization is based on two facts:

i. We know that compression methods that compress strings, rather than

individual symbols, can, in principle, produce better results.

ii. Adjacent items in an image and in digitized sound are correlated. There is a

good chance that the near neighbors of a pixel P will have the same values as

 Multimedia - Image Compression

P or very similar values. Also, consecutive audio samples rarely differ by

much.

The basic vector quantization procedure is illustrated in the following figure says

that the encoder finds the closest code vector to the input vector and outputs the

associated index. On the decoder side, exactly the same codebook is used. When the

code index of the input vector is received, a simple table lookup is performed to

determine the reconstruction vector.

Figure (3) Basic vector quantization procedure

Now how to build this codebook, there are many ways, LBG algorithm is the basis

of many vector quantization methods for the compression of images and sound.

Its main steps are the following:

Step 0: Select a threshold value 𝜖 and set k = 0 and 𝐷(−1) = ∞. Start with an initial

codebook with entries 𝐶𝑖
(𝑘)

(where k is currently zero, but will be incremented in each

 Multimedia - Image Compression

iteration). Denote the image blocks by𝐵𝑖 (these blocks are also called training

vectors, since the algorithm uses them to find the best codebook entries).

Step 1: Pick up a codebook entry 𝐶𝑖
(𝑘)

. Find all the image blocks 𝐵𝑚that are closer

to 𝐶𝑖than to any other 𝐶𝑗 . Phrased more precisely; find the set of all 𝐵𝑚 that satisfy

𝑑(𝐵𝑚, 𝐶𝑖) < 𝑑(𝐵𝑚, 𝐶𝑗)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗

This set (or partition) is denoted by 𝑃𝑖
(𝑘)

. Repeat for all values of i. It may happen

that some partitions will be empty, and we deal with this problem below.

Step 2: Select an i and calculate the distortion 𝐷𝑖
(𝑘)

 between codebook entry 𝐶𝑖
(𝑘)

and the set of training vectors (partition) 𝑃𝑖
(𝑘)

found for it in Step 1. Repeat for all i,

then calculate the average 𝐷(𝑘)of all the 𝐷𝑖
(𝑘)

. A distortion 𝐷𝑖
(𝑘)

 for a certain i is

calculated by computing the distances 𝑑(𝐶𝑖
(𝑘)

, 𝐵𝑚) for all the blocks 𝐵𝑚in partition

𝑃𝑖
(𝑘)

, then computing the average distance.

Step 3: If (𝐷(𝑘−1) − 𝐷(𝑘)) 𝐷(𝑘)⁄ ≤ 𝜖 halt. The output of the algorithm is the last set

of codebook entries 𝐶𝑖
(𝑘)

. This set can now be used to (lossy) compress the image

with vector quantization. In the first iteration k is zero, so 𝐷(𝑘−1) =

𝐷(−1) = ∞ > 𝜖. This guarantees that the algorithm will not stop at the first iteration.

Step 4: Increment k by 1 and calculate new codebook entries 𝐶𝑖
(𝑘)

; each equals the

average of the image blocks (training vectors) in partition 𝑃𝑖
(𝑘−1)

 that was computed

in Step 1. (This is how the codebook entries are adapted to the particular image.) Go

to Step 1.

Example:

 Multimedia - Image Compression

Our example assumes an image consisting of 24 pixels, organized in the 12 blocks

(each has 2 pixels that can be plotted on paper as 2D points)

B1 = (32, 32),

B2 = (60, 32),

B3 = (32, 50),

 B4 = (60, 50),

 B5 = (60, 150),

B6 = (70, 140),

B7 = (200, 210),

 B8 = (200, 32),

B9 = (200, 40),

B10 = (200, 50),

B11 = (215, 50),

and B12 = (215, 35).

It is clear that the 12 points are concentrated in four regions. We select an initial

codebook with the four entries

𝐶1
(0)

= (70, 40),

𝐶2
(0)

 = (60, 120),

𝐶3
(0)

= (210, 200),

 Multimedia - Image Compression

and 𝐶4
(0)

= (225, 50)

(shown as × in the diagram). These entries were selected more or less at random but

we show later how the LBG algorithm selects them methodically, one by one.

Because of the graphical nature of the data, it is easy to determine the four initial

partitions. They are

𝑃1
(0)

= (B1,B2,B3,B4),

𝑃2
(0)

= = (B5,B6),

𝑃3
(0)

= = (B7), and

𝑃4
(0)

= (B8,B9,B10,B11,B12).

 Multimedia - Image Compression

The table below to compute the 𝐷𝑖
(0)

The Table above shows how the average distortion 𝐷(0)is calculated for the first

iteration (we use the Euclidean distance function). The result is

Step 3 indicates no convergence, since D(−1) = ∞, so we increment k to 1 and

calculate four new codebook entries C(1)i (rounded to the nearest integer for

simplicity)

They are shown in the Figure below.

 Multimedia - Image Compression

